1
|
Yu F, Witman N, Yan D, Zhang S, Zhou M, Yan Y, Yao Q, Ding F, Yan B, Wang H, Fu W, Lu Y, Fu Y. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res Ther 2020; 11:490. [PMID: 33213517 PMCID: PMC7678328 DOI: 10.1186/s13287-020-02008-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Fat grafting, as a standard treatment for numerous soft tissue defects, remains unpredictable and technique-dependent. Human adipose-derived stem cells (hADSCs) are promising candidates for cell-assisted therapy to improve graft survival. As free-living fat requires nutritional and respiratory sources to thrive, insufficient and unstable vascularization still impedes hADSC-assisted therapy. Recently, cytotherapy combined with modified mRNA (modRNA) encoding vascular endothelial growth factor (VEGF) has been applied for the treatment of ischemia-related diseases. Herein, we hypothesized that VEGF modRNA (modVEGF)-engineered hADSCs could robustly enhance fat survival in a fat graft transplantation model. Methods hADSCs were acquired from lipoaspiration and transfected with modRNAs. Transfection efficiency and expression kinetics of modRNAs in hADSCs were first evaluated in vitro. Next, we applied an in vivo Matrigel plug assay to assess the viability and angiogenic potential of modVEGF-engineered hADSCs at 1 week post-implantation. Finally, modVEGF-engineered hADSCs were co-transplanted with human fat in a murine model to analyze the survival rate, re-vascularization, proliferation, fibrosis, apoptosis, and necrosis of fat grafts over long-term follow-up. Results Transfections of modVEGF in hADSCs were highly tolerable as the modVEGF-engineered hADSCs facilitated burst-like protein production of VEGF in both our in vitro and in vivo models. modVEGF-engineered hADSCs induced increased levels of cellular proliferation and proangiogenesis when compared to untreated hADSCs in both ex vivo and in vivo assays. In a fat graft transplantation model, we provided evidence that modVEGF-engineered hADSCs promote the optimal potency to preserve adipocytes, especially in the long-term post-transplantation phase. Detailed histological analysis of fat grafts harvested at 15, 30, and 90 days following in vivo grafting suggested the release of VEGF protein from modVEGF-engineered hADSCs significantly improved neo-angiogenesis, vascular maturity, and cell proliferation. The modVEGF-engineered hADSCs also significantly mitigated the presence of fibrosis, apoptosis, and necrosis of grafts when compared to the control groups. Moreover, modVEGF-engineered hADSCs promoted graft survival and cell differentiation abilities, which also induced an increase in vessel formation and the number of surviving adipocytes after transplantation. Conclusion This current study demonstrates the employment of modVEGF-engineered hADSCs as an advanced alternative to the clinical treatment involving soft-tissue reconstruction and rejuvenation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Feixue Ding
- Department of Plastic Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bingqian Yan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huijing Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yang Lu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
2
|
Zheng H, Yu Z, Deng M, Cai Y, Wang X, Xu Y, Zhang L, Zhang W, Li W. Fat extract improves fat graft survival via proangiogenic, anti-apoptotic and pro-proliferative activities. Stem Cell Res Ther 2019; 10:174. [PMID: 31196213 PMCID: PMC6567564 DOI: 10.1186/s13287-019-1290-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Our previous study proved that nanofat could enhance fat graft survival by promoting neovascularization. Fat extract (FE), a cell-free component derived from nanofat, also possesses proangiogenic activity. Objectives The aim of this study was to investigate whether FE could improve fat graft survival and whether FE and nanofat could work synergistically to promote fat graft survival. The underlying mechanism was also investigated. Methods In the first animal study, human macrofat from lipoaspirate was co-transplanted into nude mice with FE or nanofat. The grafts were evaluated at 2, 4 and 12 weeks post-transplantation. In the second animal study, nude mice were transplanted with a mixture of macrofat and nanofat, followed by intra-graft injection of FE at days 1, 7, 14, 21 and 28 post-transplantation. The grafts were evaluated at 12 weeks post-transplantation. To detect the mechanism by which FE impacts graft survival, the proangiogenic, anti-apoptotic and pro-proliferative activities of FE were analysed in grafts in vivo and in cultured human vascular endothelial cells (HUVECs), adipose-derived stem cells (ADSCs) and fat tissue in vitro. Results In the first animal study, the weights of the fat grafts in the nanofat- and FE-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity, more viable adipocytes, more CD31-positive blood vessels, fewer apoptotic cells and more Ki67-positive proliferating cells were observed in the nanofat- and FE-treated groups. In the second animal study, the weights of the fat grafts in the nanofat+FE group were significantly higher than those of the fat grafts in the control group. In vitro, FE showed proangiogenic effects on HUVECs, anti-apoptotic effects on fat tissue cultured under hypoxic conditions and an ability to promote ADSC proliferation and maintain their multiple differentiation capacity. Conclusions FE could improve fat graft survival via proangiogenic, anti-apoptotic and pro-proliferative effects on ADSCs. FE plus nanofat-assisted fat grafting is a new strategy that could potentially be used in clinical applications.
