1
|
Abou Hamad N, Akintola J, Schlenoff JB. Quantifying Hydrophilicity in Polyelectrolytes and Polyzwitterions. Macromolecules 2025; 58:3422-3430. [PMID: 40224165 PMCID: PMC11984477 DOI: 10.1021/acs.macromol.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
The affinity of charged polymers for water is of central interest in polyelectrolyte science. Hydration controls the solution properties of polyelectrolytes as well as their performance in materials having a balance of positive and negative repeat units, such as polyelectrolyte complexes, PECs, and polyzwitterions, PZs. As with neutral polymers, a ranking of water affinity, loosely termed hydrophilicity, is often sought. Apart from the solubility in water, there are few methods for determining relative hydrophilicity. The scaling exponent of size with molecular weight provides, for polymers in general, a classical measure of solvent quality. In this work, using aqueous size exclusion chromatography coupled with static light scattering, the radius of gyration scaling with molecular weight was determined for a range of cationic and anionic polyelectrolytes and for some polyzwitterions. For a more definitive comparison of hydrophilicity, solution calorimetry was used to measure the enthalpy of solution, ΔH sol, when rigorously dried samples of these polymers were dissolved in aqueous 0.1 M NaCl. All polymers yielded strongly exothermic ΔH sol, which provided a ranking of hydrophilicity. The first four molecules of water appear to generate almost all of the heat. Methacryl versions of polymers were more hydrophilic, as ΔH sol was 3-5 kJ mol-1 more exothermic than the nonmethacryl polymer. Polyzwitterions were shown to be strongly hydrated, consistent with the proposed mechanisms for their antifouling properties, although water is not necessarily more strongly held for PZs compared to PEs.
Collapse
Affiliation(s)
- Nagham Abou Hamad
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| |
Collapse
|
2
|
Belthle T, Lantzius-Beninga M, Pich A. Pre- and post-functionalization of thermoresponsive cationic microgels with ionic liquid moieties carrying different counterions. Polym Chem 2023. [DOI: 10.1039/d2py01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigate the effect of different anions on the temperature-dependent solution properties of poly(N-vinylcaprolactam) microgels carrying alkylated ionic liquid vinylimidazolium moieties synthesized by a pre- and post-functionalization approach.
Collapse
Affiliation(s)
- Thomke Belthle
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Marcus Lantzius-Beninga
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
3
|
Kar M, Anas M, Singh A, Basak A, Sen P, Mandal TK. Ion-/Thermo-Responsive fluorescent perylene-poly(ionic liquid) conjugates: One-pot microwave synthesis, self-aggregation and biological applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Tenhu H, Baddam V, Välinen L, Kuckling L. Morphological transitions of cationic PISA particles by salt, triflate ions and temperature; comparison of three polycations. Polym Chem 2022. [DOI: 10.1039/d2py00301e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three strong polycation stabilizers, poly((vinylbenzyl) trimethylammonium chloride), PVBTMAC, poly((2-(methacryloyloxy)ethyl)trimethylammonium chloride), PMOTAC, and poly((3-acrylamidopropyl) trimethylammonium chloride), PAMPTMAC have been synthesized with reversible addition-fragmentation chain transfer, RAFT, reactions. Solubilities of the polycations...
Collapse
|
5
|
Niskanen J, Peltekoff AJ, Bullet JR, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jukka Niskanen
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Alexander J. Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Richard Bullet
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Françoise M. Winnik
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
- International Center for Materials Nanoarchitectonics (WPN-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Lewoczko EM, Kelly MT, Kent EW, Zhao B. Effects of temperature on chaotropic anion-induced shape transitions of star molecular bottlebrushes with heterografted poly(ethylene oxide) and poly( N, N-dialkylaminoethyl methacrylate) side chains in acidic water. SOFT MATTER 2021; 17:6566-6579. [PMID: 34151928 DOI: 10.1039/d1sm00728a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper(i)-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN)6]3- and [Fe(CN)6]4-, moderate CAs PF6- and ClO4-, weak CA I-, and for comparison, kosmotropic anion SO42-. At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I- and SO42- had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release.
