1
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
2
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
3
|
Wu Y, Liu P, Liao Q, Jin T, Wu Z, Guomin W, Wang H, Chu PK. Cotton Fibers with a Lactic Acid-Like Surface for Re-establishment of Protective Lactobacillus Microbiota by Selectively Inhibiting Vaginal Pathogens. Adv Healthc Mater 2024; 13:e2302736. [PMID: 38061349 DOI: 10.1002/adhm.202302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Jin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wang Guomin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
4
|
Yang M, Xie M, Guo J, Zhang Y, Qiu Y, Wang Z, Du Y. Mucus-Permeable Sonodynamic Therapy Mediated Amphotericin B-Loaded PEGylated PLGA Nanoparticles Enable Eradication of Candida albicans Biofilm. Int J Nanomedicine 2023; 18:7941-7963. [PMID: 38169688 PMCID: PMC10758343 DOI: 10.2147/ijn.s437726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Background Candida albicans (C. albicans) forms pathogenic biofilms, and the dense mucus layer secreted by the epithelium is a major barrier to the traditional antibiotic treatment of mucosa-associated C. albicans infections. Herein, we report a novel anti-biofilm strategy of mucus-permeable sonodynamic therapy (mp-SDT) based on ultrasound (US)-mediated amphotericin B-loaded PEGylated PLGA nanoparticles (AmB-NPs) to overcome mucus barrier and enable the eradication of C. albicans biofilm. Methods AmB-NPs were fabricated using ultrasonic double emulsion method, and their physicochemical and sonodynamic properties were determined. The mucus and biofilm permeability of US-mediated AmB-NPs were further investigated. Moreover, the anti-biofilm effect of US-mediated AmB-NPs treatment was thoroughly evaluated on mucus barrier abiotic biofilm, epithelium-associated biotic biofilm, and C. albicans-induced rabbit vaginal biofilms model. In addition, the ultrastructure and secreted cytokines of epithelial cells and the polarization of macrophages were analyzed to investigate the regulation of local cellular immune function by US-mediated AmB-NPs treatment. Results Polymeric AmB-NPs display excellent sonodynamic performance with massive singlet oxygen (1O2) generation. US-mediated AmB-NPs could rapidly transport through mucus and promote permeability in biofilms, which exhibited excellent eradicating ability to C. albicans biofilms. Furthermore, in the vaginal epithelial cells (VECs)-associated C. albicans biofilm model, the mp-SDT scheme showed the strongest biofilm eradication effect, with up to 98% biofilm re-formation inhibition rate, improved the ultrastructural damage, promoted local immune defense enhancement of VECs, and regulated the polarization of macrophages to the M1 phenotype to enhance macrophage-associated antifungal immune responses. In addition, mp-SDT treatment exhibited excellent therapeutic efficacy against C. albicans-induced rabbit vaginitis, promoted the recovery of mucosal epithelial ultrastructure, and contributed to the reshaping of a healthier vaginal microbiome. Conclusion The synergistic anti-biofilm strategies of mp-SDT effectively eradicated C. albicans biofilm and simultaneously regulated local antifungal immunity enhancement, which may provide a new approach to treat refractory drug-resistant biofilm-associated mucosal candidiasis.
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Mengyao Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuqing Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
5
|
Fernandes L, Costa R, Henriques M, Rodrigues ME. Simulated vaginal fluid: Candida resistant strains' biofilm characterization and vapor phase of essential oil effect. J Mycol Med 2023; 33:101329. [PMID: 36270212 DOI: 10.1016/j.mycmed.2022.101329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Vulvovaginal candidiasis is a disease that affects millions of women worldwide. Oral formulations, topical creams or ointments are the conventional dosage forms, with an increase in drug administration through vaginal via. The use of simulated biological fluids (e.g. vaginal fluid) in the evaluation of antifungal therapies may better mimic the real biological environments and therefore provide a better understanding of the behavior of the antifungal. METHODS The main objective of this work was to compare planktonic growth and biofilm formation of Candida species, on common growth medium, Sabouraud Dextrose Broth (SDB) and on vaginal simulation conditions, Simulated Vaginal Fluid (SVF), through the optical density determination, colony-forming units and scanning electron microscopy. In addition, under the same conditions this study also evaluated the ability of vapor phase of oregano and white thyme essential oils (VP-EOs), potential alternative treatment, to inhibit biofilm formation and to destroy mature biofilms of vaginal isolates, through the colony-forming units determination. RESULTS Candida isolates maintained the same biofilm formation capacity and morphology in both media (SVF and SDB). Furthermore, the results obtained in this work related with VP-EOs effect agree with results acquired, previously, with SDB. This means that the effect of VP-EOs is not affected by the SVF medium, and that this fluid allows the dissolution of the volatile and bioactive compounds. CONCLUSIONS These results can predict the in vivo behavior, suggesting a potential effective application of VP-EOs as prophylactic or therapeutic treatment for biofilm-related vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre of Biological Engineering, LMaS - Laboratório de Microbiologia Aplicada à Saúde, LABBELS -Associate Laboratory, University of Minho, Campus de Gualtar, Braga, Guimarães 4710-057, Portugal
| | - Raquel Costa
- Costa Raquel, Aromas Aqua Spa - Clínica saúde, Praça 5 outubro n° 32, Vila Verde, Braga 4730-731, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering, LMaS - Laboratório de Microbiologia Aplicada à Saúde, LABBELS -Associate Laboratory, University of Minho, Campus de Gualtar, Braga, Guimarães 4710-057, Portugal
| | - Maria Elisa Rodrigues
- Centre of Biological Engineering, LMaS - Laboratório de Microbiologia Aplicada à Saúde, LABBELS -Associate Laboratory, University of Minho, Campus de Gualtar, Braga, Guimarães 4710-057, Portugal.
| |
Collapse
|
6
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
8
|
Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HA, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022; 186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.
Collapse
|
9
|
Gabriel L, Almeida H, Avelar M, Sarmento B, das Neves J. MPTHub: An Open-Source Software for Characterizing the Transport of Particles in Biorelevant Media. NANOMATERIALS 2022; 12:nano12111899. [PMID: 35683754 PMCID: PMC9182034 DOI: 10.3390/nano12111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The study of particle transport in different environments plays an essential role in understanding interactions with humans and other living organisms. Importantly, obtained data can be directly used for multiple applications in fields such as fundamental biology, toxicology, or medicine. Particle movement in biorelevant media can be readily monitored using microscopy and converted into time-resolved trajectories using freely available tracking software. However, translation into tangible and meaningful parameters is time consuming and not always intuitive. We developed new software—MPTHub—as an open-access, standalone, user-friendly tool for the rapid and reliable analysis of particle trajectories extracted from video microscopy. The software was programmed using Python and allowed to import and analyze trajectory data, as well as to export relevant data such as individual and ensemble time-averaged mean square displacements and effective diffusivity, and anomalous transport exponent. Data processing was reliable, fast (total processing time of less than 10 s), and required minimal memory resources (up to a maximum of around 150 MB in random access memory). Demonstration of software applicability was conducted by studying the transport of different polystyrene nanoparticles (100–200 nm) in mucus surrogates. Overall, MPTHub represents a freely available software tool that can be used even by inexperienced users for studying the transport of particles in biorelevant media.
