1
|
Wang M, Pan D, Zhang Q, Lei Y, Wang C, Jia H, Mou L, Miao X, Ren X, Xu Z. Site-Selective Polyfluoroaryl Modification and Unsymmetric Stapling of Unprotected Peptides. J Am Chem Soc 2024; 146:6675-6685. [PMID: 38427024 DOI: 10.1021/jacs.3c12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Peptide stapling is recognized as an effective strategy for improving the proteolytic stability and cell permeability of peptides. In this study, we present a novel approach for the site-selective unsymmetric perfluoroaryl stapling of Ser and Cys residues in unprotected peptides. The stapling reaction proceeds smoothly under very mild conditions, exhibiting a remarkably rapid reaction rate. It can furnish stapled products in both liquid and solid phases, and the presence of nucleophilic groups other than Cys thiol within the peptide does not impede the reaction, resulting in uniformly high yields. Importantly, the chemoselective activation of Ser β-C(sp3)-H enables the unreacted -OH to serve as a reactive handle for subsequent divergent modification of the staple moiety with various therapeutic functionalities, including a clickable azido group, a polar moiety, a lipid tag, and a fluorescent dye. In our study, we have also developed a visible-light-induced chemoselective C(sp3)-H polyfluoroarylation of the Ser β-position. This reaction avoids interference with the competitive reaction of Ser -OH, enabling the precise late-stage polyfluoroarylative modification of Ser residues in various unprotected peptides containing other highly reactive amino acid residues. The biological assay suggested that our peptide stapling strategy would potentially enhance the proteolytic stability and cellular permeability of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongjia Lei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyuan Jia
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lingyun Mou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| |
Collapse
|
2
|
Bofinger R, Weitsman G, Evans R, Glaser M, Sander K, Allan H, Hochhauser D, Kalber TL, Årstad E, Hailes HC, Ng T, Tabor AB. Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors. NANOSCALE 2021; 13:18520-18535. [PMID: 34730152 PMCID: PMC8601123 DOI: 10.1039/d1nr02770k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - Rachel Evans
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Matthias Glaser
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Kerstin Sander
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Erik Årstad
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
3
|
Zarei H, Malaekeh-Nikouei B, Ramezani M, Soltani F. Multifunctional peptides based on low molecular weight protamine (LMWP) in the structure of polyplexes and lipopolyplexes: Design, preparation and gene delivery characterization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
5
|
Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics 2021; 13:pharmaceutics13010116. [PMID: 33477663 PMCID: PMC7831936 DOI: 10.3390/pharmaceutics13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Non-viral transfection reagents are continuously being developed in attempt to replace viral vectors. Among those non-viral vectors, dendrimers have gained increasing interest due to their unique molecular structure and multivalency. However, more improvements are still needed to achieve higher efficacy and lower toxicity. In this study, we have examined 18 peptide dendrimers conjugated to lipophilic moieties, such as fatty acids or hydrophobic amino acids, that were previously explored for siRNA. Reporter cells were employed to investigate the transfection of single strand splice-switching oligonucleotides (ONs) using these peptide dendrimers. Luciferase level changes reflecting efficiency varied with amino acid composition, stereochemistry, and complexation media used. 3rd generation peptide dendrimers with D-amino acid configuration were superior to L-form. Lead formulations with 3rd generation, D-amino acid peptide dendrimers increased the correction level of the delivered ON up to 93-fold over untreated HeLa Luc/705 cells with minimal toxicity. To stabilize the formed complexes, Polyvinyl alcohol 18 (PVA18) polymer was added. Although PVA18 addition increased activity, toxicity when using our best candidates G 2,3KL-(Leu)4 (D) and G 2,3KL-diPalmitamide (D) was observed. Our findings demonstrate the potential of lipid-conjugated, D-amino acid-containing peptide dendrimers to be utilized as an effective and safe delivery vector for splice-switching ONs.