Collapse
Affiliation(s)
- Evan M Lewoczko
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Ethan W Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
7
|
Basheer A, Shahid S, Kang MJ, Lee JH, Lee JS, Lim DW. Switchable Self-Assembly of Elastin- and Resilin-Based Block Copolypeptides with Converse Phase Transition Behaviors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24385-24400. [PMID: 34006089 DOI: 10.1021/acsami.1c00676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of thermally responsive polypeptides into unique nanostructures offers intriguing attributes including dynamic physical dimensions, biocompatibility, and biodegradability for the smart bio-nanomaterials. As elastin-based polypeptide (EBP) fusion proteins with lower critical solution temperature (LCST) are studied as drug delivery systems, EBP block copolypeptides with the resilin-based polypeptide (RBP) displaying an upper critical solution temperature (UCST) have been of great interest. In this study, we report thermally triggered, dynamic self-assembly of EBP- and RBP-based diblock copolypeptides into switched nanostructures with reversibility under physiological conditions. Molecular DNA clones encoding for the EBP-RBP diblocks at different block length ratios were biosynthesized via recursive directional ligation and overexpressed, followed by nonchromatographic purification by inverse transition cycling. Genetically engineered diblock copolypeptides composed of the EBP with an LCST and the RBP with a UCST showed converse phase transition behaviors with both a distinct LCST and a distinct UCST (LCST < UCST). As temperature increased, three phases of these EBP-RBP diblocks were observed: (1) self-assembled micelles or vesicles below both LCST and UCST, (2) whole aggregates above LCST and below UCST, and (3) reversed micelles above both LCST and UCST. In conclusion, these stimuli-triggered, dynamic protein-based nanostructures are promising for advanced drug delivery systems, regenerative medicine, and biomedical nanotechnology.
Collapse
Affiliation(s)
- Aamna Basheer
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Shahzaib Shahid
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Jung Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
8
|
Baddam V, Välinen L, Tenhu H. Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Lauri Välinen
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| |
Collapse
|
9
|
Nanostructured thermosets involving epoxy and poly(ionic liquid)-Containing diblock copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Cai S, Gu S, Li X, Wan S, Chen S, He X. Controlled grafting modification of starch and UCST-type thermosensitive behavior in water. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04670-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Banerjee P, Anas M, Jana S, Mandal TK. Recent developments in stimuli-responsive poly(ionic liquid)s. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02091-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shi Z, Zhang X, Wang X, Yang F, Yu Z, Ling Y, Lu H, Luan S, Tang H. Synthesis and Properties of Mono- or Diamine-Initiated Imidazolium-Based Cationic Polypeptides. Biomacromolecules 2020; 21:3468-3478. [DOI: 10.1021/acs.biomac.0c00953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zuowen Shi
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaodan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zikun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Banerjee P, Jana S, Mandal TK. Coulomb interaction-driven UCST in poly(ionic liquid) random copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Witos J, Karjalainen E, Tenhu H, Wiedmer SK. CE and asymmetrical flow-field flow fractionation studies of polymer interactions with surfaces and solutes reveal conformation changes of polymers. J Sep Sci 2020; 43:2495-2505. [PMID: 32227669 DOI: 10.1002/jssc.201901301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Amphiphilic diblock copolymers consisting of a hydrophobic core containing a polymerized ionic liquid and an outer shell composed of poly(N-isoprolylacrylamide) were investigated by capillary electrophoresis and asymmetrical flow-field flow fractionation. The polymerized ionic liquid comprised poly(2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate) with a constant block length (n = 24), while the length of the poly(N-isoprolylacrylamide) block varied (n = 14; 26; 59; 88). Possible adsorption of the block copolymer on the fused silica capillary, due to alterations in the polymeric conformation upon a change in the temperature (25 and 45 °C), was initially studied. For comparison, the effect of temperature on the copolymer conformation/hydrodynamic size was determined with the aid of asymmetrical flow-field flow fractionation and light scattering. To get more information about the hydrophilic/hydrophobic properties of the synthesized block copolymers, they were used as a pseudostationary phase in electrokinetic chromatography for the separation of some model compounds, that is, benzoates and steroids. Of particular interest was to find out whether a change in the length or concentration of the poly(N-isoprolylacrylamide) block would affect the separation of the model compounds. Overall, our results show that capillary electrophoresis and asymmetrical flow-field flow fractionation are suitable methods for characterizing conformational changes of such diblock copolymers.