Collapse
Affiliation(s)
- Leandro Gabriel
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Helena Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Avelar
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-220-408-800
| |
Collapse
|
10
|
Enggi CK, Isa HT, Wijaya S, Ardika KAR, Asri RM, Donnelly RF, Permana AD. Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120600. [PMID: 34802927 DOI: 10.1016/j.saa.2021.120600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Cabotegravir (CAB) is an antiretroviral therapy (ARV) used for Human Immunodeficiency Virus (HIV) treatment. CAB has low solubility, which affects its bioavailability in oral therapy. Moreover, the injection form of CAB has difficulty in the administration process. Therefore, it is essential to develop a new drug delivery system for CAB. Vaginal drug delivery system offers many advantages such as a large surface area, increased drug bioavailability, and improved drug delivery. CAB was developed in thermosensitive and mucoadhesive vaginal gel preparations that provided optimal distribution in the vaginal mucosa. To support the process of formulation development, in this study, UV-visible spectrophotometry method was validated in methanol, simulated vaginal fluid (SVF) and vaginal tissue to quantify the amount of CAB in the gel preparations, in vitro, and ex vivo studies, respectively. The developed analytical method was subsequently validated according to ICH guidelines. The calibration curves in these matrices were found to be linear with correlation coefficient values (R2) ≥ 0.998. The LLOQ values in methanol, SVF and vaginal tissue were 2.15 µg/mL, 2.22 µg/mL, and 5.13 µg/mL, respectively. The developed method was found to be accurate and precise without being affected by dilution integrity. These methods were successfully applied to quantify the amount of CAB in gel preparations, in vitro, and ex vivo studies, showing uniformity of drug content and controlled release manner in the permeation profile for 24 h for both thermosensitive and mucoadhesive vaginal gels. Further analytical method is required to be developed for the quantification of CAB in in vivo studies.
Collapse
Affiliation(s)
| | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
11
|
Enggi CK, Isa HT, Sulistiawati S, Ardika KAR, Wijaya S, Asri RM, Mardikasari SA, Donnelly RF, Permana AD. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: A proof of concept study. Int J Pharm 2021; 609:121182. [PMID: 34648879 DOI: 10.1016/j.ijpharm.2021.121182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
As an effective anti-HIV drug, cabotegravir (CAB) is currently administered via oral and injection routes, leading to several drawbacks, such as poor oral bioavailability and problems in the injection application process, as well as low drug concentration in vaginal tissue of woman patients. To overcome these issues, for the first time, we formulated CAB into three types of vaginal gels, considering the benefits of vaginal tissue as a delivery route. Thermosensitive gel, mucoadhesive gel, and the combination of these gels were developed as suitable carriers for CAB. Pluronics®, hydroxy propyl methyl cellulose (HPMC), Carbomer and poly(ethylene glycol) (PEG) 400 were used as thermosensitive, mucoadhesive and permeation enhancer agents, respectively. The gels were evaluated for their thermosensitive and mucoadhesive properties, as well as their pH values, viscosities, gel erosions, drug content recovery, in vitro drug release, ex vivo permeation, ex vivo retention, hemolytic activities, Lactobacillus inhibition activities and in vivo irritation properties. The results showed that all formulations showed desired characteristics for vaginal administration. Importantly, all formulations did not show hemolytic activities and inhibitions to Lactobacillus as normal bacteria in the vagina. Furthermore, no irritation in the vaginal tissues of the rats was observed by histopathological studies. Considering the thermosensitive and mucoadhesive properties, the combination of Pluronic® F127, Pluronic F68, and HPMC in thermosensitive-mucoadhesive vaginal gels was selected as the optimum dosage form for CAB as this formulation was able to provide ease administration due to its liquid form at room temperature. The use of PEG in this formulation was able to increase the penetrability of CAB through vaginal tissue with 0.61 ± 0.05 mg and 17.28 ± 0.95 mg of CAB being able to penetrate and localize in the vagina, respectively. Essentially, the optimum formulation was retained in the vaginal mucosa for>8 h. To conclude, further extensive in vivo studies should now be conducted to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
12
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
13
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
14
|
Kakkar S, Singh M, Mohan Karuppayil S, Raut JS, Giansanti F, Papucci L, Schiavone N, Nag TC, Gao N, Yu FSX, Ramzan M, Kaur IP. Lipo-PEG nano-ocular formulation successfully encapsulates hydrophilic fluconazole and traverses corneal and non-corneal path to reach posterior eye segment. J Drug Target 2021; 29:631-650. [PMID: 33410357 DOI: 10.1080/1061186x.2020.1871483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study describes a special lipid-polyethylene glycol matrix solid lipid nanoparticles (SLNs; 138 nm; -2.07 mV) for ocular delivery. Success of this matrix to encapsulate (entrapment efficiency - 62.09%) a hydrophilic drug, fluconazole (FCZ-SLNs), with no burst release (67% release in 24 h) usually observed with most water-soluble drugs, is described presently. The system showed 164.64% higher flux than the marketed drops (Zocon®) through porcine cornea. Encapsulation within SLNs and slow release did not compromise efficacy of FCZ-SLNs. Latter showed in vitro and in vivo antifungal effects, including antibiofilm effects comparable to free FCZ solution. Developed system was safe and stable (even to sterilisation by autoclaving); and showed optimal viscosity, refractive index and osmotic pressure. These SLNs could reach up to retina following application as drops. The mechanism of transport via corneal and non-corneal transcellular pathways is described by fluorescent and TEM images of mice eye cross sections. Particles streamed through the vitreous, crossed inner limiting membrane and reached the outer retinal layers.