Collapse
|
6
|
Sugar and Polymer Excipients Enhance Uptake and Splice-Switching Activity of Peptide-Dendrimer/Lipid/Oligonucleotide Formulations. Pharmaceutics 2019; 11:pharmaceutics11120666. [PMID: 31835435 PMCID: PMC6955847 DOI: 10.3390/pharmaceutics11120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Non-viral transfection vectors are commonly used for oligonucleotide (ON) delivery but face many challenges before reaching the desired compartments inside cells. With the support of additional compounds, it might be more feasible for a vector to endure the barriers and achieve efficient delivery. In this report, we screened 18 different excipients and evaluated their effect on the performance of peptide dendrimer/lipid vector to deliver single-stranded, splice-switching ONs under serum conditions. Transfection efficiency was monitored in four different reporter cell lines by measuring splice-switching activity on RNA and protein levels. All reporter cell lines used had a mutated human β-globin intron 2 sequence interrupting the luciferase gene, which led to an aberrant splicing of luciferase pre-mRNA and subsidence of luciferase protein translation. In the HeLa Luc/705 reporter cell line (a cervical cancer cell line), the lead excipients (Polyvinyl derivatives) potentiated the splice-switching activity up to 95-fold, compared to untreated cells with no detected cytotoxicity. Physical characterization revealed that lead excipients decreased the particle size and the zeta potential of the formulations. In vivo biodistribution studies emphasized the influence of formulations as well as the type of excipients on biodistribution profiles of the ON. Subsequently, we suggest that the highlighted impact of tested excipients would potentially assist in formulation development to deliver ON therapeutics in pre-clinical and clinical settings.
Collapse
|
7
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
8
|
Wu Y, Kaur A, Fowler E, Wiedmann MM, Young R, Galloway WRJD, Olsen L, Sore HF, Chattopadhyay A, Kwan TTL, Xu W, Walsh SJ, de Andrade P, Janecek M, Arumugam S, Itzhaki LS, Lau YH, Spring DR. Toolbox of Diverse Linkers for Navigating the Cellular Efficacy Landscape of Stapled Peptides. ACS Chem Biol 2019; 14:526-533. [PMID: 30702850 DOI: 10.1021/acschembio.9b00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stapled peptides have great potential as modulators of protein-protein interactions (PPIs). However, there is a vast landscape of chemical features that can be varied for any given peptide, and identifying a set of features that maximizes cellular uptake and subsequent target engagement remains a key challenge. Herein, we present a systematic analysis of staple functionality on the peptide bioactivity landscape in cellular assays. Through application of a "toolbox" of diversified dialkynyl linkers to the stapling of MDM2-binding peptides via a double-click approach, we conducted a study of cellular uptake and p53 activation as a function of the linker. Minor changes in the linker motif and the specific pairing of linker with peptide sequence can lead to substantial differences in bioactivity, a finding which may have important design implications for peptide-based inhibitors of other PPIs. Given the complexity of the structure-activity relationships involved, the toolbox approach represents a generalizable strategy for optimization when progressing from in vitro binding assays to cellular efficacy studies.
Collapse
Affiliation(s)
- Yuteng Wu
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Amandeep Kaur
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Elaine Fowler
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Mareike M Wiedmann
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Reginald Young
- School of Chemistry , The University of Sydney , Eastern Avenue , Sydney , NSW 2006 , Australia
| | - Warren R J D Galloway
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Lasse Olsen
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Anasuya Chattopadhyay
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , United Kingdom
| | - Terence T-L Kwan
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Wenshu Xu
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , United Kingdom
| | - Stephen J Walsh
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Peterson de Andrade
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Matej Janecek
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Laura S Itzhaki
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge CB2 1PD , United Kingdom
| | - Yu Heng Lau
- School of Chemistry , The University of Sydney , Eastern Avenue , Sydney , NSW 2006 , Australia
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
9
|
Mohammadi A, Kudsiova L, Mustapa MFM, Campbell F, Vlaho D, Welser K, Story H, Tagalakis AD, Hart SL, Barlow DJ, Tabor AB, Lawrence MJ, Hailes HC. The discovery and enhanced properties of trichain lipids in lipopolyplex gene delivery systems. Org Biomol Chem 2019; 17:945-957. [PMID: 30629080 PMCID: PMC6350505 DOI: 10.1039/c8ob02374c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Novel trichain lipids have been identified with enhanced transfection properties in lipopolyplexes.
