1
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
2
|
Raddeanin A synergistically enhances the anti-tumor effect of MAP30 in multiple ways, more than promoting endosomal escape. Toxicol Appl Pharmacol 2022; 449:116139. [PMID: 35750203 DOI: 10.1016/j.taap.2022.116139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.
Collapse
|
3
|
Park J, Lee S, Kim Y, Yoo TH. Methods to generate site-specific conjugates of antibody and protein. Bioorg Med Chem 2021; 30:115946. [DOI: 10.1016/j.bmc.2020.115946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
|
4
|
Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv 2020; 3:2700-2711. [PMID: 31515232 DOI: 10.1182/bloodadvances.2019000516] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Gene therapy offers the potential to cure hemophilia A (HA). We have shown that hematopoietic stem cell (HSC)-based platelet-specific factor VIII (FVIII) (2bF8) gene therapy can produce therapeutic protein and induce antigen-specific immune tolerance in HA mice, even in the presence of inhibitory antibodies. For HSC-based gene therapy, traditional preconditioning using cytotoxic chemotherapy or total body irradiation (TBI) has been required. The potential toxicity associated with TBI or chemotherapy is a deterrent that may prevent patients with HA, a nonmalignant disease, from agreeing to such a protocol. Here, we describe targeted nongenotoxic preconditioning for 2bF8 gene therapy utilizing a hematopoietic cell-specific antibody-drug conjugate (ADC), which consists of saporin conjugated to CD45.2- and CD117-targeting antibodies. We found that a combination of CD45.2- and CD117-targeting ADC preconditioning was effective for engrafting 2bF8-transduced HSCs and was favorable for platelet lineage reconstitution. Two thirds of HA mice that received 2bF8 lentivirus-transduced HSCs under (CD45.2+CD117)-targeting ADC conditioning maintained sustained therapeutic levels of platelet FVIII expression. When CD8-targeting ADC was supplemented, chimerism and platelet FVIII expression were significantly increased, with long-term sustained platelet FVIII expression in all primary and secondary recipients. Importantly, immune tolerance was induced and hemostasis was restored in a tail-bleeding test, and joint bleeding also was effectively prevented in a needle-induced knee joint injury model in HA mice after 2bF8 gene therapy. In summary, we show for the first time efficient engraftment of gene-modified HSCs without genotoxic conditioning. The combined cocktail ADC-mediated hematopoietic cell-targeted nongenotoxic preconditioning that we developed is highly effective and favorable for platelet-specific gene therapy in HA mice.
Collapse
|
5
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
6
|
Wensley HJ, Johnston DA, Smith WS, Holmes SE, Flavell SU, Flavell DJ. A Flow Cytometric Method to Quantify the Endosomal Escape of a Protein Toxin to the Cytosol of Target Cells. Pharm Res 2019; 37:16. [PMID: 31873810 PMCID: PMC6928089 DOI: 10.1007/s11095-019-2725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Purpose The aim of this work was to develop a quantitative, flow cytometric method for tracking the endolysosomal escape of a fluorescently labelled saporin toxin. Methods Flow cytometric measurements of fluorescent pulse width and height were used to track the endocytic uptake into Daudi cells of a fluorescently labelled saporin toxin and the saporin based immunotoxin, OKT10-SAP. Subsequently, measurement of changes in pulse width were used to investigate the effect of a triterpenoid saponin on the endolysosomal escape of internalised toxin into the cytosol. Live cell confocal microscopy was used to validate the flow cytometry data. Results Increased endolysosomal escape of saporin and OKT10-SAP was observed by confocal microscopy in cells treated with saponin. Fluorescent pulse width measurements were also able to detect and quantify escape more sensitively than confocal microscopy. Saponin induced endolysosomal escape could be abrogated by treatment with chloroquine, an inhibitor of endolysosomal acidification. Chloroquine abrogation of escape was also mirrored by a concomitant abrogation of cytotoxicity. Conclusions Poor endolysosomal escape is often a rate limiting step for the cytosolic delivery of protein toxins and other macromolecules. Pulse width analysis offers a simple method to semi-quantify the endolysosomal escape of this and similar molecules into the cytosol. Electronic supplementary material The online version of this article (10.1007/s11095-019-2725-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harrison J Wensley
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, SO16 6YD, UK.,Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Wendy S Smith
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Sopsamorn U Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, SO16 6YD, UK.,University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton, SO16 6YD, UK. .,University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
7
|
Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Mol Pharm 2019; 16:1633-1647. [PMID: 30817164 PMCID: PMC6448105 DOI: 10.1021/acs.molpharmaceut.8b01318] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023]
Abstract
In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.
