1
|
Talele P, Jadhav A, Sahu S, Shimpi N. Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1451-1466. [PMID: 39851141 DOI: 10.1039/d4ay01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Solid lipid nanoparticles (SLNs) are potential drug carriers due to the several advantages they offer. The physicochemical stability of lipid carriers varies significantly due to their diverse compositions and structures. Appropriate analytical methods are required for the complete characterization of SLNs. Physicochemical characterization includes analysis of bulk properties like particle size, size distribution, zeta potential, morphology, stability, polymorphism, crystallinity, and molecular level properties like microenvironments within nanoparticles and their interactions with drugs. Moreover, drug loading, drug entrapment efficiency, and drug release kinetics are essential parameters to evaluate the efficacy of SLNs as drug delivery systems. In addition to testing the physicochemical stability and functionality of SLN formulations, it is essential to investigate their desired actions through in vivo studies, which are beyond the scope of this article. This review briefly discusses the different experimental techniques and their applications in the field of solid lipid nanoparticles. These techniques can also be used to characterize nanostructure lipid carriers, which are second-generation lipid nanoparticles.
Collapse
Affiliation(s)
- Paurnima Talele
- Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded 431606, India
| | - Anand Jadhav
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | - Navinchandra Shimpi
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
2
|
Long S, Turner DA, Hamill KJ, Natrajan LS, McDonald TO. Capturing the dynamic integrity of carbocyanine fluorophore-based lipid nanoparticles using the FRET technique. J Mater Chem B 2025; 13:2295-2305. [PMID: 39886899 PMCID: PMC11783621 DOI: 10.1039/d4tb02653e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Nanoparticles capable of dynamically reporting their structural integrity in real-time are a powerful tool to guide the design of drug delivery technologies. Lipid nanoparticles (LNPs) offer multiple important advantages for drug delivery, including stability, protection of active substances, and sustained release capabilities. However, tracking their structural integrity and dynamic behaviour in complex biological environments remains challenging. Here, we report the development of a Förster resonance energy transfer (FRET)-enabled LNP platform that achieves unprecedented sensitivity and precision in monitoring nanoparticle disintegration. The FRET-based LNPs were prepared using nanoprecipitation, encapsulating high levels of 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorophores as the donor and acceptors, respectively. The resulting LNPs had a mean diameter of 114 ± 19 nm with a distinct FRET signal. An optimal energy transfer efficiency of 0.98 and an emission quantum yield of 0.13 were achieved at 11.1% fluorophore loading in the LNPs, balancing efficient energy transfer and minimal aggregation-induced quenching. Using the FRET reporting, three dissociation stages of FRET LNPs were observed: solvation, indicated by an increased emission intensity; swelling and partial dissolution, evidenced by changes in emission maxima and mean size; and complete dissociation, confirmed by emission solely from DiO and the absence of particles. Testing the nanoparticles in live cells (telomerase-immortalised human corneal epithelial cells, hTCEpi cells) revealed a direct link to the disappearance of the FRET signal with the dissociation of FRET NPs. The nanoparticles initially exhibited a strong extracellular FRET signal, which diminished after cellular internalisation. This suggests that the LNPs disintegrate after entering the cells. These findings establish FRET-based LNPs as a robust tool for real-time nanoparticle tracking, offering insights into their integrity and release mechanisms, with potential applications in advanced drug delivery and diagnostics.
Collapse
Affiliation(s)
- Siyu Long
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Louise S Natrajan
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Tom O McDonald
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
3
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
4
|
Togami K, Hazama Y, Nakamura Y, Ishizawa K, Chono S. Development of a Compensated Förster Resonance Energy Transfer Imaging for Improved Assessment of the Intrapulmonary Distribution of Polymeric Nanoparticles. J Pharm Sci 2023; 112:2696-2702. [PMID: 37478971 DOI: 10.1016/j.xphs.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Inhalation-based drug delivery systems have gained attention as potential therapeutic options for various respiratory diseases. Among these systems, nanoparticles are being explored as drug carriers because of their ability to deliver therapeutic agents directly to the lungs. It is essential to accurately evaluate the intrapulmonary behavior of nanoparticles to optimize drug delivery and achieve selective targeting of lung lesions. Prior research used the Förster resonance energy transfer (FRET) phenomenon to study the in vivo behavior of nanoparticles as drug carriers. In this study, image reconstruction involving bleed-through compensation was used to quantitatively assess the behavior of FRET nanoparticles in the lungs. When the nanoparticles for FRET fluorescence imaging, which employed 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) as the donor and as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine iodide (DiR) the acceptor, were administered to mouse lungs, whole-body in vivo imaging could not compensate for the influence of respiration and heartbeat. However, ex vivo imaging of excised lungs enabled the quantitative evaluation of the time-concentration profiles and distribution of nanoparticles within the lungs. This imaging technique is particularly useful for the development of inhalable nanoparticles that specifically target the lesions and exhibit controlled-release capabilities within the lungs.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan.