The formation of a novel trichain (TC) lipid was discovered when a cationic lipid possessing a terminal hydroxyl group and the helper lipid dioleoyl l-α-phosphatidylethanolamine (DOPE) were formulated as vesicles and stored. Importantly, the transfection efficacies of lipopolyplexes comprised of the TC lipid, a targeting peptide and DNA (LPDs) were found to be higher than when the corresponding dichain (DC) lipid was used. To explore this interesting discovery and determine if this concept can be more generally applied to improve gene delivery efficiencies, the design and synthesis of a series of novel TC cationic lipids and the corresponding DC lipids was undertaken. Transfection efficacies of the LPDs were found to be higher when using the TC lipids compared to the DC analogues, so experiments were carried out to investigate the reasons for this enhancement. Sizing experiments and transmission electron microscopy indicated that there were no major differences in the size and shape of the LPDs prepared using the TC and DC lipids, while circular dichroism spectroscopy showed that the presence of the third acyl chain did not influence the conformation of the DNA within the LPD. In contrast, small angle neutron scattering studies showed a considerable re-arrangement of lipid conformation upon formulation as LPDs, particularly of the TC lipids, while gel electrophoresis studies revealed that the use of a TC lipid in the LPD formulation resulted in enhanced DNA protection properties. Thus, the major enhancement in transfection performance of these novel TC lipids can be attributed to their ability to protect and subsequently release DNA. Importantly, the TC lipids described here highlight a valuable structural template for the generation of gene delivery vectors, based on the use of lipids with three hydrophobic chains.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tejeda-Mansir A, García-Rendón A, Guerrero-Germán P. Plasmid-DNA lipid and polymeric nanovaccines: a new strategic in vaccines development. Biotechnol Genet Eng Rev 2018; 35:46-68. [DOI: 10.1080/02648725.2018.1560552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Armando Tejeda-Mansir
- Department of Scientific and Technological Research, University of Sonora, Sonora, México
| | | | | |
Collapse
|
11
|
Bofinger R, Zaw‐Thin M, Mitchell NJ, Patrick PS, Stowe C, Gomez‐Ramirez A, Hailes HC, Kalber TL, Tabor AB. Development of lipopolyplexes for gene delivery: A comparison of the effects of differing modes of targeting peptide display on the structure and transfection activities of lipopolyplexes. J Pept Sci 2018; 24:e3131. [PMID: 30325562 PMCID: PMC6282963 DOI: 10.1002/psc.3131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The design, synthesis and formulation of non-viral gene delivery vectors is an area of renewed research interest. Amongst the most efficient non-viral gene delivery systems are lipopolyplexes, in which cationic peptides are co-formulated with plasmid DNA and lipids. One advantage of lipopolyplex vectors is that they have the potential to be targeted to specific cell types by attaching peptide targeting ligands on the surface, thus increasing both the transfection efficiency and selectivity for disease targets such as cancer cells. In this paper, we have investigated two different modes of displaying cell-specific peptide targeting ligands at the surface of lipopolyplexes. Lipopolyplexes formulated with bimodal peptides, with both receptor binding and DNA condensing sequences, were compared with lipopolyplexes with the peptide targeting ligand directly conjugated to one of the lipids. Three EGFR targeting peptide sequences were studied, together with a range of lipid formulations and maleimide lipid structures. The biophysical properties of the lipopolyplexes and their transfection efficiencies in a basal-like breast cancer cell line were investigated using plasmid DNA bearing genes for the expression of firefly luciferase and green fluorescent protein. Fluorescence quenching experiments were also used to probe the macromolecular organisation of the peptide and pDNA components of the lipopolyplexes. We demonstrated that both approaches to lipopolyplex targeting give reasonable transfection efficiencies, and the transfection efficiency of each lipopolyplex formulation is highly dependent on the sequence of the targeting peptide. To achieve maximum therapeutic efficiency, different peptide targeting sequences and lipopolyplex architectures should be investigated for each target cell type.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - May Zaw‐Thin
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Nicholas J. Mitchell
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - P. Stephen Patrick
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Cassandra Stowe
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Ana Gomez‐Ramirez
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - Tammy L. Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Alethea B. Tabor
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
12
|
Saher O, Rocha CSJ, Zaghloul EM, Wiklander OPB, Zamolo S, Heitz M, Ezzat K, Gupta D, Reymond JL, Zain R, Hollfelder F, Darbre T, Lundin KE, El Andaloussi S, Smith CIE. Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. Eur J Pharm Biopharm 2018; 132:29-40. [PMID: 30193928 DOI: 10.1016/j.ejpb.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022]
Abstract