Collapse
Affiliation(s)
- Lucía Martínez-Jothar
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nataliia Beztsinna
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Division
of Cell Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Smith WS, Johnston DA, Holmes SE, Wensley HJ, Flavell SU, Flavell DJ. Augmentation of Saporin-Based Immunotoxins for Human Leukaemia and Lymphoma Cells by Triterpenoid Saponins: The Modifying Effects of Small Molecule Pharmacological Agents. Toxins (Basel) 2019; 11:toxins11020127. [PMID: 30791598 PMCID: PMC6410249 DOI: 10.3390/toxins11020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Triterpenoid saponins from Saponinum album (SA) significantly augment the cytotoxicity of saporin-based immunotoxins but the mechanism of augmentation is not fully understood. We investigated the effects of six small molecule pharmacological agents, which interfere with endocytic and other processes, on SA-mediated augmentation of saporin and saporin-based immunotoxins (ITs) directed against CD7, CD19, CD22 and CD38 on human lymphoma and leukaemia cell lines. Inhibition of clathrin-mediated endocytosis or endosomal acidification abolished the SA augmentation of saporin and of all four immunotoxins tested but the cytotoxicity of each IT or saporin alone was largely unaffected. The data support the hypothesis that endocytic processes are involved in the augmentative action of SA for saporin ITs targeted against a range of antigens expressed by leukaemia and lymphoma cells. In addition, the reactive oxygen species (ROS) scavenger tiron reduced the cytotoxicity of BU12-SAP and OKT10-SAP but had no effect on 4KB128-SAP or saporin cytotoxicity. Tiron also had no effect on SA-mediated augmentation of the saporin-based ITs or unconjugated saporin. These results suggest that ROS are not involved in the augmentation of saporin ITs and that ROS induction is target antigen-dependent and not directly due to the cytotoxic action of the toxin moiety.
Collapse
Affiliation(s)
- Wendy S Smith
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Harrison J Wensley
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Sopsamorn U Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
9
|
Lacaille-Dubois MA, Wagner H. New perspectives for natural triterpene glycosides as potential adjuvants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:S0944-7113(17)30158-7. [PMID: 29239784 DOI: 10.1016/j.phymed.2017.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Triterpene glycosides are a vast group of secondary metabolites widely distributed in plants including a high number of biologically active compounds. The pharmacological potential is evaluated by using many bioassays particularly in the field of cancerology, immunology, and microbiology. The adjuvant concept is well known for these molecules in vaccines, but there is little preclinical evidence to support this concept in the management of cancer, infections and inflammation. PURPOSE We aim to review some examples of triterpene glycosides from natural sources which exhibit adjuvant activity when they are co-adminitered with anticancer drugs, targeted toxins, antimicrobial, anti-inflammatory drugs and with antigens in vaccines. METHODS The scientific literature on the adjuvant potential of triterpene glycosides covering mainly the last two decades has been identified by using relevant key words in the databases, using the online service such as Medline/PubMed, Scopus, Web of Science, Google Scholar. RESULTS We divided these findings in four kind of examples, the combination of triterpene glycosides (1) with chemotherapeutic agents in conventional tumor therapies and with targeted toxins, (2) with antimicrobial drugs, (3) with antiinflammatory drugs, and (4) with an antigen in prophylactic and therapeutic vaccines. Pharmacological studies have revealed that some triterpene glycosides co-administered with anticancer drugs such as cisplatin, paclitaxel, cyclophosphamide, etoposide, 5-fluorouracyl, mitoxantrone exhibited increased cytotoxicity in tumor cells better than when the drugs were administered alone. However in vivo toxicological and pharmacokinetic studies are required before the combination strategy can be applied into clinical practice. Other studies showed that combined application of triterpene glycosides with targeted toxins resulted in the increased efficacy of the toxin, simultaneously reducing the dosage, and side effects. It was also shown that the co-administration of the triterpenoids with corticosteroids synergistically inhibited the inflammatory response induced by carrageenan in rats. The search for new alternative adjuvants in vaccines in comparison with the aluminium salts inducing only a Th2-type immune response resulted in the discovery of the promising purified fraction QS-21 from Quillaja saponaria, which has been used in the development of a variety of prophylactic and therapeutic vaccines. Over 120 clinical trials for around 20 vaccine indications in infectious diseases, cancer, degenerative disorders have been reported involving more than 50,000 patients. CONCLUSION This review summarized the successfull in vitro and in vivo studies showing that this combination approach of triterpene glycosides co-adminitered with anticancer, antimicrobial and anti-inflammatory drug may provide an exciting road for further developments in the treatment of some cancers, parasitic and inflammatory diseases and in the rational design of vaccines against infectious diseases and cancer. From a clinical point of view, the potential benefit of QS-21, a promising triterpene glycoside from Quillaja saponaria has been highlighted in several vaccine clinical trials with a favorable ratio efficacy/toxicity.