| | - Yoshiki Hazama
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Yuki Nakamura
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kiyomi Ishizawa
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
5
|
Chandra Joshi D, Ashokan A, Jayakannan M. l-Amino Acid Based Phenol- and Catechol-Functionalized Poly(ester-urethane)s for Aromatic π-Interaction Driven Drug Stabilization and Their Enzyme-Responsive Delivery in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5432-5444. [PMID: 36318654 DOI: 10.1021/acsabm.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Akash Ashokan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
6
|
Lebreton V, Kaeokhamloed N, Vasylaki A, Hilairet G, Mellinger A, Béjaud J, Saulnier P, Lagarce F, Gattacceca F, Legeay S, Roger E. Pharmacokinetics of intact lipid nanocapsules using new quantitative FRET technique. J Control Release 2022; 351:681-691. [DOI: 10.1016/j.jconrel.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022]
|
7
|
Gamage RS, Smith BD. Spontaneous Transfer of Indocyanine Green from Liposomes to Albumin Is Inhibited by the Antioxidant α-Tocopherol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11950-11961. [PMID: 36126324 PMCID: PMC9897306 DOI: 10.1021/acs.langmuir.2c01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Indocyanine Green (ICG) is a clinically approved organic dye with near-infrared absorption and fluorescence. Over the years, many efforts to improve the photophysical and pharmacokinetic properties of ICG have investigated numerous nanoparticle formulations, especially liposomes with membrane-embedded ICG. A series of systematic absorption and fluorescence experiments, including FRET experiments using ICG as a fluorescence energy acceptor, found that ICG transfers spontaneously from liposomes to albumin protein residing in the external solution with a half-life of ∼10 min at 37 °C. Moreover, transfer of ICG from liposome membranes to external albumin reduces light-activated leakage from thermosensitive liposomes with membrane-embedded ICG. A survey of lipophilic liposome additives discovered that the presence of clinically approved antioxidant, α-tocopherol, greatly increases ICG retention in the liposomes (presumably by forming favorable aromatic stacking interactions), inhibits ICG photobleaching and prevents albumin-induced reduction of light-triggered liposome leakage. This new insight will help researchers with the specific task of optimizing ICG-containing liposomes for fluorescence imaging or phototherapeutics. More broadly, the results suggest a broader design concept concerning light triggered liposome leakage, that is, proximity of the light absorbing dye to the bilayer membrane is a critical design feature that impacts the extent of liposome leakage.
Collapse
|
8
|
Kaeokhamloed N, Legeay S, Roger E. FRET as the tool for in vivo nanomedicine tracking. J Control Release 2022; 349:156-173. [PMID: 35779657 DOI: 10.1016/j.jconrel.2022.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Advanced drug delivery system utilizing a nanocarrier is the major application of nanotechnology on pharmacotherapeutics. However, despite the promising benefits and a leading trend in pharmaceutical research, nanomedicine development suffers from a poor clinical translation problem as only a handful of nanomedicine products reach the market yearly. The conventional pharmacokinetic study generally focuses only on monitoring the level of a free drug but ignores the nanocarrier's role in pharmacokinetics. One hurdle is that it is difficult to directly track intact nanocarriers in vivo to explore their pharmacokinetics. Although several imaging techniques such as radiolabeling, nuclear imaging, fluorescence imaging, etc., have been developed over the past few years, currently, one method that can successfully track the intact nanocarriers in vivo directly is by Förster resonance energy transfer (FRET). This review summarizes the application of FRET as the in vivo nanoparticle tracker for studying the in vivo pharmacokinetics of the organic nanocarriers and gives elaborative details on the techniques utilized.
Collapse
Affiliation(s)
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, SFR-ICAT, University of Angers, 49333 Angers, France
| | - Emilie Roger
- MINT, INSERM U1066, CNRS 6021, SFR-ICAT, University of Angers, 49333 Angers, France.
| |
Collapse
|
9
|
Ballell-Hosa L, González-Mira E, Santana H, Morla-Folch J, Moreno-Masip M, Martínez-Prieto Y, Revuelta A, Di Mauro PP, Veciana J, Sala S, Ferrer-Tasies L, Ventosa N. DELOS Nanovesicles-Based Hydrogels: An Advanced Formulation for Topical Use. Pharmaceutics 2022; 14:pharmaceutics14010199. [PMID: 35057095 PMCID: PMC8779640 DOI: 10.3390/pharmaceutics14010199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. Here we describe the advances on an innovative drug delivery platform called DELOS nanovesicles for topical drug delivery. Previously, the production of DELOS nanovesicles demonstrated potentiality for the topical treatment of complex wounds, achieving well-tolerated liquid dispersions by this route. Here, research efforts have been focused on designing these nanocarriers with the best skin tolerability to be applied even to damaged skin, and on exploring the feasibility of adapting the colloidal dispersions to a more suitable dosage form for topical application. Accordingly, these drug delivery systems have been efficiently evolved to a hydrogel using MethocelTM K4M, presenting proper stability and rheological properties. Further, the integrity of these nanocarriers when being gellified has been confirmed by cryo-transmission electron microscopy and by Förster resonance energy transfer analysis with fluorescent-labeled DELOS nanovesicles, which is a crucial characterization not widely reported in the literature. Additionally, in vitro experiments have shown that recombinant human Epidermal Growth Factor (rhEGF) protein integrated into gellified DELOS nanovesicles exhibits an enhanced bioactivity compared to the liquid form. Therefore, these studies suggest that such a drug delivery system is maintained unaltered when hydrogellified, becoming the DELOS nanovesicles-based hydrogels, an advanced formulation for topical use.