Collapse
Affiliation(s)
- Shilpa Kakkar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Mandeep Singh
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sankunny Mohan Karuppayil
- Department of Medical Biotechnology, Stem Cell & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Educational Society, Kolhapur, India
| | - Jayant S Raut
- School of Life Sciences, SRTM University Nanded, Nanded, India
| | - Fabrizio Giansanti
- Department of Translational Medicine and Surgery, Eye Clinic, Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Nan Gao
- Departments of Ophthalmology and Anatomy/Cell Biology, Kresge Eye Institute, Kresge, MI, USA
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy/Cell Biology, Kresge Eye Institute, Kresge, MI, USA
| | - Mohhammad Ramzan
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
15
|
Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. Int J Pharm 2020; 585:119516. [DOI: 10.1016/j.ijpharm.2020.119516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023]
|
16
|
Falavigna M, Pattacini M, Wibel R, Sonvico F, Škalko-Basnet N, Flaten GE. The Vaginal-PVPA: A Vaginal Mucosa-Mimicking In Vitro Permeation Tool for Evaluation of Mucoadhesive Formulations. Pharmaceutics 2020; 12:pharmaceutics12060568. [PMID: 32575388 PMCID: PMC7355897 DOI: 10.3390/pharmaceutics12060568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Drug administration to the vaginal site has gained increasing attention in past decades, highlighting the need for reliable in vitro methods to assess the performance of novel formulations. To optimize formulations destined for the vaginal site, it is important to evaluate the drug retention within the vagina as well as its permeation across the mucosa, particularly in the presence of vaginal fluids. Herewith, the vaginal-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model was validated as a tool to evaluate the permeation of the anti-inflammatory drug ibuprofen from liposomal formulations (i.e., plain and chitosan-coated liposomes). Drug permeation was assessed in the presence and absence of mucus and simulated vaginal fluid (SVF) at pH conditions mimicking both the healthy vaginal premenopausal conditions and vaginal infection/pre-puberty/post-menopause state. The permeation of ibuprofen proved to depend on the type of formulation (i.e., chitosan-coated liposomes exhibited lower drug permeation), the mucoadhesive formulation properties and pH condition. This study highlights both the importance of mucus and SVF in the vaginal model to better understand and predict the in vivo performance of formulations destined for vaginal administration, and the suitability of the vaginal-PVPA model for such investigations.
Collapse
Affiliation(s)
- Margherita Falavigna
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| | - Martina Pattacini
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Richard Wibel
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Fabio Sonvico
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy;
| | - Natasa Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (M.P.); (R.W.); (N.Š.-B.)
- Correspondence: (M.F.); (G.E.F.)
| |
Collapse
|
17
|
Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320:125-141. [DOI: 10.1016/j.jconrel.2020.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/15/2022]
|
18
|
Faria MJ, Machado R, Ribeiro A, Gonçalves H, Real Oliveira MECD, Viseu T, das Neves J, Lúcio M. Rational Development of Liposomal Hydrogels: A Strategy for Topical Vaginal Antiretroviral Drug Delivery in the Context of HIV Prevention. Pharmaceutics 2019; 11:pharmaceutics11090485. [PMID: 31540519 PMCID: PMC6781289 DOI: 10.3390/pharmaceutics11090485] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 01/09/2023] Open
Abstract
HIV/AIDS stands as a global burden, and vaginal microbicides constitute a promising strategy for topical pre-exposure prophylaxis. Preceding the development of a microbicide containing tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC), in silico and in vitro studies were performed to evaluate the physicochemical characteristics of both drugs, and to study their biophysical impact in lipid model systems. Results from these pre-formulation studies defined hydrogels as adequate vehicles to incorporate TDF-loaded liposomes and FTC. After studying interactions with mucin, zwitterionic liposomes with a mean diameter of 134 ± 13 nm, an encapsulation TDF efficiency of approximately 84%, and a transition temperature of 41 °C were selected. The chosen liposomal formulation was non-cytotoxic to HEC-1-A and CaSki cells, and was able to favor TDF permeation across polysulfone membranes (Jss = 9.9 μg·cm-2·h-1). After the incorporation of TDF-loaded liposomes and FTC in carbomer hydrogels, the drug release profile was sustained over time, reaching around 60% for both drugs within 3-6 h, and best fitting the Weibull model. Moreover, liposomal hydrogels featured pseudoplastic profiles that were deemed suitable for topical application. Overall, the proposed liposomal hydrogels may constitute a promising formulation for the vaginal co-delivery of TDF/FTC.
Collapse
Affiliation(s)
- Maria J. Faria
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal (T.V.)
| | - Raul Machado
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal;
- IB-S—Institute of Science and Innovation for Bio-Sustainability, Universidade do Minho, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- CEB—Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal;
| | | | - Maria Elisabete C. D. Real Oliveira
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal (T.V.)
| | - Teresa Viseu
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal (T.V.)
| | - José das Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
- Correspondence: (J.d.N.); (M.L.); Tel.: +351-22-040-8800 (J.d.N.); +351-25-360-4060 (M.L.)
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal (T.V.)
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal;
- Correspondence: (J.d.N.); (M.L.); Tel.: +351-22-040-8800 (J.d.N.); +351-25-360-4060 (M.L.)
| |
Collapse
|
19
|
Gong T, Patel SK, Parniak MA, Ballou B, Rohan LC. Nanocrystal Formulation Improves Vaginal Delivery of CSIC for HIV Prevention. AAPS PharmSciTech 2019; 20:286. [PMID: 31410664 DOI: 10.1208/s12249-019-1503-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022] Open
Abstract
5-Chloro-3-phenylsulfonylindole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) with potential for use in topical prophylaxis against HIV transmission. However, the hydrophobic nature of CSIC limits its administration through vaginal route. In this study, we developed nanocrystals of CSIC to potentially improve the aqueous solubility and intracellular uptake of CSIC in vitro and in vivo. CSIC nanocrystals were manufactured and stabilized with Pluronic F98 and hydroxypropyl methylcellulose E5. Transmission electron microscopy showed CSIC nanocrystals to be needle-like. Dynamic light scattering measurements showed a hydrodynamic size of 243 nm (polydispersity index < 0.3) and near neutral surface charge (- 7.8 mV). Particle size was maintained for at least 7 days in the liquid state and for at least 5 months after lyophilization. Drug content in the CSIC nanocrystal formulation (nanosuspension) was 0.8 mg/mL, which is 1000 times higher than the aqueous solubility of CSIC. In vitro release study showed that over 90% of CSIC was released from the nanocrystal formulation in a linear fashion over a period of 4 days. Importantly, CSIC nanocrystals showed equivalent cell-based anti-HIV activity (EC50 ~ 1 nM) as that of non-formulated drug. In vitro studies demonstrated rapid macrophage uptake of CSIC nanocrystals via both energy-dependent (endocytosis) and independent processes. In vivo studies in Swiss Webster female mice showed that the nanocrystal formulation significantly improved CSIC delivery to mouse cervicovaginal tissues following intravaginal instillation. In summary, nanocrystals are a promising formulation approach for topical delivery of CSIC for protection against HIV sexual transmission.