Collapse
Affiliation(s)
- Hongjie Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Ziyou Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Mingwu Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yizuo Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yuda Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
4
|
Alajangi HK, Natarajan P, Vij M, Ganguli M, Santhiya D. Role of Unmodified Low Generation - PAMAM Dendrimers in Efficient Non-Toxic Gene Transfection. ChemistrySelect 2016. [DOI: 10.1002/slct.201600576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hema Kumari Alajangi
- Department of Applied Chemistry and Polymer Technology; Delhi Technological University
| | | | - Manika Vij
- CSIR-Institute of Genomics and Integrative Biology; Mathura Road Delhi
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology; Mathura Road Delhi
| | - Deenan Santhiya
- Department of Applied Chemistry and Polymer Technology; Delhi Technological University
| |
Collapse
|
5
|
Lv J, Yang J, Hao X, Ren X, Feng Y, Zhang W. Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. J Mater Chem B 2016; 4:997-1008. [PMID: 32263173 DOI: 10.1039/c5tb02310f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, gene therapy has evoked an increasing interest in clinical treatments of coronary diseases because it is a potential strategy to realize rapid endothelialization of artificial vascular grafts. The balance of high transfection efficiency and low cytotoxicity of nonviral gene carriers is an important issue to be solved. In this study, we aim to establish a gene delivery system offering an elegant way to tune the transfection activity and cytotoxicity. Biodegradable complex micelles were prepared from polyethylenimine-b-poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)-b-polyethylenimine (PEI-b-PLMD-b-PEI) and methoxy-poly(ethylene glycol)-b-poly(lactide-co-3(S)-methyl-morpholine-2,5-dione) (mPEG-b-PLMD) copolymers by a co-assembly method. Then the ZNF580 gene plasmid (pDNA) was encapsulated into the complex micelles. The hydrodynamic size and zeta potential of these complex micelles and micelles/pDNA complexes indicated that they were feasible for use in cellular uptake and gene transfection. As expected, the transfection efficiency and cytotoxicity of these micelles/pDNA complexes could be conveniently tuned by changing the mass ratio of mPEG-b-PLMD to PEI-b-PLMD-b-PEI (3/1, 2/2, 1/3 and 0/4) in the mixed mPEG/PEI shell. The transfection efficiency increased as the mass ratio of mPEG-b-PLMD/PEI-b-PLMD-b-PEI decreased from 3/1 to 0/4, while the cytotoxicity showed an opposite tendency. Moreover, ZNF580 protein expression determined by Western blot analysis and the migration of transfected endothelial cells (ECs) by wound healing assay were consistent with the result of transfection efficiency. All these results indicated that the co-assembled complex micelles could act as suitable gene carriers with tunable gene transfection efficiency and cytotoxicity, which should have great potential for the transfection of vascular ECs.
Collapse
Affiliation(s)
- Juan Lv
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
6
|
Li J, Li S, Xia S, Feng J, Zhang X, Hao Y, Chen L, Zhang X. Enhanced transfection efficiency and targeted delivery of self-assembling h-R3-dendriplexes in EGFR-overexpressing tumor cells. Oncotarget 2015; 6:26177-91. [PMID: 26309162 PMCID: PMC4694894 DOI: 10.18632/oncotarget.4614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
The efficient gene transfection, cellular uptake and targeted delivery in vivo are key issues for non-viral gene delivery vectors in cancer therapy. To solve these issues, we designed a new targeted gene delivery system based on epidermal growth factor receptor (EGFR) targeting strategy. An anti-EGFR monoclonal antibody h-R3 was introduced to dendriplexes of PAMAM and DNA via electrostatic interactions to form self-assembled h-R3-PAMAM-DNA complexes (h-R3-dendriplexes). Dendriplexes h-R3-dendriplexes represented excellent DNA encapsulation ability and formed unique nanostructures. Compared to dendriplexes, h-R3-dendriplexes presented lower cytotoxicity, higher gene transfection efficiency, excellent endosome escape ability and high nuclear accumulation in the EGFR-overexpressing HepG2 cells. Both ex vivo fluorescence imaging and confocal results of frozen section revealed that h-R3-dendriplexes showed higher targeted delivery and much better gene expression in the tumors than dendriplexes at the same N/P ratio, and h-R3-dendriplexes had accumulation primarily in the tumor and kidney. Moreover, h-R3-dendriplexes for p53 delivery indicated efficient cell growth inhibition and potentiated paclitaxel-induced cell death. These results indicate that the h-R3-dendriplexes represent a great potential to be used as efficient targeted gene delivery carriers in EGFR-overexpressing tumor cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Combined Modality Therapy
- Dendrimers/chemistry
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- HEK293 Cells
- Hep G2 Cells
- Humans
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/therapy
- MCF-7 Cells
- Mice, Inbred BALB C
- Mice, Nude
- Paclitaxel/pharmacology
- Time Factors
- Transfection
- Tumor Burden/drug effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shengnan Li
- The third Clinical College, Southern Medical University, Guangzhou 510515, China
- Department of gynaecology and obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Songyun Xia
- Department of gynaecology and obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Jinfeng Feng
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuedi Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- The third Clinical College, Southern Medical University, Guangzhou 510515, China
- Department of gynaecology and obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Nam JP, Nam K, Jung S, Nah JW, Kim SW. Evaluation of dendrimer type bio-reducible polymer as a siRNA delivery carrier for cancer therapy. J Control Release 2015; 209:179-85. [PMID: 25937533 DOI: 10.1016/j.jconrel.2015.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
Abstract
Small interfering ribonucleic acid (siRNA), 20-25 base pairs in length, can interfere with the expression of specific genes. Recently, many groups reported the therapeutic intervention of siRNA in various cancer cells. In this study, dendrimer type bio-reducible polymer (PAM-ABP) which was synthesized using arginine grafted bio-reducible poly(cystaminebisacrylamide-diaminohexane) (ABP) and polyamidoamine (PAMAM) was used to deliver anti-VEGF siRNA into cancer cell lines including human hepatocarcinoma (Huh-7), human lung adenocarcinoma (A549), and human fibrosarcoma (HT1080) cells and access their potential as a siRNA delivery carrier for cancer therapy. PAM-ABP and siRNA formed polyplexes with average diameter of 116 nm and charge of around +24.6 mV. The siRNA in the PAM-ABP/siRNA polyplex was released by 5mM DTT and heparin. VEGF gene silencing efficiency of PAM-ABP/siRNA polyplexes was shown to be more effective than PEI/siRNA polyplexes in three cell lines with the following order HT1080>A549>Huh-7.