Collapse
Affiliation(s)
- Lídia Ballell-Hosa
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Hector Santana
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue between 158 and 190 Streets, Cubanacán, Playa, Havana 10600, Cuba; (H.S.); (Y.M.-P.)
| | - Judit Morla-Folch
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Marc Moreno-Masip
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
| | - Yaima Martínez-Prieto
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue between 158 and 190 Streets, Cubanacán, Playa, Havana 10600, Cuba; (H.S.); (Y.M.-P.)
| | - Albert Revuelta
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
| | - Primiano Pio Di Mauro
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Santi Sala
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
| | - Lidia Ferrer-Tasies
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
- Correspondence: (L.F.-T.); (N.V.)
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (L.F.-T.); (N.V.)
| |
Collapse
|
10
|
Ochoa M, Rudkouskaya A, Smith JT, Intes X, Barroso M. Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement. Methods Mol Biol 2022; 2394:837-856. [PMID: 35094361 PMCID: PMC8941982 DOI: 10.1007/978-1-0716-1811-0_44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Precision medicine promises to improve therapeutic efficacy while reducing adverse effects, especially in oncology. However, despite great progresses in recent years, precision medicine for cancer treatment is not always part of routine care. Indeed, the ability to specifically tailor therapies to distinct patient profiles requires still significant improvements in targeted therapy development as well as decreases in drug treatment failures. In this regard, preclinical animal research is fundamental to advance our understanding of tumor biology, and diagnostic and therapeutic response. Most importantly, the ability to measure drug-target engagement accurately in live and intact animals is critical in guiding the development and optimization of targeted therapy. However, a major limitation of preclinical molecular imaging modalities is their lack of capability to directly and quantitatively discriminate between drug accumulation and drug-target engagement at the pathological site. Recently, we have developed Macroscopic Fluorescence Lifetime Imaging (MFLI) as a unique feature of optical imaging to quantitate in vivo drug-target engagement. MFLI quantitatively reports on nanoscale interactions via lifetime-sensing of Förster Resonance Energy Transfer (FRET) in live, intact animals. Hence, MFLI FRET acts as a direct reporter of receptor dimerization and target engagement via the measurement of the fraction of labeled-donor entity undergoing binding to its respective receptor. MFLI is expected to greatly impact preclinical imaging and also adjacent fields such as image-guided surgery and drug development.
Collapse
Affiliation(s)
- Marien Ochoa
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY, USA
| | - Jason T Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
11
|
Yu W, Kim Y, Jang Y, Lee SM. Eu(III)-Chelated Polymeric Hybrid Nanoplatform for Luminescence Resonance Energy Transfer (LRET)-Based Real-Time Monitoring of Organic Cargo Release. ACS Macro Lett 2021; 10:1602-1608. [PMID: 35549142 DOI: 10.1021/acsmacrolett.1c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The real-time monitoring of specific guest release from nanoscale assemblies has been of great interest for the potential application in nanomedicine. Herein, we present a facile one-pot strategy to achieve a metal-chelated nanoscale platform that enables a highly efficient luminescence resonance energy transfer (LRET) for the monitoring of hydrophobic cargo release. To this end, Eu(III) as a lanthanide luminophore was employed to induce the metal-mediated self-assembly of chelating block copolymers in the presence of fluorescent Nile Blue (NB) as an organic cargo, which can then produce a nanoscale assembly containing a hybrid polyionic complex (HPIC) of Eu(III) and NB as LRET pairs. Exploiting this Eu(III)-chelated, NB-incorporated polymeric assembly as a luminescent platform that allows for the intermolecular distance-sensitive LRET, we further demonstrate that the facile monitoring of NB release from the carriers was made possible upon the addition of serum albumin as a protein reservoir for the released hydrophobic guest molecules.
Collapse
Affiliation(s)
- Wonjeong Yu
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yeojin Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yoojin Jang
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
12
|
Yang G, Liu Y, Teng J, Zhao CX. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring. BIOSENSORS 2021; 11:505. [PMID: 34940262 PMCID: PMC8699184 DOI: 10.3390/bios11120505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/11/2023]
Abstract
Fluorescence labelling is often used for tracking nanoparticles, providing a convenient assay for monitoring nanoparticle drug delivery. However, it is difficult to be quantitative, as many factors affect the fluorescence intensity. Förster resonance energy transfer (FRET), taking advantage of the energy transfer from a donor fluorophore to an acceptor fluorophore, provides a distance ruler to probe NP drug delivery. This article provides a review of different FRET approaches for the ratiometric monitoring of the self-assembly and formation of nanoparticles, their in vivo fate, integrity and drug release. We anticipate that the fundamental understanding gained from these ratiometric studies will offer new insights into the design of new nanoparticles with improved and better-controlled properties.
Collapse
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Park C, Lim JW, Park G, Kim HO, Lee S, Kwon YH, Kim SE, Yeom M, Na W, Song D, Kim E, Haam S. Kinetic stability modulation of polymeric nanoparticles for enhanced detection of influenza virus via penetration of viral fusion peptides. J Mater Chem B 2021; 9:9658-9669. [PMID: 34647566 DOI: 10.1039/d1tb01847g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.
Collapse
Affiliation(s)
- Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering College of Art, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yuri H Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | | | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Chen X, Liu T, Qin X, Nguyen QQ, Lee SK, Lee C, Ren Y, Chu J, Zhu G, Yoon TY, Park CY, Park H. Simultaneous Real-Time Three-Dimensional Localization and FRET Measurement of Two Distinct Particles. NANO LETTERS 2021; 21:7479-7485. [PMID: 34491760 DOI: 10.1021/acs.nanolett.1c01328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.