Collapse
|
20
|
Mesquita L, Galante J, Nunes R, Sarmento B, das Neves J. Pharmaceutical Vehicles for Vaginal and Rectal Administration of Anti-HIV Microbicide Nanosystems. Pharmaceutics 2019; 11:pharmaceutics11030145. [PMID: 30917532 PMCID: PMC6472048 DOI: 10.3390/pharmaceutics11030145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Prevention strategies play a key role in the fight against HIV/AIDS. Vaginal and rectal microbicides hold great promise in tackling sexual transmission of HIV-1, but effective and safe products are yet to be approved and made available to those in need. While most efforts have been placed in finding and testing suitable active drug candidates to be used in microbicide development, the last decade also saw considerable advances in the design of adequate carrier systems and formulations that could lead to products presenting enhanced performance in protecting from infection. One strategy demonstrating great potential encompasses the use of nanosystems, either with intrinsic antiviral activity or acting as carriers for promising microbicide drug candidates. Polymeric nanoparticles, in particular, have been shown to be able to enhance mucosal distribution and retention of promising antiretroviral compounds. One important aspect in the development of nanotechnology-based microbicides relates to the design of pharmaceutical vehicles that allow not only convenient vaginal and/or rectal administration, but also preserve or even enhance the performance of nanosystems. In this manuscript, we revise relevant work concerning the selection of vaginal/rectal dosage forms and vehicle formulation development for the administration of microbicide nanosystems. We also pinpoint major gaps in the field and provide pertinent hints for future work.
Collapse
Affiliation(s)
- Letícia Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana Galante
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
21
|
Bücker R, Schaefer C, Gruber AD, Hoppe J, Lazzerini L, Barinoff J, Sehouli J, Cichon G. Establishment of a Mucin Secreting Cell Line Cx-03 from an Uterine Carcino Sarcoma. Pharm Res 2018; 36:7. [PMID: 30411161 DOI: 10.1007/s11095-018-2533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The identification of novel cell lines which combine the most important properties of mucosal membranes in terms of drug absorption, transmembrane transport and mucus secretion can help to establish improved and meaningful test systems for pharmacological and infectiological studies. METHODS We have established a novel mucus secreting tumor cell line (Cx-03) derived from a female patient who underwent radical hysterectomy after diagnosis of a large malignant carcino sarcoma (Muellerian mixed tumor). Via xenotransplantation in SCID beige mice, recultivation and subcloning a stable cell line was established from primary tumor cells. RESULTS Human origin and novelty of the cell line was determined by karyotype analysis and STR fingerprint. During growth cells produce considerable amounts of a PAS positive viscoelastic mucus. Immunostaining revealed expression of mucins and the mucin modifier CLCA1. We demonstrate in initial electrophysiological experiments that confluent, polarized monolayers of Cx-03 are formed (on PCF-filter supports) that exhibit stable electrical resistance (> 600 Ω cm2). Confluent Cx-03 monolayers express barrier-forming tight junction proteins claudin-1 and -4 which co-localize with zonula occludens protein-1 (ZO-1) at cell-cell contacts. CONCLUSIONS Mucus secretion is a rare property among mammalian cell lines. In combination with its ability to form polarized monolayers Cx-03 might contribute as a novel cell based model for drug absorption, transport and barrier studies.
Collapse
Affiliation(s)
- R Bücker
- Department of Gastroenterology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - C Schaefer
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - J Hoppe
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - L Lazzerini
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J Barinoff
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J Sehouli
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Günter Cichon
- Department of Gynecology, Charite-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
22
|
Ariza-Sáenz M, Espina M, Calpena A, Gómara MJ, Pérez-Pomeda I, Haro I, García ML. Design, Characterization, and Biopharmaceutical Behavior of Nanoparticles Loaded with an HIV-1 Fusion Inhibitor Peptide. Mol Pharm 2018; 15:5005-5018. [PMID: 30226777 DOI: 10.1021/acs.molpharmaceut.8b00609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
New therapeutic alternatives to fight against the spread of HIV-1 are based on peptides designed to inhibit the early steps of HIV-1 fusion in target cells. However, drawbacks, such as bioavailability, short half-life, rapid clearance, and poor ability to cross the physiological barriers, make such peptides unattractive for the pharmaceutical industry. Here we developed, optimized, and characterized polymeric nanoparticles (NPs) coated with glycol chitosan to incorporate and release an HIV-1 fusion inhibitor peptide (E1) inside the vaginal mucosa. The NPs were prepared by a modified double emulsion method, and optimization was carried out by a factorial design. In vitro, ex vivo, and in vivo studies were carried out to evaluate the optimized formulation. The results indicate that the physicochemical features of these NPs enable them to incorporate and release HIV fusion inhibitor peptides to the vaginal mucosa before the fusion step takes place.
Collapse
Affiliation(s)
- Martha Ariza-Sáenz
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain.,Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| | - Ana Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| | - María J Gómara
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Ignacio Pérez-Pomeda
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| |
Collapse
|
23
|
de Jesús Valle MJ, Coutinho P, Ribeiro MP, Sánchez Navarro A. Lyophilized tablets for focal delivery of fluconazole and itraconazole through vaginal mucosa, rational design and in vitro evaluation. Eur J Pharm Sci 2018; 122:144-151. [PMID: 29969668 DOI: 10.1016/j.ejps.2018.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
The present work deals with the rational design and in vitro evaluation of vaginal tablets for focal delivery of fluconazole (FLZ) and itraconazol (ITZ). Drug loaded liposomes with and without d-alpha-tocopheryl polyethylene glycol 1000 succinate (vit E TPGS) were prepared by direct sonication of the components and mixed with albumin to obtain albusomes. Tablets were obtained by direct compression of the lyophilized cake. The influence of vit E TPGS on size, zeta potential and entrapment efficiency (EE%) of liposomes and albusomes was evaluated. Tablet swelling and drug release were studied by in vitro assays. Vit E TPGS neither affected the zeta potential nor the EE% of liposomes and albusomes, but affected the liposomes size and the tablet disintegration time. A rapid erosion was observed for the tablets with the highest content of vitamin, while a slow swelling for those lacking the vitamin (swelling index = 57.76 ± 13.51%). A faster drug release profile was obtained for the former compared to the latter. The in vitro assay showed that FLZ diffused and solved in the vaginal fluid simulant while ITZ remained into the albusomes, which slowly released ITZ-albumin complex and ITZ-loaded liposomes, both suitable carriers for drug transport to deeper vaginal endothelium.
Collapse
Affiliation(s)
- Maria José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain; Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), Salamanca, Spain.