Collapse
Affiliation(s)
- Joung-Pyo Nam
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Kihoon Nam
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Simhyun Jung
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University 255 Jungang-ro, Suncheon, Jeollanam-do, Republic of Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
8
|
Won YW, Bull DA, Kim SW. Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 2014; 195:110-9. [PMID: 25076177 DOI: 10.1016/j.jconrel.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 01/18/2023]
Abstract
Ischemic heart disease is rapidly growing as the common cause of death in the world. It is a disease that occurs as a result of coronary artery stenosis and is caused by the lack of oxygen within cardiac muscles due to an imbalance between oxygen supply and demand. The conventional medical therapy is focused on the use of drug eluting stents, coronary-artery bypass graft surgery and anti-thrombosis. Gene therapy provides great opportunities for treatment of cardiovascular disease. In order for gene therapy to be successful, the development of proper gene delivery systems and hypoxia-regulated gene expression vectors is the most important factors. Several non-viral gene transfer methods have been developed to overcome the safety problems of viral transduction. Some of which include plasmids that regulate gene expression that is controlled by environment specific promoters in the transcriptional or the translational level. This review explores polymeric gene carriers that target the myocardium and hypoxia-inducible vectors, which regulate gene expression in response to hypoxia, and their application in animal myocardial infarction models.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Kim HA, Nam K, Kim SW. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Biomaterials 2014; 35:7543-52. [PMID: 24894645 DOI: 10.1016/j.biomaterials.2014.05.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/08/2014] [Indexed: 12/23/2022]
Abstract
Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG, 1 kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RAD in αvβ3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kihoon Nam
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea.
| |
Collapse
|
10
|
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190:424-39. [PMID: 24746626 DOI: 10.1016/j.jconrel.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nano-sized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer.
Collapse
Affiliation(s)
- Young Sook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Li J, Oupický D. Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor. Biomaterials 2014; 35:5572-9. [PMID: 24726746 DOI: 10.1016/j.biomaterials.2014.03.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Erekat NS, Al-Jarrah MD, Al Khatib AJ. Treadmill Exercise Training Improves Vascular Endothelial Growth Factor Expression in the Cardiac Muscle of Type I Diabetic Rats. Cardiol Res 2014; 5:23-29. [PMID: 28392871 PMCID: PMC5358275 DOI: 10.14740/cr314w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2013] [Indexed: 12/31/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) expression is a potent mitogen for endothelial cells that is involved in angiogenesis. Cardiac VEGF is decreased in many pathologic conditions, including diabetes mellitus and aging. Exercise training has improved VEGF expression in the aging heart. Thus, the aim of our study is to illustrate the impact of treadmill exercise training on the cardiac VEGF expression in type I diabetic rats. Methods Twenty normal Sprague-Dawley rats and Sprague-Dawley rats with streptozotocin-induced diabetes were divided into the following equal groups: sedentary control (SC), exercised control (EC), sedentary diabetic rats (SD) and exercised diabetic rats (ED). Immunohistochemistry was used to investigate VEGF expression in the cardiac tissue in each of the four different groups. Results Cardiac VEGF expression was significantly (P < 0.05) lower in SD compared with that in SC. However, exercise training significantly (P < 0.01) enhanced VEGF expression in the cardiac tissue in ED compared with that in SD. Conclusion Our present data suggest that treadmill exercise training improved diabetes-induced downregulation in the cardiac VEGF expression.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, JUST, Irbid, Jordan
| | - Ahed J Al Khatib
- Department of Pathology, Faculty of Medicine, JUST, Irbid, Jordan
| |
Collapse
|