Collapse
Affiliation(s)
- Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Teng Liu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Quang Quan Nguyen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sang Kwon Lee
- Department of Biological Sciences, School of Life Sciences, UNIST, 44919, Ulsan, Republic of Korea
| | - Chanwoo Lee
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Yaguang Ren
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jun Chu
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, UNIST, 44919, Ulsan, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
15
|
Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021; 13:770. [PMID: 34064155 PMCID: PMC8224277 DOI: 10.3390/pharmaceutics13060770] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Richard A. Murray
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940 Leioa, Spain;
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Sergio E. Moya
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| |
Collapse
|
16
|
Song J, Jung H, You G, Mok H. Cancer-Cell-Derived Hybrid Vesicles from MCF-7 and HeLa Cells for Dual-Homotypic Targeting of Anticancer Drugs. Macromol Biosci 2021; 21:e2100067. [PMID: 33963822 DOI: 10.1002/mabi.202100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Here, as a proof of concept, hybrid vesicles (VEs) are developed from two types of cancer cells, MCF-7 and HeLa, for the dual targeting of the anticancer drug doxorubicin (Dox) to cancer cells via homotypic interactions. Hybrid VEs with a size of 181.8 ± 28.2 nm and surface charge of -27.8 ± 1.9 mV are successfully prepared by the fusion of MCF-7 and HeLa VEs, as demonstrated by the fluorescence resonance energy transfer assay. The hybrid VEs exhibit enhanced intracellular uptake both in MCF-7 and HeLa cells. Dox-encapsulated hybrid VEs (Dox-hybrid VEs) also exhibit promising anticancer and antiproliferative activities against MCF-7/multidrug-resistant cells and HeLa cells. In addition, compared to free Dox, the Dox-hybrid VEs exhibit low intracellular uptake and reduced cytotoxicity for RAW264.7 cells. Thus, hybrid VEs with dual-targeting activity toward two types of cancer cells may be useful for the specific targeting of anticancer drugs for improved anticancer effects with reduced nonspecific toxicity.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
17
|
Lebreton V, Legeay S, Saulnier P, Lagarce F. Specificity of pharmacokinetic modeling of nanomedicines. Drug Discov Today 2021; 26:2259-2268. [PMID: 33892140 DOI: 10.1016/j.drudis.2021.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 01/08/2023]
Abstract
Nanomedicines have been developed for more than four decades to optimize the pharmacokinetics (PK) of drugs, especially absorption, distribution, and stability in vivo. Unfortunately, only a few drug products have reached the market. One reason among others is the lack of proper PK modeling and evaluation, which impedes the optimization of these promising drug delivery systems. In this review, we discuss the specificity of nanomedicines and propose key parameters to take into account for future accurate PK evaluation of nanomedicine. We believe that this could help these innovative drug products to reach to market and change the fate of many diseases.
Collapse
Affiliation(s)
- Vincent Lebreton
- University of Angers, MINT Inserm 1066 CNRS 6021, Angers, France; CHU Angers, 4 Rue Larrey, 49033 Angers, France
| | - Samuel Legeay
- University of Angers, MINT Inserm 1066 CNRS 6021, Angers, France
| | - Patrick Saulnier
- University of Angers, MINT Inserm 1066 CNRS 6021, Angers, France; CHU Angers, 4 Rue Larrey, 49033 Angers, France
| | - Frederic Lagarce
- University of Angers, MINT Inserm 1066 CNRS 6021, Angers, France; CHU Angers, 4 Rue Larrey, 49033 Angers, France.
| |
Collapse
|
18
|
A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun 2021; 12:1670. [PMID: 33723267 PMCID: PMC7960722 DOI: 10.1038/s41467-021-21964-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Effective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair. Dysfunctional and disfiguring scars can result from aberrant wound repair. Here, the authors develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for scarless wound repair.
Collapse
|
19
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
20
|
Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, Pujals S, Albertazzi L. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip. ACS APPLIED BIO MATERIALS 2020; 4:669-681. [PMID: 33490884 PMCID: PMC7818510 DOI: 10.1021/acsabm.0c01209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.
Collapse
Affiliation(s)
- Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Adrianna Glinkowska Mares
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Marina Buzhor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Romen Rodriguez-Trujillo
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Josep Samitier Marti
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Carrer Martí i Franquès 1, 08028 Barcelona, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
21
|
Taemaitree F, Fortuni B, Koseki Y, Fron E, Rocha S, Hofkens J, Uji-I H, Inose T, Kasai H. FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery. NANOSCALE 2020; 12:16710-16715. [PMID: 32785392 DOI: 10.1039/d0nr04910g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to overcome unpredictable side-effects and increased cytotoxicity of conventional carrier-based anticancer drug delivery systems, several systems that consist exclusively of the pure drug (or prodrug) have been proposed. The behavior and dynamics of these systems after entering cancer cells are, however, still unknown, hindering their progress towards in vivo and clinical applications. Here, we report a comprehensive in cellulo study of carrier-free SN-38 nanoprodrugs (NPDs), previously developed by our group. The work shows the intracellular uptake, localization, and degradation of the NPDs via FRET microscopy. Accordingly, new FRET-NPDs were chemically synthesized and characterized. Prodrug to drug conversion and therapeutic efficiency were also validated. Our work provides crucial information for the application of NPDs as drug delivery systems and demonstrates their outstanding potential as next-generation anticancer nanomedicines.