| | - Paula Coutinho
- CPIRN-IPG - Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Guarda, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Maximiano Prata Ribeiro
- CPIRN-IPG - Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Guarda, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain; Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
24
|
Sims LB, Frieboes HB, Steinbach-Rankins JM. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling. Int J Nanomedicine 2018; 13:2709-2727. [PMID: 29760551 PMCID: PMC5937491 DOI: 10.2147/ijn.s160044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date – whereby transport parameters are determined, extrapolated, and validated – is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
25
|
Lechanteur A, das Neves J, Sarmento B. The role of mucus in cell-based models used to screen mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:50-63. [PMID: 28751201 DOI: 10.1016/j.addr.2017.07.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022]
Abstract
The increasing interest in developing tools to predict drug absorption through mucosal surfaces is fostering the establishment of epithelial cell-based models. Cell-based in vitro techniques for drug permeability assessment are less laborious, cheaper and address the concerns of using laboratory animals. Simultaneously, in vitro barrier models that thoroughly simulate human epithelia or mucosae may provide useful data to speed up the entrance of new drugs and new drug products into the clinics. Nevertheless, standard cell-based in vitro models that intend to reproduce epithelial surfaces often discard the role of mucus in influencing drug permeation/absorption. Biomimetic models of mucosae in which mucus production has been considered may not be able to fully reproduce the amount and architecture of mucus, resulting in biased characterization of permeability/absorption. In these cases, artificial mucus may be used to supplement cell-based models but still proper identification and quantification are required. In this review, considerations regarding the relevance of mucus in the development of cell-based epithelial and mucosal models mimicking the gastro-intestinal tract, the cervico-vaginal tract and the respiratory tract, and the impact of mucus on the permeability mechanisms are addressed. From simple epithelial monolayers to more complex 3D structures, the impact of the presence of mucus for the extrapolation to the in vivo scenario is critically analyzed. Finally, an overview is provided on several techniques and methods to characterize the mucus layer over cell-based barriers, in order to intimately reproduce human mucosal layer and thereby, improve in vitro/in vivo correlation.
Collapse
|
26
|
Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018; 124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Mucus is a complex hydrogel that acts as a natural barrier to drug delivery at different mucosal surfaces including the respiratory, gastrointestinal, and vaginal tracts. To elucidate the role mucus plays in drug delivery, different in vitro, in vivo, and ex vivo mucus models and techniques have been utilized. Drug and drug carrier diffusion can be studied using various techniques in either isolated mucus gels or mucus present on cell cultures and tissues. The species, age, and potential disease state of the animal from which mucus is derived can all impact mucus composition and structure, and therefore impact drug and drug carrier diffusion. This review provides an overview of the techniques used to characterize drug and drug carrier diffusion, and discusses the advantages and disadvantages of the different models available to highlight the information they can afford.
Collapse
|
27
|
García-Díaz M, Birch D, Wan F, Nielsen HM. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv Drug Deliv Rev 2018; 124:107-124. [PMID: 29117511 DOI: 10.1016/j.addr.2017.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ditlev Birch
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Martínez-Pérez B, Quintanar-Guerrero D, Tapia-Tapia M, Cisneros-Tamayo R, Zambrano-Zaragoza ML, Alcalá-Alcalá S, Mendoza-Muñoz N, Piñón-Segundo E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur J Pharm Sci 2017; 115:185-195. [PMID: 29208486 DOI: 10.1016/j.ejps.2017.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans.
Collapse
Affiliation(s)
- Beatriz Martínez-Pérez
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - David Quintanar-Guerrero
- UNAM, FES-Cuautitlán, Laboratorio de Posgrado en Tecnología Farmacéutica, Av. 1o de mayo s/n, C.P. 54740 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Melina Tapia-Tapia
- Centro Conjunto de Investigación Química Sustentable UAEM-UNAM (CCIQS), Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano, C.P. 50200 Toluca, Edo. de México, Mexico
| | - Ricardo Cisneros-Tamayo
- Universidad Politécnica del Valle de México, División de Ingeniería en Nanotecnología, Av. Mexiquense s/n, esq. Universidad Politécnica, Col. Villa Esmeralda, C.P. 54910 Tultitlán, Edo. de México, Mexico
| | - María L Zambrano-Zaragoza
- UNAM, FES-Cuautitlán, Laboratorio de Procesos de Transformación y Tecnologías Emergentes en Alimentos, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico
| | - Sergio Alcalá-Alcalá
- Universidad Autónoma del Estado de Morelos, Facultad de Farmacia, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico
| | - Néstor Mendoza-Muñoz
- Universidad de Colima, Facultad de Ciencias Químicas, Laboratorio de Farmacia, Carretera Colima-Coquimatlán Km. 9, C.P. 28400 Coquimatlán, Colima, Mexico
| | - Elizabeth Piñón-Segundo
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FES-Cuautitlán), Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, Km. 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, C.P. 54714 Cuautitlán Izcalli, Edo. de México, Mexico.
| |
Collapse
|
30
|
Sanz R, Clares B, Mallandrich M, Suñer-Carbó J, Montes MJ, Calpena AC. Development of a mucoadhesive delivery system for control release of doxepin with application in vaginal pain relief associated with gynecological surgery. Int J Pharm 2017; 535:393-401. [PMID: 29146542 DOI: 10.1016/j.ijpharm.2017.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/05/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
The main purpose of this study was to develop a semisolid mucoadhesive formulation for the non-invasive vaginal administration of doxepin (DOX) for relief of pain derived from the scarring process after surgery. An orafix® platform loading DOX was tested for adequate stability, rheology and vaginal mucoadhesion capacity. The formulation exhibited appropriate pH and was microbiologically stable. The rheological studies confirmed its pseudoplastic and thixotropic nature with prevalence of the elastic behavior component over the viscous one. Appropriate syringeability and spreadability results were also confirmed. Different experiments showed adequate mucoadhesion capacity even in the presence of simulated vaginal fluid. Finally, DOX release, permeation and retention in vaginal mucosa studies were also accomplished with promising results. DOX release kinetics followed the modified Higuchi model and the permeation studies did not render such high values as to suggest potential systemic absorption which could lead to undesirable systemic side effects. Therefore, we can hypostatize that the proposed formulation may assist to fill in the therapeutic gap regarding pure pain relief at local level in vagina.
Collapse
Affiliation(s)
- Roser Sanz
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain.
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María Jesús Montes
- Department of Biology, Healthcare and the Environment, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Bonaccorso A, Musumeci T, Carbone C, Vicari L, Lauro MR, Puglisi G. Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharm Dev Technol 2017; 23:265-274. [PMID: 28128676 DOI: 10.1080/10837450.2017.1287731] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The efficient design of nanocarriers is a major challenge and must be correlated with the route of administration. Intranasal route is studied for local, systemic or cerebral treatments. In order to develop nanocarriers with suitable properties for intranasal delivery, to achieve brain and to market the product, it is extremely important the simplification of the formulation in terms of raw materials. Surfactants and cryoprotectants are often added to improve structuration and/or storage of polymeric nanoparticles. PLGA-PEG nanocarriers were prepared by nanoprecipitation method evaluating the critical role of sucrose as surfactant-like and cryoprotectant, with the aim to obtain a simpler formulation compared to those proposed in other papers. Photon correlation spectroscopy and Turbiscan analysis show that sucrose is a useful excipient during the preparation process and it effectively cryoprotects nanoparticles. Among the investigated nanocarriers with different degree of PEG, PEGylated PLGA (5%) confers weak interaction between nanoparticles and mucin as demonstrated by thermal analysis and mucin particle method. Furthermore, in vitro biological studies on HT29, as epithelium cell line, does not show cytotoxicity effect for this nanocarrier at all texted concentrations. The selected nanosystem was also studied to load docetaxel, as model drug, and characterized by a technological point of view.
