1
|
Bendi A, Vashisth C, Yadav S, Pundeer R, Raghav N. Recent advances in the synthesis of cholesterol-based triazoles and their biological applications. Steroids 2024; 211:109499. [PMID: 39155033 DOI: 10.1016/j.steroids.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Double-headed warheads focusing on the pharmacological aspects as well as membrane permeability can contribute a lot to medicinal chemistry. Over the past few decades, a lot of research has been conducted on steroid-heterocycle conjugates as possible therapeutic agents against a variety of disorders. In the second half of the 20th century, successful research was conducted on cholesterol-based heterocyclic moieties. Keeping in view the biological significance of various triazoles, research on fusion with cholesterol has emerged. This review has been designed to explore the chemistry of cholesterol-based triazoles for the duration from 2010 to 2023 and their significance in medicinal chemistry.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore 560064, Karnataka, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| | - Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| |
Collapse
|
2
|
Fernandez C, Giorgees I, Goss E, Desaulniers JP. Effective carrier-free gene-silencing activity of sphingosine-modified siRNAs. Org Biomol Chem 2023; 21:2107-2117. [PMID: 36645381 DOI: 10.1039/d2ob02099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that silences the expression of target genes in a sequence-specific way by mediating targeted mRNA degradation. One of the main challenges in RNAi research is developing an effective career-free delivery system and targeting cells in the central nervous system (CNS). Recently, lipid-conjugated systems involving fatty acids have shown promising potential as safe and effective delivery systems of oligonucleotides to CNS cells due to their hydrophobic tails and interactions with the cell's hydrophobic membrane. Therefore, in this study, we are interested in creating career-free siRNA therapeutics for potential applications in drug delivery to the CNS. Here we explore different synthetic pathways of conjugating sphingolipids containing long-carbon chains to siRNA and assess their effectiveness as career-free delivery systems. In this project, a library of sphingosine-modified siRNAs was created, and their gene-silencing effect was evaluated in both the presence and absence of a transfection carrier. siRNAs modified with one or two sphingosine moieties resulted in dose-dependent gene knockdown while demonstrating promising results for their use as carrier-free agents. The IC50 values of single-modified siRNAs ranged from 49.9 nM to 670.7 nM, whereas double-modified siRNAs had IC50 values in the range of 49.9 nM to 66.4 nM. In conclusion, sphingosine-modified siRNAs show promising results in advancing carrier-free siRNA therapeutics.
Collapse
Affiliation(s)
- Charlene Fernandez
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Eva Goss
- Synthose Inc., 50 Viceroy Road Unit 7, Concord, Ontario, L4K 3A7 Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| |
Collapse
|
3
|
Hammill ML, Tsubaki K, Salim L, Varley AJ, Giorgees I, Kitamura M, Okauchi T, Desaulniers JP. SiRNAs with Neutral Phosphate Triester Hydrocarbon Tails Exhibit Carrier-Free Gene-Silencing Activity. ACS Med Chem Lett 2022; 13:695-700. [PMID: 35450364 PMCID: PMC9014433 DOI: 10.1021/acsmedchemlett.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Short interfering RNAs (siRNAs) show promise as gene-silencing therapeutics, but their cellular uptake remains a challenge. We have recently shown the synthesis of siRNAs bearing a single neutral phenylethyl phosphotriester linkage within the sense strand. Here, we report the synthesis of siRNAs bearing three different hydrophobic phosphate triester linkages at key positions within the sense strand and assess their gene silencing in the absence of a transfection carrier. The best siRNAs bearing hydrophobic phosphate triester tails were not aromatic and exhibited effective gene silencing (IC50 ≈ 56-141 nM), whereas the aromatic derivative with three hydrophobic tails did not exhibit carrier-free gene silencing.