Collapse
Affiliation(s)
- Farsai Taemaitree
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| | - Beatrice Fortuni
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| | - Eduard Fron
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Johan Hofkens
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium. and Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium. and Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 0010020, Japan
| | - Tomoko Inose
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 0010020, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| |
Collapse
|
22
|
Dong S, Chen X, Yang H, Tang X, Chen J, Lin X, Peng Y. Visualization photofragmentation-induced rhodamine B release from gold nanorod delivery system by combination two-photon luminescence imaging with correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960103. [PMID: 31919964 DOI: 10.1002/jbio.201960103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light-controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light-controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR-RB nanodelivery system was quantitated and visualized by using two-photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation-induced release of RB from AuNR-RB nanodelivery system was visualized in living MCF-7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.
Collapse
Affiliation(s)
- Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiu Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
23
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
24
|
Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11111760. [PMID: 31717427 PMCID: PMC6896159 DOI: 10.3390/cancers11111760] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced ovarian cancer is the most lethal gynecological cancer, with a high rate of chemoresistance and relapse. Photodynamic therapy offers new prospects for ovarian cancer treatment, but current photosensitizers lack tumor specificity, resulting in low efficacy and significant side-effects. In the present work, the clinically approved photosensitizer verteporfin was encapsulated within nanostructured lipid carriers (NLC) for targeted photodynamic therapy of ovarian cancer. Cellular uptake and phototoxicity of free verteporfin and NLC-verteporfin were studied in vitro in human ovarian cancer cell lines cultured in 2D and 3D-spheroids, and biodistribution and photodynamic therapy were evaluated in vivo in mice. Both molecules were internalized in ovarian cancer cells and strongly inhibited tumor cells viability when exposed to laser light only. In vivo biodistribution and pharmacokinetic studies evidenced a long circulation time of NLC associated with efficient tumor uptake. Administration of 2 mg.kg-1 free verteporfin induced severe phototoxic adverse effects leading to the death of 5 out of 8 mice. In contrast, laser light exposure of tumors after intravenous administration of NLC-verteporfin (8 mg.kg-1) significantly inhibited tumor growth without visible toxicity. NLC-verteporfin thus led to efficient verteporfin vectorization to the tumor site and protection from side-effects, providing promising therapeutic prospects for photodynamic therapy of cancer.
Collapse
|
25
|
Hibbitts A, Lucía A, Serrano-Sevilla I, De Matteis L, McArthur M, de la Fuente JM, Aínsa JA, Navarro F. Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA). PLoS One 2019; 14:e0220684. [PMID: 31479462 PMCID: PMC6719865 DOI: 10.1371/journal.pone.0220684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023] Open
Abstract
Bacterial resistance to antibiotics is widely regarded as a major public health concern with last resort MRSA treatments like vancomycin now encountering resistant strains. TFDs (Transcription Factor Decoys) are oligonucleotide copies of the DNA-binding sites for transcription factors. They bind to and sequester the targeted transcription factor, thus inhibiting transcription of many genes. By developing TFDs with sequences aimed at inhibiting transcription factors controlling the expression of highly conserved bacterial cell wall proteins, TFDs present as a potential method for inhibiting microbial growth without encountering typical resistance mechanisms. However, the efficient protection and delivery of the TFDs inside the bacterial cells is a critical step for the success of this technology. Therefore, in our study, specific TFDs against S. aureus were complexed with two different types of nanocarriers: cationic nanostructured lipid carriers (cNLCs) and chitosan-based nanoparticles (CS-NCs). These TFD-carrier nanocomplexes were characterized for size, zeta potential and TFD complexation or loading efficiency in a variety of buffers. In vitro activity of the nanocomplexes was examined alone and in combination with vancomycin, first in methicillin susceptible strains of S. aureus with the lead candidate advancing to tests against MRSA cultures. Results found that both cNLCs and chitosan-based carriers were adept at complexing and protecting TFDs in a range of physiological and microbiological buffers up to 72 hours. From initial testing, chitosan-TFD particles demonstrated no visible improvements in effect when co-administered with vancomycin. However, co-delivery of cNLC-TFD with vancomycin reduced the MIC of vancomycin by over 50% in MSSA and resulted in significant decreases in viability compared with vancomycin alone in MRSA cultures. Furthermore, these TFD-loaded particles demonstrated very low levels of cytotoxicity and haemolysis in vitro. To our knowledge, this is the first attempt at a combined antibiotic/oligonucleotide-TFD approach to combatting MRSA and, as such, highlights a new avenue of MRSA treatment combining traditional small molecules drugs and bacterial gene inhibition.