Despite the advances in gene therapy and in oligonucleotide (ON) chemistry, efficient cellular delivery remains an obstacle. Most current transfection reagents suffer from low efficacy or high cytotoxicity. In this report, we describe the synergism between lipid and dendrimer delivery vectors to enhance the transfection efficiency, while avoiding high toxicity. We screened a library of 20 peptide dendrimers representing three different generations and evaluated their capability to deliver a single-stranded splice-switching ON after formulating with lipids (DOTMA/DOPE). The transfection efficiency was analyzed in 5 reporter cell lines, in serum-free and serum conditions, and with 5 different formulation protocols. All formulations displayed low cytotoxicity to the majority of the tested cell lines. The complex sizes were < 200 nm; particle size distributions of effective mixtures were < 80 nm; and, the zeta potential was dependent on the formulation buffer used. The best dendrimer enhanced transfection in a HeLa reporter cell line by 30-fold compared to untreated cells under serum-free conditions. Interestingly, addition of sucrose to the formulation enabled - for the first time - peptide dendrimers/lipid complexes to efficiently deliver splice-switching ON in the presence of serum, reaching 40-fold increase in splice switching. Finally, in vivo studies highlighted the potential of these formulae to change the biodistribution pattern to be more towards the liver (90% of injected dose) compared to the kidneys (5% of injected dose) or to unformulated ON. This success encourages further development of peptide dendrimer complexes active in serum and future investigation of mechanisms behind the influence of additives on transfection efficacy.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Cristina S J Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Marc Heitz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| |
Collapse
|
13
|
Alves RF, Favaro MT, Balbino TA, de Toledo MA, de la Torre LG, Azzoni AR. Recombinant protein-based nanocarriers and their association with cationic liposomes: Characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Shimura M, Szyrwiel L, Matsuyama S, Yamauchi K. Visualization of Intracellular Elements Using Scanning X-Ray Fluorescence Microscopy. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release 2016; 236:1-14. [DOI: 10.1016/j.jconrel.2016.06.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023]
|
16
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
17
|
Kudsiova L, Welser K, Campbell F, Mohammadi A, Dawson N, Cui L, Hailes HC, Lawrence MJ, Tabor AB. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting. MOLECULAR BIOSYSTEMS 2016; 12:934-51. [PMID: 26794416 DOI: 10.1039/c5mb00754b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.
Collapse
Affiliation(s)
- Laila Kudsiova
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, UK
| | - Katharina Welser
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Frederick Campbell
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Atefeh Mohammadi
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Natalie Dawson
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Lili Cui
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| | - M Jayne Lawrence
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo Campus, London SE1 9NH, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
18
|
Yun CH, Bae CS, Ahn T. Cargo-Free Nanoparticles Containing Cationic Lipids Induce Reactive Oxygen Species and Cell Death in HepG2 Cells. Biol Pharm Bull 2016; 39:1338-46. [DOI: 10.1248/bpb.b16-00264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University
| |
Collapse
|
19
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
20
|
Szyrwiel Ł, Shimura M, Shirataki J, Matsuyama S, Matsunaga A, Setner B, Szczukowski Ł, Szewczuk Z, Yamauchi K, Malinka W, Chavatte L, Łobinski R. A novel branched TAT(47-57) peptide for selective Ni(2+) introduction into the human fibrosarcoma cell nucleus. Metallomics 2015; 7:1155-62. [PMID: 25927891 DOI: 10.1039/c5mt00021a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).
Collapse
Affiliation(s)
- Łukasz Szyrwiel
- CNRS/UPPA, LCABIE, UMR5254, Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Design, expression, and characterization of a novel dendritic cell-targeted proteins. Biochem Biophys Res Commun 2015; 460:227-32. [PMID: 25769955 DOI: 10.1016/j.bbrc.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
In vivo approaches to inducing an effective immune response focus on targeted antigen (Ag) delivery to dendritic cells (DCs). In this study, we developed a new method of targeting plasmid DNA and/or the antigen (Ag)-antibody (Ab) complex to DCs via the DC receptor DEC-205, also known as cluster of differentiation CD205. We cloned and expressed a recombinant protein composed of mouse DEC-205-specific single-chain fragment variable region (mDEC-205-scFv), the streptococcal protein G (SPG) IgG-binding domain and cationic peptide (CP), which named mDEC205-scFv-SPG-CP (msSC). In vitro, the recombinant protein msSC can specifically bind to DCs through the section of mDEC-205-scFv, and bound the Ag-Ab complex via SPG as well as plasmid DNA through electrostatic bonding with CP in vitro. In addition, msSC functioned in a manner similar to anti-DEC-205 monoclonal Ab and bound to mouse bone marrow-derived DCs. It was demonstrated in vivo that msSC can target plasmid DNA to DCs, resulting in efficient uptake and expression. Moreover, msSC can form a complex with pGL3-CMV and transport it to draining lymph nodes when injected in vivo. These results indicate that msSC can be used as a carrier protein for vaccine delivery to DCs via formation of plasmid DNA-Ag-Ab ternary complexes.