Collapse
Affiliation(s)
- Joanna Witos
- Department of Chemistry, University of Helsinki, Helsinki, Finland.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Erno Karjalainen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
15
|
Begam N, Matsarskaia O, Sztucki M, Zhang F, Schreiber F. Unification of lower and upper critical solution temperature phase behavior of globular protein solutions in the presence of multivalent cations. SOFT MATTER 2020; 16:2128-2134. [PMID: 32016274 DOI: 10.1039/c9sm02329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In globular protein systems, upper critical solution temperature (UCST) behavior is common, but lower critical solution temperature (LCST) phase transitions are rare. In addition, the temperature sensitivity of such systems is usually difficult to tune. Here we demonstrate that the charge state of globular proteins in aqueous solutions can alter their temperature-dependent phase behavior. We show a universal way to tune the effective protein interactions and induce both UCST and LCST-type transitions in the system using trivalent salts. We provide a phase diagram identifying LCST and UCST regimes as a function of protein and salt concentrations. We further propose a model based on an entropy-driven cation binding mechanism to explain the experimental observations.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Olga Matsarskaia
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Michael Sztucki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
|
17
|
Karjalainen E, Suvarli N, Tenhu H. Thermoresponsive behavior of poly[trialkyl-(4-vinylbenzyl)ammonium] based polyelectrolytes in aqueous salt solutions. Polym Chem 2020. [DOI: 10.1039/d0py00917b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic method to induce thermoresponsive behavior for polycations with salts from the reversed Hofmeister series is introduced.
Collapse
Affiliation(s)
- Erno Karjalainen
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Narmin Suvarli
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| | - Heikki Tenhu
- Department of Chemistry
- University of Helsinki
- 00014 Helsingin yliopisto
- Finland
| |
Collapse
|
18
|
Baddam V, Missonen R, Hietala S, Tenhu H. Molecular Mass Affects the Phase Separation of Aqueous PEG-Polycation Block Copolymer. Macromolecules 2019; 52:6514-6522. [PMID: 31543553 PMCID: PMC6748676 DOI: 10.1021/acs.macromol.9b01327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Indexed: 11/30/2022]
Abstract
![]()
Mechanisms of the phase separation
and remixing of cationic PEG-containing
block copolymers have been investigated in aqueous lithium triflate
solutions. The polycation was poly(vinylbenzyl trimethylammonium triflate).
We have previously reported on one such block copolymer, which upon
cooling of a hot clear solution first underwent phase separation into
a turbid colloid and, later, partially cleared again with further
cooling. To better understand the balance of various interactions
in the solutions/dispersions, a series of polymers with varying DP
of the cationic block was synthesized. From one of the polymers, the
alkyl end group (a fragment of the chain transfer agent) was removed.
The length of the cationic block affected critically the behavior,
but the hydrophobic end group had a minimal effect. Polymers with
a short cationic block turn cloudy and partially clear again during
a temperature decrease, whereas those with a long cationic block phase
separate and slowly precipitate and remix only when heated. Phase
separation takes place via particle formation, and we suggest different
mechanisms for colloidal stabilization of particles composed of short
or long chains.