Collapse
Affiliation(s)
- Alan Hibbitts
- University Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology division, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Inés Serrano-Sevilla
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura De Matteis
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael McArthur
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom
| | - Jesús M. de la Fuente
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabrice Navarro
- University Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology division, Microfluidic Systems and Bioengineering Lab, Grenoble, France
- * E-mail:
| |
Collapse
|
26
|
Bhuckory S, Kays JC, Dennis AM. In Vivo Biosensing Using Resonance Energy Transfer. BIOSENSORS 2019; 9:E76. [PMID: 31163706 PMCID: PMC6628364 DOI: 10.3390/bios9020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Solution-phase and intracellular biosensing has substantially enhanced our understanding of molecular processes foundational to biology and pathology. Optical methods are favored because of the low cost of probes and instrumentation. While chromatographic methods are helpful, fluorescent biosensing further increases sensitivity and can be more effective in complex media. Resonance energy transfer (RET)-based sensors have been developed to use fluorescence, bioluminescence, or chemiluminescence (FRET, BRET, or CRET, respectively) as an energy donor, yielding changes in emission spectra, lifetime, or intensity in response to a molecular or environmental change. These methods hold great promise for expanding our understanding of molecular processes not just in solution and in vitro studies, but also in vivo, generating information about complex activities in a natural, organismal setting. In this review, we focus on dyes, fluorescent proteins, and nanoparticles used as energy transfer-based optical transducers in vivo in mice; there are examples of optical sensing using FRET, BRET, and in this mammalian model system. After a description of the energy transfer mechanisms and their contribution to in vivo imaging, we give a short perspective of RET-based in vivo sensors and the importance of imaging in the infrared for reduced tissue autofluorescence and improved sensitivity.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joshua C Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
28
|
Senapati S, Darling RJ, Loh D, Schneider IC, Wannemuehler MJ, Narasimhan B, Mallapragada SK. Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery of Antigen and Improve Vaccine Efficacy while Inducing Low Inflammation. ACS Biomater Sci Eng 2019; 5:1332-1342. [PMID: 33405651 PMCID: PMC8627116 DOI: 10.1021/acsbiomaterials.8b01591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the focus has shifted from traditional killed or live, attenuated vaccines toward subunit vaccines, improvements in vaccine safety have been confronted with low immunogenicity of protein antigens. This issue has been addressed by synthesizing and designing a wide variety of antigen carriers and adjuvants, such as Toll-like receptor agonists (e.g., MPLA, CpG). Studies have focused on optimizing adjuvants for improved cellular trafficking, cytosolic availability, and improved antigen presentation. In this work, we describe the design of novel amphiphilic pentablock copolymer (PBC) adjuvants that exhibit high biocompatibility and reversible pH- and temperature-sensitive micelle formation. We demonstrate improved humoral immunity in mice in response to single-dose immunization with PBC micelle adjuvants compared with soluble antigen alone. With the motive of exploring the mechanism of action of these PBC micelles, we studied intracellular trafficking of these PBC micelles with a model antigen and demonstrated that the PBC micelles associate with the antigen and enhance its cytosolic delivery to antigen-presenting cells. We posit that these PBC micelles operate via immune-enhancing mechanisms that are different from that of traditional Toll-like receptor activating adjuvants. The metabolic profile of antigen-presenting cells stimulated with traditional adjuvants and the PBC micelles also suggests distinct mechanisms of action. A key finding from this study is the low production of nitric oxide and reactive oxygen species by antigen-presenting cells when stimulated by PBC micelle adjuvants in sharp contrast to TLR adjuvants. Together, these studies provide a basis for rationally developing novel vaccine adjuvants that are safe, that induce low inflammation, and that can efficiently deliver antigen to the cytosol.
Collapse
Affiliation(s)
- Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Ross J. Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Darren Loh
- Department of Chemical and Biological Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
29
|
Laghezza Masci V, Taddei A, Courant T, Tezgel O, Navarro F, Giorgi F, Mariolle D, Fausto A, Texier I. Characterization of Collagen/Lipid Nanoparticle–Curcumin Cryostructurates for Wound Healing Applications. Macromol Biosci 2019; 19:e1800446. [DOI: 10.1002/mabi.201800446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Anna‐Rita Taddei
- Section of Electron MicroscopyTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Thomas Courant
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Ozgül Tezgel
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Fabrice Navarro
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Franco Giorgi
- University of Pisa Lungarno Antonio Pacinotti, 43 56126 Pisa Italy
| | - Denis Mariolle
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Anna‐Maria Fausto
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Isabelle Texier
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| |
Collapse
|
30
|
Li Y, Si J, Fan H, Ye X. Effect of pH and content of reduction‐sensitive copolymer on the guest exchange kinetics of micelles. JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS 2018; 56:1636-1644. [DOI: 10.1002/polb.24754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/07/2018] [Indexed: 01/06/2025]
Abstract
ABSTRACTThe micelles formed by reduction‐sensitive amphiphilic copolymer have emerged as promising drug nanocarriers due to the controlled drug release and effective anticancer activity triggered by the reducing stimulation. However, the effect of pH on the stability and guest exchange of the micelles formed by reduction‐sensitive copolymer have not been systemically investigated. Herein, the micelles formed by a reduction‐sensitive copolymer poly(ε‐caprolactone)‐b‐poly[oligo(ethylene glycol) methyl ether methacrylate] (PCL–SS–POEGA) with a single disulfide group at different pH values loaded with dyes 3,3′‐dioctadecyloxacarbocyanine perchlorate/1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiO/DiI) were prepared through the precipitation‐dialysis method. In addition, mixed micelles formed by different contents of reduction‐sensitive and reduction‐insensitive copolymers encapsulated with DiO/DiI at pH 7.5 were also prepared by the similar approach. The effects of pH and the content of reduction‐sensitive copolymer on guest exchange of these micelles were studied by the fluorescence resonance energy transfer method. Results show that the pH value in the environment has great influence on the guest exchange rate of reduction‐sensitive micelles in the presence of 10 mM dithiothreitol (DTT) and slight effect on that in the absence of DTT. Under a reducing environment, the guest exchange rate of the micelles containing various contents of disulfide‐linked copolymer increases with the increasing content of PCL–SS–POEGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1636–1644