Collapse
Affiliation(s)
- A Bonaccorso
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - T Musumeci
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - C Carbone
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| | - L Vicari
- b IOM Ricerca s.r.l. , Viagrande , Italy
| | - M Rosaria Lauro
- c Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - G Puglisi
- a Laboratory of Drug Delivery Technology, - Department of Drug Sciences , University of Catania , Catania , Italy
| |
Collapse
|
33
|
Brako F, Mahalingam S, Rami-Abraham B, Craig DQM, Edirisinghe M. Application of nanotechnology for the development of microbicides. NANOTECHNOLOGY 2017; 28:052001. [PMID: 28032619 DOI: 10.1088/1361-6528/28/5/052001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
34
|
Agrahari V, Meng J, Ezoulin MJM, Youm I, Dim DC, Molteni A, Hung WT, Christenson LK, Youan BBC. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (Lond) 2016; 11:2935-2958. [PMID: 27785967 PMCID: PMC9816923 DOI: 10.2217/nnm-2016-0103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To develop a seminal enzyme bioresponsive, mucoadhesive nanofibers (NFs) as safe and effective nanocarriers for the prevention of HIV vaginal transmission. METHODS A novel thiolated hyaluronic acid (HA-SH) polymer was synthesized to fabricate tenofovir (TFV)-loaded electrospun NFs (HA-SH-NFs) and characterized in vitro/in vivo. RESULTS A triggered drug release (87% w/w) from the engineered HA-SH-NFs (mean diameter ∼75 nm) occured within 1 h under the influence of seminal hyaluronidase enzyme. HA-SH-NFs were noncytotoxic, induced no damage on the C57BL/6 mice genital-tract and other organs. No significant CD45 cell-infiltration and changes in cytokines level in cervicovaginal tissues were observed. HA-SH-NFs significantly enhanced both TFV retention and bioavailability in vaginal tissue compared with the 1% TFV-gel. The anti-HIV activity of TFV (on pseudotyped virus followed by luciferase assay) was not adversely affected by the electrospinning process. CONCLUSION HA-SH-NFs developed in this study could potentially serve as a safe nanotemplate for topical intravaginal delivery of HIV/AIDS microbicides.
Collapse
Affiliation(s)
- Vivek Agrahari
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Jianing Meng
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Miezan JM Ezoulin
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ibrahima Youm
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Daniel C Dim
- School of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Agostino Molteni
- School of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Wei-Ting Hung
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lane K Christenson
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA,*Author for correspondence:
| |
Collapse
|
35
|
Mouftah S, Abdel-Mottaleb MMA, Lamprecht A. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles. Int J Pharm 2016; 515:565-574. [PMID: 27773855 DOI: 10.1016/j.ijpharm.2016.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/18/2023]
Abstract
Buccal delivery seems to be a very promising administration route for macromolecular drugs. Here, we explored the potential of cationic polymethacrylate nanoparticles (NPs) as a carrier system for the buccal delivery of low molecular weight heparin (LMWH). LMWH-loaded NPs were prepared by emulsification solvent diffusion method and the NPs were analyzed for their physiochemical properties, rheological evaluations and ex vivo transport studies across buccal mucosa. The prepared LMWH-loaded NPs showed a mean diameter between 400 and 500nm with unimodal size distribution with negative surface charge. Viscosity measurements revealed a positive rheological synergism between the prepared NPs and mucin when mixed under physiological conditions. After 4h, about 6.3±0.9% of LMWH was released in case of using Eudragit® RS (ERS); while Eudragit® RL (ERL) NPs released only 3.0±0.3 % of its LMWH content and this incomplete release was slightly ameliorated in the presence of mucin reaching to 7.2±0.3 % and 4.8±0.3 % for ERS and ERL, respectively. The ex-vivo permeability of heparin through the buccal mucosa was significantly increased after using polymetharylate NPs while no heparin permeation was detected from free heparin solution. Confocal laser scanning microscopy (CLSM) imaging indicated the mucoadhesive properties of the polymetharylate NPs where the drug-free NPs were detected in the superficial layers of buccal mucosa. LMWH-loaded NPs had less mucoadhesive properties showing significant deeper penetration of the mucosa. The results indicated that mucoadhesive cationic polymethacrylate NPs offer a possible approach for the buccal delivery of heparin.
Collapse
Affiliation(s)
- Samiha Mouftah
- Institute of Pharmaceutical Technology, Pharmacy Institutes, University of Bonn, Germany
| | - Mona M A Abdel-Mottaleb
- Institute of Pharmaceutical Technology, Pharmacy Institutes, University of Bonn, Germany; FDE (EA4267), University of Franche-Comté, Besançon, France; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams university, Cairo, Egypt.
| | - Alf Lamprecht
- Institute of Pharmaceutical Technology, Pharmacy Institutes, University of Bonn, Germany; FDE (EA4267), University of Franche-Comté, Besançon, France
| |
Collapse
|
36
|
Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release 2016; 243:43-53. [PMID: 27664327 DOI: 10.1016/j.jconrel.2016.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Combining two or more antiretroviral drugs in one medical product is an interesting but challenging strategy for developing topical anti-HIV microbicides. We developed a new vaginal delivery system comprising the incorporation of nanoparticles (NPs) into a polymeric film base - NPs-in-film - and tested its ability to deliver tenofovir (TFV) and efavirenz (EFV). EFV-loaded poly(lactic-co-glycolic acid) NPs were incorporated alongside free TFV into fast dissolving films during film manufacturing. The delivery system was characterized for physicochemical properties, as well as genital distribution, local and systemic 24h pharmacokinetics (PK), and safety upon intravaginal administration to mice. NPs-in-film presented suitable technological, mechanical and cytotoxicity features for vaginal use. Retention of NPs in vivo was enhanced both in vaginal lavages and tissue when associated to film. PK data evidenced that vaginal drug levels rapidly decreased after administration but NPs-in-film were still able to enhance drug concentrations of EFV. Obtained values for area-under-the-curve for EFV were around one log10 higher than those for the free drugs in aqueous vehicle (phosphate buffered saline). Film alone also contributed to higher and more prolonged local drug levels as compared to the administration of TFV and EFV in aqueous vehicle. Systemic exposure to both drugs was low. NPs-in-film was found to be safe upon once daily vaginal administration to mice, with no significant genital histological changes or major alterations in cytokine/chemokine profiles being observed. Overall, the proposed NPs-in-film system seems to be an interesting delivery platform for developing combination vaginal anti-HIV microbicides.