Collapse
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 Helsinki, Finland
| | - Reetta Missonen
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 Helsinki, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 Helsinki, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 Helsinki, Finland
| |
Collapse
|
19
|
Zheng Z, Zhang L, Ling Y, Tang H. Triblock copolymers containing UCST polypeptide and poly(propylene glycol): Synthesis, thermoresponsive properties, and modification of PVA hydrogel. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Zhao L, Zhang L, Zheng Z, Ling Y, Tang H. Synthesis and Properties of UCST‐Type Thermo‐ and Light‐Responsive Homopolypeptides with Azobenzene Spacers and Imidazolium Pendants. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liang Zhao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Lin Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Zelai Zheng
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan ProvinceCollege of ChemistryXiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
21
|
Luo G, Guo Y, Liu C, Han G, Ma X, Zhang W. What will happen when thermoresponsive poly( N-isopropylacrylamide) is tethered on poly(ionic liquid)s? RSC Adv 2019; 9:12936-12943. [PMID: 35520761 PMCID: PMC9063810 DOI: 10.1039/c9ra01849b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The thermoresponsive ionic liquid diblock copolymer of poly[1-(4-vinylbenzyl)-3-methylimidazolium tetrafluoroborate]-block-poly(N-isopropylacrylamide) (P[VBMI][BF4]-b-PNIPAM) containing a hydrophilic poly(ionic liquid) block of P[VBMI][BF4] is prepared by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. This P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponsive phase transition at a temperature above the phase transition temperature (PTT) of the PNIPAM block. For P[VBMI][BF4]-b-PNIPAM including a short P[VBMI][BF4] block, its aqueous solution becomes turbid at a temperature above the PTT of the thermoresponsive PNIPAM block, whereas for P[VBMI][BF4]-b-PNIPAM containing a relatively long P[VBMI][BF4] block even in the case of a relatively long PNIPAM block, the aqueous solution remains transparent at a temperature far above the PTT of the PNIPAM block, although a soluble-to-insoluble phase transition of the PINIPAM block is confirmed by dynamic light scattering (DLS) analysis and variable temperature 1H NMR analysis. The reason that P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponse is discussed and ascribed to the highly hydrophilic and charged poly(ionic liquid) block of P[VBMI][BF4] leading to the formation of small-sized micelles at a temperature above the PTT.
Collapse
Affiliation(s)
- Guangmei Luo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd Beijing 100123 China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology Tianjin 300401 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Biswas Y, Banerjee P, Mandal TK. From Polymerizable Ionic Liquids to Poly(ionic liquid)s: Structure-Dependent Thermal, Crystalline, Conductivity, and Solution Thermoresponsive Behaviors. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- Polymer Science Unit, School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
23
|
Zhong J, Luo H, Tang Q, Lei Z, Tong Z. Counterion-Mediated Self-Assembly of Ion-Containing Block Copolymers on the Basis of the Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
24
|
Luo H, Tang Q, Zhong J, Lei Z, Zhou J, Tong Z. Interplay of Solvation and Size Effects Induced by the Counterions in Ionic Block Copolymers on the Basis of Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Junyi Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
25
|
Liang C, Wang X, Zhou R, Shi H, Yan S, Ling Y, Luan S, Tang H. Thermo- and oxidation-responsive homopolypeptide: synthesis, stimuli-responsive property and antimicrobial activity. Polym Chem 2019. [DOI: 10.1039/c8py01735b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present the design and synthesis of a side-chain functional polypeptide with a thioether spacer that is readily decorated to produce thermo- and oxidation-responsive polymers with antimicrobial activity.