Collapse
Affiliation(s)
- Yixia Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Jianhao Si
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Haiyan Fan
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaodong Ye
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
31
|
Bouchaala R, Richert L, Anton N, Vandamme TF, Djabi S, Mély Y, Klymchenko AS. Quantifying Release from Lipid Nanocarriers by Fluorescence Correlation Spectroscopy. ACS OMEGA 2018; 3:14333-14340. [PMID: 30411065 PMCID: PMC6210065 DOI: 10.1021/acsomega.8b01488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the release of drugs and contrast agents from nanocarriers is fundamental in the development of new effective nanomedicines. However, the commonly used method based on dialysis frequently fails to quantify the release of molecules poorly soluble in water, and it is not well-suited for in situ measurements in biological media. Here, we have developed a new methodology for quantifying the release of fluorescent molecules from lipid nanocarriers (LNCs) using fluorescence correlation spectroscopy (FCS). LNCs based on nanoemulsion droplets, encapsulating the hydrophobic Nile red derivative NR668 as a model cargo, were used. Our studies revealed that the standard deviation of fluorescence fluctuations in FCS measurements depends linearly on the dye loading in the nanocarriers, and it is insensitive to the presence of less-bright molecular emissive species in solution. In sharp contrast, classical FCS parameters, such as the number and the brightness of emissive species, are strongly influenced by the fluorescence of molecular species in solution. Therefore, we propose to use the standard deviation of fluorescence fluctuations for the quantitative analysis of dye release from nanocarriers, which is unaffected by the "parasite" fluorescence of the released dyes or the auto-fluorescence of the medium. Using this method, we found that LNCs remain intact in water, whereas in serum medium, they release their content in a temperature-dependent manner. At 37 °C, the release was relatively slow reaching 50% only after 6 h of incubation. The results are corroborated by qualitative observations based on Förster resonance energy transfer between two different encapsulated dyes. The developed method is simple because it is only based on the standard deviation of fluorescence fluctuations and, in principle, can be applied to nanocarriers of different types.
Collapse
Affiliation(s)
- Redouane Bouchaala
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
- Laboratory
of Photonic Systems and Nonlinear Optics, Institute of Optics and
Fine Mechanics, University of Setif 1, 19000 Setif, Algeria
| | - Ludovic Richert
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| | - Nicolas Anton
- CNRS
UMR 7199, Laboratoire de Conception et Application de Molécules
Bioactives, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Thierry F. Vandamme
- CNRS
UMR 7199, Laboratoire de Conception et Application de Molécules
Bioactives, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Smail Djabi
- Laboratory
of Photonic Systems and Nonlinear Optics, Institute of Optics and
Fine Mechanics, University of Setif 1, 19000 Setif, Algeria
| | - Yves Mély
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| | - Andrey S. Klymchenko
- CNRS
UMR 7021, Laboratoire de Bioimagerie et Pathologies, University of
Strasbourg, 67401 Illkirch Cedex, France
| |
Collapse
|
32
|
Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. NANOMATERIALS 2018; 8:nano8100846. [PMID: 30336593 PMCID: PMC6215305 DOI: 10.3390/nano8100846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Sub-micron o/w emulsions coated with chitosan have been used for drug delivery, quorum sensing inhibition, and vaccine development. To study interactions with biological systems, nanocapsules have been fluorescently labelled in previous works, but it is often difficult to distinguish the released label from intact nanocapsules. In this study, we present advanced-labelling strategies based on Förster Resonance Energy Transfer (FRET) measurements for chitosan-coated nanocapsules and investigate their dissolution and degradation. We used FRET measurements of nanocapsules loaded with equimolar concentrations of two fluorescent dyes in their oily core and correlated them with dynamic light scattering (DLS) count rate measurement and absorbance measurements during their disintegration by dissolution. Using count rate measurements, we also investigated the enzymatic degradation of nanocapsules using pancreatin and how protein corona formation influences their degradation. Of note, nanocapsules dissolved in ethanol, while FRET decreased simultaneously with count rate, and absorbance was caused by nanocapsule turbidity, indicating increased distance between dye molecules after their release. Nanocapsules were degradable by pancreatin in a dose-dependent manner, and showed a delayed enzymatic degradation after protein corona formation. We present here novel labelling strategies for nanocapsules that allow us to judge their status and an in vitro method to study nanocapsule degradation and the influence of surface characteristics.
Collapse
Affiliation(s)
- Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bruno Moerschbacher
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
33
|
Tang Y, Wu S, Lin J, Cheng L, Zhou J, Xie J, Huang K, Wang X, Yu Y, Chen Z, Liao G, Li C. Nanoparticles Targeted against Cryptococcal Pneumonia by Interactions between Chitosan and Its Peptide Ligand. NANO LETTERS 2018; 18:6207-6213. [PMID: 30260652 DOI: 10.1021/acs.nanolett.8b02229] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inspired by the fact that chitosan is a representative constituent of the ectocellular structure of Cryptococcus neoformans and a typical biomaterial for improving drug oral absorption, we designed an elegant and efficient C. neoformans-targeted drug delivery system via oral administration. A chitosan-binding peptide screened by phage display was used as the targeting moiety, followed by conjugation to the surface of poly(lactic- co-glycolic acid) nanoparticles as the drug carrier, which was then incubated with free chitosan. The noncovalently bound chitosan adheres to mucus layers and significantly enhances penetration of nanoparticles through the oral absorption barrier into circulation and then re-exposed the targeting ligand for later recognition of the fungal pathogen at the site of infection. After loading itraconazole as a model drug, our drug delivery system remarkably cleared lung infections of C. neoformans and increased survival of model mice. Currently, targeted drug delivery is mainly performed intravenously; however, the system described in our study may provide a universal means to facilitate drug targeting to specific tissues and disease sites by oral administration and may be especially powerful in the fight against increasingly severe fungal infections.