Collapse
Affiliation(s)
- Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon cedex, France.
| | - Hildebert Wagner
- Department of Pharmacy, Center for Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
10
|
Bhargava C, Dürkop H, Zhao X, Weng A, Melzig MF, Fuchs H. Targeted dianthin is a powerful toxin to treat pancreatic carcinoma when applied in combination with the glycosylated triterpene SO1861. Mol Oncol 2017; 11:1527-1543. [PMID: 28755527 PMCID: PMC5664001 DOI: 10.1002/1878-0261.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer therapy provides the basis for the arrest of tumor growth in aggressive pancreatic carcinoma; however, a number of protein-based targeted toxins lack efficacy due to insufficient endosomal escape after being endocytosed. Therefore, we tested a fusion protein of the ribosome-inactivating protein dianthin and human epidermal growth factor in combination with a glycosylated triterpene (SO1861) that serves as an endosomal escape enhancer. In vitro investigations with the pancreatic carcinoma cell lines BxPC-3 and MIA PaCa-2 revealed no significant differences to off-target cells in the half maximal inhibitory concentration (IC50 ) for the fusion protein. In contrast, combination with SO1861 decreased the IC50 for BxPC-3 cells from 100 to 0.17 nm, whereas control cells remained unaffected. Monotherapy of BxPC-3 xenografts in CD-1 nude mice led to a 51.7% average reduction in tumor size (40.8 mm3 ) when compared to placebo; however, combined treatment with SO1861 resulted in a more than 13-fold better efficacy (3.0 mm3 average tumor size) with complete regression in 80% of cases. Immunohistochemical analyses showed that tumor cells with lower target receptor expression are, in contrast to the combination therapy, able to escape from the monotherapy, which finally results in tumor growth. At the effective concentration, we did not observe liver toxicity and saw no other side effects with the exception of a reversible skin hardening at the SO1861 injection site, alongside an increase in platelet counts, plateletcrit, and platelet distribution width. In conclusion, combining a targeted toxin with SO1861 is proven to be a very promising approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Cheenu Bhargava
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | | | - Xiangli Zhao
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | - Alexander Weng
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
- Institute for PharmacyFreie Universität BerlinGermany
| | | | - Hendrik Fuchs
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| |
Collapse
|
11
|
Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies. Biomedicines 2017; 5:biomedicines5020014. [PMID: 28536357 PMCID: PMC5489800 DOI: 10.3390/biomedicines5020014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed.
Collapse
|
12
|
Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers. Toxins (Basel) 2016; 8:toxins8070200. [PMID: 27376327 PMCID: PMC4963833 DOI: 10.3390/toxins8070200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.
Collapse
|
13
|
Simon N, FitzGerald D. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers. Toxins (Basel) 2016; 8:toxins8050137. [PMID: 27153091 PMCID: PMC4885052 DOI: 10.3390/toxins8050137] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers.
Collapse
Affiliation(s)
- Nathan Simon
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| | - David FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Niesen J, Stein C, Brehm H, Hehmann-Titt G, Fendel R, Melmer G, Fischer R, Barth S. Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities. J Cancer Res Clin Oncol 2015; 141:2079-95. [PMID: 25899161 DOI: 10.1007/s00432-015-1975-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). METHODS The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. RESULTS Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. CONCLUSIONS These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Hannes Brehm
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | | | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
15
|
Gilabert-Oriol R, Weng A, Trautner A, Weise C, Schmid D, Bhargava C, Niesler N, Wookey PJ, Fuchs H, Thakur M. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochem Pharmacol 2015; 97:247-55. [PMID: 26253687 DOI: 10.1016/j.bcp.2015.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
The therapeutic relevance of immunotoxins is based on the conjugation of monoclonal antibodies to toxins. In cancer therapies, the conjugated antibodies not only direct the binding of immunotoxins to cancer-specific receptors and mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. In the present study, the therapeutic antibodies Cetuximab (anti-EGFR, Erbitux(®)), Panitumumab (anti-EGFR, Vectibix(®)) and Trastuzumab (anti-HER2, Herceptin(®)) were chemically conjugated to the toxin dianthin. In the first instance, recombinant dianthin was characterized by mass spectrometry and its stability was analyzed by circular dichroism. Dianthin showed increased cytotoxicity on MCF-7 cells when tested in combination with a glycosylated triterpenoid (SO1861) in a real-time impedance-based cytotoxicity assay. In data obtained by live cell imaging, SO1861 specifically mediated the endo/lysosomal escape of dianthin without disrupting the plasma membrane. The purity of immunotoxins was confirmed by SDS-PAGE and Western blot. Their cytotoxicity was evaluated in the presence of SO1861 and dianthin-Cetuximab presented a GI50 (50% growth inhibition) of 5.3pM, dianthin-Panitumumab of 1.5pM, and dianthin-Trastuzumab of 23pM. Finally, the specificity of these immunotoxins was validated in a fluorescence-based real-time assay, where their binding to target cells was prevented by preincubation with an excess of label-free unconjugated antibody. Based on these data, we propose the use of dianthin and SO1861 as a new platform technology to enhance the efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany; Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Alexander Weng