Collapse
Affiliation(s)
- Ce Liang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
| | - Xiaodan Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Rongtao Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
- China
| |
Collapse
|
26
|
Baddam V, Aseyev V, Hietala S, Karjalainen E, Tenhu H. Polycation–PEG Block Copolymer Undergoes Stepwise Phase Separation in Aqueous Triflate Solution. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Vladimir Aseyev
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Sami Hietala
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Erno Karjalainen
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
27
|
Poly(imidazoled glycidyl methacrylate-co-diethyleneglycol methyl ether methacrylate) – A new copolymer with tunable LCST and UCST behavior in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Jana S, Biswas Y, Anas M, Saha A, Mandal TK. Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12653-12663. [PMID: 30265540 DOI: 10.1021/acs.langmuir.8b03022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synthesis of a series of dual thermosensitive nonionic-ionic random copolymers with varying compositions by reversible addition-fragmentation chain transfer polymerization is described. These copolymers contain oligo(2-ethyl-2-oxazoline)acrylate (OEtOxA) and either triphenyl-4-vinylbenzylphosphonium chloride ([VBTP][Cl]) or 3- n-butyl-1-vinylimidazolium bromide ([VBuIm][Br]) ionic liquid (IL) units. The copolymers having low content of ionic poly(ionic liquid) (PIL) (P[VBTP][Cl]/P[VBuIm][Br]) segments show only lower critical solution temperature (LCST)-type phase transition with almost linear increase of their cloud points with increasing percentage of ionic PIL segments. Furthermore, LCST-type cloud points ( TcLs) are found very sensitive and tunable with respect to the nature and concentration of halide ions (X- = Cl-, Br-, and I-) and copolymer compositions. However, copolymers with high content of ionic PIL segments show both LCST-type followed by upper critical solution temperature (UCST)-type phase transitions in the presence of halide ions. Dual LCST- and UCST-type phase behaviors are prominent and repeatable for many heating/cooling cycles. Both types of cloud points are found to be sensitive to copolymer compositions, concentration, and nature and concentration of the halide ions. The phase behaviors of both types of copolymers with a very high ionic content (>90%) are exactly similar to that of P[VBTP][Cl] or P[VBuIm][Br] homopolymers showing only UCST-type phase transition in the presence of halide ions. The inherent biocompatibility of the P(OEtOxA) segment along with the interesting dual thermoresponsiveness makes these copolymers highly suitable candidates for biomedical applications including drug delivery.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Yajnaseni Biswas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Md Anas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Anupam Saha
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Tarun K Mandal
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
29
|
Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Ge C, Ling Y, Yan S, Luan S, Zhang H, Tang H. Preparation and mechanical properties of strong and tough poly (vinyl alcohol)-polypeptide double-network hydrogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Biswas Y, Mandal TK. Structural Variation in Homopolymers Bearing Zwitterionic and Ionic Liquid Pendants for Achieving Tunable Multi-Stimuli Responsiveness and Hierarchical Nanoaggregates. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
32
|
Petitdemange R, Garanger E, Bataille L, Bathany K, Garbay B, Deming TJ, Lecommandoux S. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjug Chem 2017; 28:1403-1412. [DOI: 10.1021/acs.bioconjchem.7b00082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosine Petitdemange
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Elisabeth Garanger
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Laure Bataille
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Katell Bathany
- Université de Bordeaux/Bordeaux-INP, CNRS, Chimie et Biologie des Membranes et des Nano-objets (UMR5248), Allée Geoffroy Saint Hilaire, Pessac 33600, France
| | - Bertrand Garbay
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Sébastien Lecommandoux
- Université de Bordeaux/Bordeaux-INP, ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 avenue Pey-Berland, Pessac 33607, France
| |
Collapse
|
33
|
Li M, Xu Y, Liu T, Li Y, Ling Y, Tang H. Preparation and Thermoresponsive Properties of UCST-Type Polypeptide Bearing p
-Tolyl Pendants and 3-Methyl-1,2,3-triazolium Linkages in Methanol or Ethanol/Water Solvent Mixtures. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Tingting Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yin Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
34
|
Preparation and thermoresponsive properties of UCST-type glycopolypeptide bearing mannose pendants and 3-methyl-1,2,3-triazolium linkages in ethanol or ethanol/water solvent mixtures. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Yokomizo T, Satoh M. Temperature-Induced Swelling of Alkali Metal Polyacrylate Gels in Aqueous Organic Solvent Mixtures. J MACROMOL SCI B 2017. [DOI: 10.1080/00222348.2017.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
|
37
|
Responsive Polymer Nanostructures. POLYMER-ENGINEERED NANOSTRUCTURES FOR ADVANCED ENERGY APPLICATIONS 2017. [DOI: 10.1007/978-3-319-57003-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Li S, Feng L, Lu H, Feng S. From LCST to UCST: the phase separation behaviour of thermo-responsive polysiloxanes with the solubility parameters of solvents. NEW J CHEM 2017. [DOI: 10.1039/c6nj03386e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermo-responsive polysiloxanes with tunable LCST- and UCST-type phase separation in mixed solvents were synthesised via a facile, highly efficient, catalyst-free aza-Michael addition of poly(aminopropylmethylsiloxane) to N-isopropylacrylamide.