Collapse
Affiliation(s)
- Matthew L. Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Kouta Tsubaki
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Andrew J. Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
4
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
5
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Hammill ML, Islam G, Desaulniers JP. Synthesis, Derivatization and Photochemical Control of ortho-Functionalized Tetrachlorinated Azobenzene-Modified siRNAs. Chembiochem 2020; 21:2367-2372. [PMID: 32232952 DOI: 10.1002/cbic.202000188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/12/2022]
Abstract
We report the chemical synthesis and derivatization of an ortho-functionalized tetrachlorinated azobenzene diol. A 4',4-dimethoxytrityl (DMT) phosphoramidite was synthesized for its site-specific incorporation within the sense strand of an siRNA duplex to form ortho-functionalized tetrachlorinated azobenzene-containing siRNAs (Cl-siRNAzos). Compared to a non-halogenated azobenzene, ortho-functionalized tetrachlorinated azobenzenes are capable of red-shifting the π→π* transition from the ultraviolet (UV) portion of the electromagnetic spectrum into the visible range. Within this visible range, the azobenzene molecule can be reliably converted from trans to cis with red light (660 nm), and converted back to trans with violet wavelength light (410 nm) and/or thermal relaxation. We also report the gene-silencing ability of these Cl-siRNAzos in cell culture as well as their reversible control with visible light for up to 24 hours.
Collapse
Affiliation(s)
- Matthew L Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Golam Islam
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
7
|
Chemical modulation of siRNA lipophilicity for efficient delivery. J Control Release 2019; 307:98-107. [DOI: 10.1016/j.jconrel.2019.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022]
|
8
|
Salim L, McKim C, Desaulniers JP. Effective carrier-free gene-silencing activity of cholesterol-modified siRNAs. RSC Adv 2018; 8:22963-22966. [PMID: 35540146 PMCID: PMC9081628 DOI: 10.1039/c8ra03908a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties. This study evaluates the in vitro cellular uptake and knock-down efficacy of cholesterol-modified triazole-linked siRNAs targeting firefly luciferase in the absence of a transfection carrier. These siRNAs displayed low cytotoxicity and excellent dose-dependent knockdown in HeLa cells in the 500 to 3000 nM concentration range, with a 70–80% reduction in firefly luciferase activity. Our results indicate that this modification is compatible with the RNA interference pathway, and is less cytotoxic and more effective than a commercially-available triethylene glycol (TEG) cholesterol modification. The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties.![]()
Collapse
Affiliation(s)
- Lidya Salim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Chris McKim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | | |
Collapse
|
9
|
Hammill ML, Isaacs-Trépanier C, Desaulniers JP. siRNAzos: A New Class of Azobenzene-Containing siRNAs that Can Photochemically Regulate Gene Expression. ChemistrySelect 2017. [DOI: 10.1002/slct.201702322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew L. Hammill
- Faculty of Science; University of Ontario Institute of Technology; Oshawa ON L1H 7 K4 Canada
| | | | - Jean-Paul Desaulniers
- Faculty of Science; University of Ontario Institute of Technology; Oshawa ON L1H 7 K4 Canada
| |
Collapse
|
10
|
Desaulniers JP, Hagen G, Anderson J, McKim C, Roberts B. Effective gene-silencing of siRNAs that contain functionalized spacer linkages within the central region. RSC Adv 2017. [DOI: 10.1039/c6ra27701b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Short-interfering RNAs containing a variety of functional groups at the central region of the sense strand were synthesized and evaluated.
Collapse
Affiliation(s)
| | - Gordon Hagen
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Jocelyn Anderson
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Chris McKim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Blake Roberts
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| |
Collapse
|
11
|
siRNAmod: A database of experimentally validated chemically modified siRNAs. Sci Rep 2016; 6:20031. [PMID: 26818131 PMCID: PMC4730238 DOI: 10.1038/srep20031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 11/21/2022] Open
Abstract
Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.
Collapse
|
12
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
13
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015; 55:2152-6. [DOI: 10.1002/anie.201510921] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
14
|
Hagen G, Peel BJ, Samis J, Desaulniers JP. Synthesis and in vitro assessment of chemically modified siRNAs targeting BCL2 that contain 2′-ribose and triazole-linked backbone modifications. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00147a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Short-interfering RNAs (siRNAs) are naturally occurring biomolecules used for post-transcriptional gene regulation, and therefore hold promise as a future therapeutic by silencing gene expression of overexpressed deleterious genes.
Collapse
Affiliation(s)
- Gordon Hagen
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - Brandon J. Peel
- Faculty of Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | - John Samis
- Faculty of Health Science
- University of Ontario Institute of Technology
- Oshawa
- Canada
| | | |
Collapse
|