Collapse
|
37
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur J Pharm Sci 2016; 93:493-503. [PMID: 27593989 DOI: 10.1016/j.ejps.2016.08.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNA (siRNA) is an attractive therapeutic approach to treat several pathologies, such as viral infections or cancers. However, the stability and the efficacy of these biotherapies are still a major obstacle to their use. Cationic liposomes (DOTAP/Chol/DOPE 1/0.75/0.5M ratio) have been complexed to siRNA (lipoplexes) in order to be administrated by the vaginal route, in the context of HPV16 induced cervical preneoplastic lesions. To overcome the constraint of the cervico-vaginal mucus, PEGylation is required to allow the diffusion of lipoplexes through it. Thereby, PEGylated lipoplexes coated with three types of polyethylene glycol (PEG) as DSPE-PEG2000, DSPE-PEG750 or C8-PEG2000-Ceramide (Ceramide-PEG2000) at different densities have been developed and characterized. PEGylated lipoplexes were successfully prepared and showed a hydrodynamic diameter around 200nm, appropriate for vaginal application. In vitro assays on HPV16 positive cell lines revealed that a positive charge of PEGylated lipoplexes allows a higher mRNA knockdown by siRNA. However, the cationic property is also associated to cytotoxicity. The addition of a high percentage of PEG prevented this toxicity but seemed also to reduce siRNA endosomal escape, probably by steric hindrance. The decreasing of PEG density of Ceramide-PEG2000 to 20% allows the release of siRNA and in consequence, biological activities, contrarily to DSPE-PEG. These results suggest that Ceramide-PEG is more appropriate for siRNA delivery compared to DSPE-PEG. In conclusion, the right balance between cytotoxicity and siRNA effectiveness has been found with the transfection of lipoplexes coated with 20% of Ceramide-PEG2000. This new nanovector could have a high potential against multiple mucosal diseases, such as human papillomavirus-induced genital lesions.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium; Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium.
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
38
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
39
|
Furst T, Dakwar GR, Zagato E, Lechanteur A, Remaut K, Evrard B, Braeckmans K, Piel G. Freeze-dried mucoadhesive polymeric system containing pegylated lipoplexes: Towards a vaginal sustained released system for siRNA. J Control Release 2016; 236:68-78. [PMID: 27329774 DOI: 10.1016/j.jconrel.2016.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Abstract
Topical vaginal sustained delivery of siRNA presents a significant challenge due to the short residence time of formulations. Therefore, a drug delivery system capable to adhere to the vaginal mucosa is desirable, as it could allow a prolonged delivery and increase the effectiveness of the therapy. The aim of this project is to develop a polymeric solid mucoadhesive system, loaded with lipoplexes, able to be progressively rehydrated by the vaginal fluids to form a hydrogel and to deliver siRNA to vaginal tissues. To minimize adhesive interactions with vaginal mucus components, lipoplexes were coated with different derivatives of polyethylene glycol: DPSE-PEG2000, DPSE-PEG750 and ceramide-PEG2000. Based on stability and diffusion properties in simulated vaginal fluids, lipoplexes containing DSPE-PEG2000 were selected and incorporated in hydroxyethyl cellulose (HEC) hydrogels. Solid systems, called sponges, were then obtained by freeze-drying. Sponges meet acceptable mechanical characteristics and their hardness, deformability and mucoadhesive properties are not influenced by the presence of lipoplexes. Finally, mobility and stability of lipoplexes inside sponges rehydrated with vaginal mucus, mimicking in situ conditions, were evaluated by advanced fluorescence microscopy. The release rate was found to be influenced by the HEC concentration and consequently by the viscosity after rehydration. This study demonstrates the feasibility of entrapping pegylated lipoplexes into a solid matrix system for a prolonged delivery of siRNA into the vagina.
Collapse
Affiliation(s)
- Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, 4000, Belgium.
| | - George R Dakwar
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, 9000, Belgium
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, 9000, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, 4000, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, 9000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, 4000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, 9000, Belgium
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, 4000, Belgium
| |
Collapse
|
40
|
Yin J, Xiang C, Song X. Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability. Int J Pharm 2016; 510:203-9. [PMID: 27154253 DOI: 10.1016/j.ijpharm.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Psoralidin (PL) has recently been attracting more attention as a new anticancer agent candidate. Nevertheless, peroral administration of PL is largely challenged by its insoluble nature and intestinal efflux. This article aimed to develop a nanoencapsulation formulation of PL using water-soluble chitosan and Eudragit S100 and to evaluate its potential for bioavailability enhancement. PL-loaded nanocapsules (PL-NCs) were prepared by a solvent diffusion and high-pressure homogenization technique with Poloxamer 188 as a stabilizer. The resultant PL-NCs were approximately 132.5nm in particle size and possessed a high entrapment efficiency (98.1%). In vitro release showed that PL was released less from the nanocapsules due to electrostatic complexation. A lipolytic experiment demonstrated that our prepared PL-NCs were not degraded by lipase, in contrast with the most commonly used lipid nanoparticles. Furthermore, PL-NCs appeared to have less affinity for intestinal mucins. Following oral administration, the bioavailability of PL was significantly enhanced via the PL-NCs, with a value of 339.02% relative to the reference (suspensions). Excellent intestinal adhesion and transepithelial permeability accounted for the enhancement of oral bioavailability. Taken together, these results indicate that nanoencapsulation of PL with chitosan and Eudragit S100 is a promising strategy for improved PL oral delivery.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China
| | - Cuiyu Xiang
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China
| | - Xiaoyong Song
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China.
| |
Collapse
|
41
|
Erickson AM, Henry BI, Murray JM, Klasse PJ, Angstmann CN. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion. Biophys J 2016; 109:164-72. [PMID: 26153713 DOI: 10.1016/j.bpj.2015.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/01/2023] Open
Abstract
Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data.
Collapse
Affiliation(s)
- Austen M Erickson
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Bruce I Henry
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - John M Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York
| | | |
Collapse
|
42
|
Roy U, Rodríguez J, Barber P, das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond) 2015; 10:3597-609. [PMID: 26400459 PMCID: PMC4910962 DOI: 10.2217/nnm.15.160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Since its discovery almost three decades ago, HIV-1 has grown into the most aggressive pandemic of modern time. Following the implementation of combination antiretroviral therapy, the pathological outcome of HIV infection has substantially improved. However, combination antiretroviral therapy is limited by several factors including, long-term toxicity, serious side effects and complex dosing regimens, and so on. In this regard, researchers have directed their attention toward enhancing current treatment strategies and/or developing alternative HIV-1 therapeutics. In recent years, this attention has fixated on nanomedicine-based anti-HIV therapeutics (HIV-1 nanotherapeutics). In the present study, we have reviewed several HIV-1 nanotherapeutics that have shown success at the preclinical level and/or Phase I/II clinical trials. We also discuss the possible benefits of these nanomedicine-based approaches and their future outlook.