Collapse
Affiliation(s)
- Shusheng Li
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Linglong Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Hang Lu
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
39
|
Ge C, Zhao L, Ling Y, Tang H. Thermo and pH dual responsive polypeptides derived from “clickable” poly(γ-3-methylthiopropyl-l-glutamate). Polym Chem 2017. [DOI: 10.1039/c7py00170c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thermo and pH dual responsive polypeptides bearing sulfonium linkages and ammonium pendants were prepared from “clickable” thioether-containing polypeptides.
Collapse
Affiliation(s)
- Chenglong Ge
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
| | - Liang Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
| | - Ying Ling
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
| | - Haoyu Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
| |
Collapse
|
40
|
Abstract
In this mini-review, we discuss multi-stimuli-responsive polymers, which exhibit upper critical solution temperature (UCST) behavior mainly in aqueous solutions, and focus on examples where counter ions, electricity, light, or pH influence the thermoresponsiveness of these polymers.
Collapse
Affiliation(s)
- Jukka Niskanen
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| |
Collapse
|
41
|
Liu S, Ge C, Ling Y, Tang H. Preparation and UCST-Type Phase Behaviours of Poly(γ-4-methylbenzyl-L-glutamate) Pyridinium Tetrafluoroborate Conjugates in Methanol or Water. Aust J Chem 2017. [DOI: 10.1071/ch16344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymers with ionic liquid (IL) moieties can undergo thermally induced solution phase transitions by adjusting the balance of hydrophilicity and hydrophobicity between the cations and anions of the IL moieties, thus making them attractive candidates towards various applications such as separation, sensing, and biomedicine. In the present study, a series of poly(γ-4-methylbenzyl-l-glutamate) pyridinium tetrafluoroborate conjugates (P1–P4) containing various pyridinium moieties (i.e. pyridinium, 2-methylpyridinium, 3-methylpyridinium, and 4-methylpyridinium) were prepared by nucleophilic substitution between poly(γ-4-chloromethylbenzyl-l-glutamate) and pyridine or methylpyridines with different substituent positions, followed by ion-exchange reaction in the presence of NaBF4. 1H NMR spectroscopy and Fourier transform infrared spectroscopy analyses confirmed the molecular structures of P1–P4. 1H NMR analysis additionally revealed that P1–P4 showed high grafting efficiency in the range of 93–97 %. P1, P3, and P4 exhibited reversible UCST-type phase behaviours in both methanol and water, whereas P2 showed a reversible UCST-type phase behaviour in water only. Variable-temperature UV-visible spectroscopy was used to characterize the solution phase behaviours and UCST-type phase transition temperature (Tpt) values of P1–P4, which were in the range of 24.9–37.2°C in methanol (3 mg mL–1) and 40.9–55.7°C in water (10 mg mL–1). Tpt decreased significantly with decreasing polymer concentrations.
Collapse
|
42
|
Takani S, Satoh M. Temperature-Induced Coil-Globule Transition of Alkali Metal Polyacrylates in Aqueous Organic Solvent Mixtures. J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1219214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Mäkinen L, Varadharajan D, Tenhu H, Hietala S. Triple Hydrophilic UCST–LCST Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02543] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lauri Mäkinen
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Divya Varadharajan
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Sami Hietala
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| |
Collapse
|
44
|
Biswas Y, Maji T, Dule M, Mandal TK. Tunable doubly responsive UCST-type phosphonium poly(ionic liquid): a thermosensitive dispersant for carbon nanotubes. Polym Chem 2016. [DOI: 10.1039/c5py01574j] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(triphenyl-4-vinylbenzylphosphonium chloride) synthesized via RAFT polymerization exhibits both tunable halide ion- and thermo-responsiveness (UCST-type) in aqueous solution and acts as a thermosensitive stabilizer for carbon nanotubes.