- Institut für Pharmazie-Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany
| | - Alexandra Trautner
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Daniel Schmid
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Cheenu Bhargava
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nicole Niesler
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
16
|
|
17
|
Mallinckrodt BV, Thakur M, Weng A, Gilabert-Oriol R, Dürkop H, Brenner W, Lukas M, Beindorff N, Melzig MF, Fuchs H. Dianthin-EGF is an effective tumor targeted toxin in combination with saponins in a xenograft model for colon carcinoma. Future Oncol 2014; 10:2161-75. [DOI: 10.2217/fon.14.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT Aims: The intention of this work was to lift saponin supported tumor targeted therapies onto the next level by using targeted toxins in nude mice xenotransplant models. Materials & methods: Combined application of dianthin coupled to EGF and saponin SO-1861 was tested in a xenograft model of colon carcinoma. In vitro cytotoxicity was tested in real-time in NIH3T3 cells (no human EGF receptor expression), HER14 and human colon carcinoma HCT116 (both EGF receptor overexpressing) cells. A xenograft model was established using HCT116 cells and tumor-bearing animals were treated with SO-1861 (30 µg/treatment) and dianthin coupled to EGF (0.35 µg/treatment). Tumor progression was monitored, using 18F-2-fluor-2-desoxy-d-glucose, by small animal PET and by x-ray computed tomography. Results: In vitro results demonstrated a high-receptor specificity and the in vivo experiment showed a progressive reduction of the tumor volume and glycolytic activity in the treated group (>95% reduction; p < 0.05). Conclusion: This therapy has great advantage because of high specificity, low side effects and great effectiveness for future development in the treatment of colon cancer.
Collapse
Affiliation(s)
- Benedicta von Mallinckrodt
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mayank Thakur
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Weng
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Roger Gilabert-Oriol
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Horst Dürkop
- Pathodiagnostik Berlin, Referenzzentrum für Lymphom-und Hämatopathologie, Komturstraße 58, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Mathias Lukas
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany
| | - Nicola Beindorff
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Matthias F Melzig
- Institute of Pharmacy, Free University Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Hendrik Fuchs
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
18
|
Bondza S, Stenberg J, Nestor M, Andersson K, Björkelund H. Conjugation Effects on Antibody–Drug Conjugates: Evaluation of Interaction Kinetics in Real Time on Living Cells. Mol Pharm 2014; 11:4154-63. [DOI: 10.1021/mp500379d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sina Bondza
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Jonas Stenberg
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Marika Nestor
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Section
of Otolaryngology and Head and Neck Surgery, Department of Surgical
Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Karl Andersson
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| | - Hanna Björkelund
- Section
of Biomedical Radiation Sciences, Department of Radiology, Oncology
and Radiation Science, Rudbeck Laboratory, Uppsala University, SE-751
85 Uppsala, Sweden
- Ridgeview Instruments AB, Vänge, Sweden
| |
Collapse
|
19
|
Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Bhargava C, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Reporter assay for endo/lysosomal escape of toxin-based therapeutics. Toxins (Basel) 2014; 6:1644-66. [PMID: 24859158 PMCID: PMC4052257 DOI: 10.3390/toxins6051644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/16/2022] Open
Abstract
Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Mayank Thakur
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Benedicta von Mallinckrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Cheenu Bhargava
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Burkhard Wiesner
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Jenny Eichhorst
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, Berlin D-14195, Germany.
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Alexander Weng
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| |
Collapse
|
20
|
Weyergang A, Cheung LH, Rosenblum MG, Mohamedali KA, Peng Q, Waltenberger J, Berg K. Photochemical internalization augments tumor vascular cytotoxicity and specificity of VEGF121/rGel fusion toxin. J Control Release 2014; 180:1-9. [DOI: 10.1016/j.jconrel.2014.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
|