Collapse
|
22
|
Szyrwiel Ł, Szczukowski Ł, Pap JS, Setner B, Szewczuk Z, Malinka W. The Cu2+ Binding Properties of Branched Peptides Based on l-2,3-Diaminopropionic Acid. Inorg Chem 2014; 53:7951-9. [DOI: 10.1021/ic5007428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Łukasz Szyrwiel
- CNRS/UPPA, LCABIE, UMR5254, Hélioparc,
2, av. Pr. Angot, F-64053 Pau, France
| | - Łukasz Szczukowski
- Department of Chemistry
of Drugs, Wrocław Medical University, ul. Borowska 211, 50-552 Wrocław, Poland
| | - József S. Pap
- Surface Chemistry and Catalysis Department, Centre for
Energy Research, Hungarian Academy of Sciences, 1525 Budapest 114, P.O. Box 49, Budapest, Hungary
| | - Bartosz Setner
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50−383 Wrocław, Poland
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50−383 Wrocław, Poland
| | - Wiesław Malinka
- Department of Chemistry
of Drugs, Wrocław Medical University, ul. Borowska 211, 50-552 Wrocław, Poland
| |
Collapse
|
23
|
More HT, Frezzo JA, Dai J, Yamano S, Montclare JK. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials 2014; 35:7188-93. [PMID: 24875765 DOI: 10.1016/j.biomaterials.2014.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022]
Abstract
A lipoproteoplex comprised of an engineered supercharged coiled-coil protein (CSP) bearing multiple arginines and the cationic lipid formulation FuGENE HD (FG) was developed for effective condensation and delivery of nucleic acids. The CSP was able to maintain helical structure and self-assembly properties while exhibiting binding to plasmid DNA. The ternary CSP·DNA(8:1)·FG lipoproteoplex complex demonstrated enhanced transfection of β-galactosidase DNA into MC3T3-E1 mouse preosteoblasts. The lipoproteoplexes showed significant increases in transfection efficiency when compared to conventional FG and an mTat·FG lipopolyplex with a 6- and 2.5-fold increase in transfection, respectively. The CSP·DNA(8:1)·FG lipoproteoplex assembled into spherical particles with a net positive surface charge, enabling efficient gene delivery. These results support the application of lipoproteoplexes with protein engineered CSP for non-viral gene delivery.
Collapse
Affiliation(s)
- Haresh T More
- Department of Chemical and Biomolecular Engineering, New York University Polytechnic School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | - Joseph A Frezzo
- Department of Chemical and Biomolecular Engineering, New York University Polytechnic School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | - Jisen Dai
- Department of Prosthodontics, New York University College of Dentistry, New York, NY 10010, USA
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, New York, NY 10010, USA
| | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering, New York University Polytechnic School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
24
|
O'Mahony AM, Cronin MF, Mcmahon A, Evans JC, Daly K, Darcy R, O'Driscoll CM. Biophysical and Structural Characterisation of Nucleic Acid Complexes with Modified Cyclodextrins Using Circular Dichroism. J Pharm Sci 2014; 103:1346-55. [DOI: 10.1002/jps.23922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
|
25
|
Kwok A, Eggimann GA, Reymond JL, Darbre T, Hollfelder F. Peptide dendrimer/lipid hybrid systems are efficient DNA transfection reagents: structure--activity relationships highlight the role of charge distribution across dendrimer generations. ACS NANO 2013; 7:4668-4682. [PMID: 23682947 PMCID: PMC3715887 DOI: 10.1021/nn400343z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure-activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6-10-fold over commercial reagents under their respective optimal conditions. Emerging structure-activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity.
Collapse
Affiliation(s)
- Albert Kwok
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Gabriela A. Eggimann
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|