Collapse
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Jadavpur
- India
| | - Tanmoy Maji
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Jadavpur
- India
| | - Madhab Dule
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Jadavpur
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Jadavpur
- India
| |
Collapse
|
45
|
Ge C, Liu S, Liang C, Ling Y, Tang H. Synthesis and UCST-type phase behavior of α-helical polypeptides with Y-shaped and imidazolium pendants. Polym Chem 2016. [DOI: 10.1039/c6py01287f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UCST-type thermoresponsive polypeptides with Y-shaped and ionic liquid pendants were synthesized by a multi-step post-polymerization method.
Collapse
Affiliation(s)
- Chenglong Ge
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Sheng Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Ce Liang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Ying Ling
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
46
|
Grygiel K, Zhang W, Detrembleur C, Yuan J. Unexpected LCST-type phase behaviour of a poly(vinyl thiazolium) polymer in acetone. RSC Adv 2016. [DOI: 10.1039/c6ra09023k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A poly(vinyl thiazolium) polymer in acetone solution exhibited an unexpected lower critical solution temperature (LCST)-type phase transition.
Collapse
Affiliation(s)
- Konrad Grygiel
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam
- Germany
| | - Weiyi Zhang
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam
- Germany
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- 4000 Liege
- Belgium
| | - Jiayin Yuan
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam
- Germany
| |
Collapse
|
47
|
Zhang G, Wang Y, Liu G. Poly(3-imidazolyl-2-hydroxypropyl methacrylate) – a new polymer with a tunable upper critical solution temperature in water. Polym Chem 2016. [DOI: 10.1039/c6py01535b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel imidazole-bearing polymer is synthesized and its solubility in water increases as the solution temperature rises or pH increases.
Collapse
Affiliation(s)
- Ganwei Zhang
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| | - Yu Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| | - Guojun Liu
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| |
Collapse
|
48
|
Duša F, Witos J, Karjalainen E, Viitala T, Tenhu H, Wiedmer SK. Novel cationic polyelectrolyte coatings for capillary electrophoresis. Electrophoresis 2015; 37:363-71. [DOI: 10.1002/elps.201500275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Filip Duša
- Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Joanna Witos
- Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Erno Karjalainen
- Laboratory of Polymer chemistry, Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy; University of Helsinki; Helsinki Finland
| | - Heikki Tenhu
- Laboratory of Polymer chemistry, Department of Chemistry; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
49
|
Liu C, Wang S, Zhou H, Gao C, Zhang W. Thermoresponsive poly(ionic liquid): Controllable RAFT synthesis, thermoresponse, and application in dispersion RAFT polymerization. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Institute of Polymer Chemistry, Nankai University; Tianjin 300071 China
| | - Shuang Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Institute of Polymer Chemistry, Nankai University; Tianjin 300071 China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Institute of Polymer Chemistry, Nankai University; Tianjin 300071 China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Institute of Polymer Chemistry, Nankai University; Tianjin 300071 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Institute of Polymer Chemistry, Nankai University; Tianjin 300071 China
| |
Collapse
|
50
|
Cao X, An Z. RAFT Synthesis in Water of Cationic Polyelectrolytes with Tunable UCST. Macromol Rapid Commun 2015; 36:2107-10. [DOI: 10.1002/marc.201500440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/25/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Xueteng Cao
- Institute of Nanochemistry and Nanobiology; College of Environmental and Chemical Engineering; Shanghai University; Shanghai 200444 China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology; College of Environmental and Chemical Engineering; Shanghai University; Shanghai 200444 China
| |
Collapse
|