Collapse
Affiliation(s)
- Upal Roy
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Paul Barber
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - José das Neves
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde & INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
43
|
Nader-Macías MEF, Juárez Tomás MS. Profiles and technological requirements of urogenital probiotics. Adv Drug Deliv Rev 2015; 92:84-104. [PMID: 25858665 DOI: 10.1016/j.addr.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
Probiotics, defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are considered a valid and novel alternative for the prevention and treatment of female urogenital tract infections. Lactobacilli, the predominant microorganisms of the healthy human vaginal microbiome, can be included as active pharmaceutical ingredients in probiotics products. Several requirements must be considered or criteria fulfilled during the development of a probiotic product or formula for the female urogenital tract. This review deals with the main selection criteria for urogenital probiotic microorganisms: host specificity, potential beneficial properties, functional specifications, technological characteristics and clinical trials used to test their effect on certain physiological and pathological conditions. Further studies are required to complement the current knowledge and support the clinical applications of probiotics in the urogenital tract. This therapy will allow the restoration of the ecological equilibrium of the urogenital tract microbiome as well as the recovery of the sexual and reproductive health of women.
Collapse
|
44
|
das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 2015; 92:53-70. [PMID: 25550217 DOI: 10.1016/j.addr.2014.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
The vaginal delivery of various drugs is well described and its relevance established in current medical practice. Alongside recent advances and achievements in the fields of pharmaceutical nanotechnology and nanomedicine, there is an increasing interest in the potential use of different nanocarriers for the delivery of old and new pharmacologically active molecules with either therapeutic or prophylactic purposes. Nanosystems of polymeric nature in particular have been investigated over the last years and their interactions with mucosal fluids and tissues, as well as genital tract biodistribution upon vaginal administration, are now better understood. While different applications have been envisioned, most of the current research is focusing in the development of nano-formulations with the potential to inhibit the vaginal transmission of HIV upon sexual intercourse. The present work focuses its discussion on the potential and perils of polymer-based nanocarriers for the vaginal administration of different pharmacologically active molecules.
Collapse
|
45
|
das Neves J, Sarmento B. Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides. Acta Biomater 2015; 18:77-87. [PMID: 25700657 DOI: 10.1016/j.actbio.2015.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/27/2014] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
Abstract
Polymeric nanoparticles (NPs) have the potential to provide effective and safe delivery of antiretroviral drugs in the context of prophylactic anti-HIV vaginal microbicides. Dapivirine-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) NPs were produced by an emulsion-solvent evaporation method, optimized for colloidal properties using a 3-factor, 3-level Box-Behnken experimental design, and characterized for drug loading, production yield, morphology, thermal behavior, drug release, in vitro cellular uptake, cytotoxicity and pro-inflammatory potential. Also, drug permeability/membrane retention in well-established HEC-1-A and CaSki cell monolayer models as mediated by NPs was assessed in the absence or presence of mucin. Box-Behnken design allowed optimizing monodisperse 170nm drug-loaded NPs. Drug release experiments showed an initial burst effect up to 4h, followed by sustained 24h release at pH 4.2 and 7.4. NPs were readily taken up by different genital and macrophage cell lines as assessed by fluorescence microscopy. Drug-loaded NPs presented lower or at least similar cytotoxicity as compared to the free drug, with up to around one-log increase in half-maximal cytotoxic concentration values. In all cases, no relevant changes in cell pro-inflammatory cytokine/chemokine production were observed. Dapivirine transport across cell monolayers was significantly decreased when mucin was present at the donor side with either NPs or the free drug, thus evidencing the influence of this natural glycoprotein in membrane permeability. Moreover, drug retention in cell monolayers was significantly higher for NPs in comparison with the free drug. Overall, obtained dapivirine-loaded PLGA NPs possess interesting technological and biological features that may contribute to their use as novel safe and effective vaginal microbicides.
Collapse
Affiliation(s)
- José das Neves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
46
|
Glisoni RJ, Quintana L SS, Molina M, Calderón M, Moglioni AG, Sosnik A. Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J Mater Chem B 2015; 3:4853-4864. [DOI: 10.1039/c5tb00594a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mucoadhesive chitosan-g-oligo(epsilon-caprolactone) polymeric micelles were synthesized by a microwave-assisted technique and fully characterized in vitro.
Collapse
Affiliation(s)
- Romina J. Glisoni
- NANOBIOTEC
- Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Buenos Aires
- Argentina
| | - Silvina S. Quintana L
- IQUIMEFA
- Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Buenos Aires
- Argentina
| | - María Molina
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Albertina G. Moglioni
- IQUIMEFA
- Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Buenos Aires
- Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science
- Department of Materials Science and Engineering
- Technion-Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
47
|
Li C, Liu Z, Yan X, Lu W, Liu Y. Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles. Int J Pharm 2014; 479:261-4. [PMID: 25528296 DOI: 10.1016/j.ijpharm.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Phenylboronic acid-rich nanoparticles (PBNPs) were designed as a novel mucoadhesive vaginal drug delivery system. PBNPs effectively adsorbed mucin in vitro and could be easily loaded with the model drug interferon (IFN). Drug release from PBNPs was controlled by the presence of mucin. Neither obvious cytotoxicity nor vaginal histological changes in mice caused by PBNPs or IFN-loaded PBNPs were observed.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China; School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zheshuo Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China; School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xueying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
48
|
Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
50
|
Jøraholmen MW, Vanić Z, Tho I, Skalko-Basnet N. Chitosan-coated liposomes for topical vaginal therapy: assuring localized drug effect. Int J Pharm 2014; 472:94-101. [PMID: 24928137 DOI: 10.1016/j.ijpharm.2014.06.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 01/15/2023]
Abstract
The choice of drug therapy in pregnant patients suffering from vaginal infections is limited by the safety profile of the drug. Assuring the efficient topical therapy to avoid systemic absorption is considered the best therapy option. Chitosan-coated liposomes have been developed and optimized to assure localized therapy of clotrimazole. Chitosan was selected as mucoadhesive polymer both to prolong system's retention at the vaginal site and act on biofilms responsible for high recurrence of infections. Sonicated liposomes were coated with chitosan in three different concentrations, namely 0.1, 0.3 and 0.6% (w/v). Clotrimazole-containing (22 μg/mg lipid) chitosan-coated liposomes were in the size range of 100-200 nm. The in vitro release studies confirmed prolonged release of clotrimazole from both non-coated and chitosan-coated liposomes as compared to control. The ex vivo penetration experiments performed on the pregnant sheep vaginal tissue showed that coated liposomes assured increased clotrimazole tissue retention and reduced its penetration as compared to the control. Mucin studies revealed that the coating with lower chitosan concentration increased the system's mucoadhesive potential, as compared to coating with higher concentrations. These results provide a good platform for further in vivo animal studies on mucoadhesive liposomes destined to localized vaginal therapy.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- University of Tromsø, Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Universitetsveien 57, Tromsø 9037, Norway
| | - Zeljka Vanić
- University of Zagreb, Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, Zagreb 10000, Croatia
| | - Ingunn Tho
- University of Tromsø, Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Universitetsveien 57, Tromsø 9037, Norway
| | - Nataša Skalko-Basnet
- University of Tromsø, Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Universitetsveien 57, Tromsø 9037, Norway.
| |
Collapse
|