Collapse
Affiliation(s)
- Yixuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Shuang Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Jiaqi Lin
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Liting Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Jing Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Jing Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Kexin Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Xiaoyou Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Yang Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Zhangbao Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Guojian Liao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| | - Chong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
34
|
Tucci ST, Seo JW, Kakwere H, Kheirolomoom A, Ingham ES, Mahakian LM, Tam S, Tumbale S, Baikoghli M, Cheng RH, Ferrara KW. A Scalable Method for Squalenoylation and Assembly of Multifunctional 64Cu-Labeled Squalenoylated Gemcitabine Nanoparticles. Nanotheranostics 2018; 2:387-402. [PMID: 30324084 PMCID: PMC6170330 DOI: 10.7150/ntno.26969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/02/2018] [Indexed: 12/15/2022] Open
Abstract
Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre) pancreatic cancer cell lines. A 64Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional 64Cu-SqNOTA-SqGem NP.
Collapse
Affiliation(s)
- Samantha T Tucci
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Jai W Seo
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Hamilton Kakwere
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | | | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Sarah Tam
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Spencer Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, 95616, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, 95616, USA
| | | |
Collapse
|
35
|
Li D, Zhuang J, Yang Y, Wang D, Yang J, He H, Fan W, Banerjee A, Lu Y, Wu W, Gan L, Qi J. Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids Surf B Biointerfaces 2018; 171:224-232. [PMID: 30036789 DOI: 10.1016/j.colsurfb.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
The aim of this work was to elucidate the influence of liposome characteristics on the transcellular process by in vitro studies that would enable designing more efficient oral formulations. Various liposomes with different properties were prepared, including 100-500 nm, anionic, cationic and PEGylated liposomes. All liposomes were labeled by fluorescence resonance energy transfer (FRET) probes to evaluate their integrity in cellular uptake and transport. The FRET fluorescent intensity is proportional to the amount of intact liposomes, which was used to calculate the amount of intact liposomes in cellular uptake and transport. The liposomal structures were found to lose their integrity during or after uptake and only about 20% intact liposomes were detected in cells. However, more cationic liposomes were transported integrally across cell monolayer and accounted for 40.49% of total transport by triple culture models of Caco-2/HT29-MTX/Raji B. These results suggest that liposomes could improve cellular uptake and transport of the payloads significantly, but only a small fraction of liposomes are transported integrally across epithelial monolayer. The study is therefore helpful to rationally fabricate more efficient oral liposomes for poorly water-soluble drugs or biomacromolecules.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jie Zhuang
- School of Pharmacy, Institute of Nanotechnology and Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yinqian Yang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Dandan Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jinlong Yang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wufa Fan
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Amrita Banerjee
- School of Pharmacy, Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Li Gan
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
36
|
Lin W, Yin L, Sun T, Wang T, Xie Z, Gu J, Jing X. The Effect of Molecular Structure on Cytotoxicity and Antitumor Activity of PEGylated Nanomedicines. Biomacromolecules 2018; 19:1625-1634. [PMID: 29608275 DOI: 10.1021/acs.biomac.8b00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fundamental studies on the cellular uptake and drug release of PEGylated nanomedicines are beneficial to understand their fate in vivo and construct ideal nanoparticle formulations. In this work, the detailed metabolic process of PEGylated doxorubicin (Dox) nanomedicines were investigated via confocal laser scanning microscopy (CLSM), flow cytometry (FCM), cytotoxicity test, fluorescence imaging in vivo (FLIV) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Among them, only LC-MS/MS could accurately determine the content of PEGylated Dox and Dox in vitro and in vivo. To the best of our knowledge, this was the first time the PEGylated Dox and released Dox were simultaneously quantified. The interplay of molecular structures, cellular uptake, drug release, and antitumor effect was well characterized. PEG with high molecular weight impeded the cellular uptake of nanoparticles, and the acid-labile hydrazone bond between Dox and PEG promoted Dox release significantly. Cellular uptake and drug release play decisive roles in cytotoxicity and antitumor effect, as evidenced by LC-MS/MS. We emphasized that LC-MS/MS would be a practicable method to quantify PEGylated drugs without complex tags, which could be more in-depth to understand the interaction between PEGylated nanomedicines and their antitumor efficacy.
Collapse
Affiliation(s)
- Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Tingting Wang
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China.,Clinical Pharmacology Center, Research Institute of Translational Medicine , The First Hospital of Jilin University , Dongminzhu Street , Changchun 130061 , People's Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun, Jilin 130022 , People's Republic of China
| |
Collapse
|
37
|
Dai T, Jiang K, Lu W. Liposomes and lipid disks traverse the BBB and BBTB as intact forms as revealed by two-step Förster resonance energy transfer imaging. Acta Pharm Sin B 2018; 8:261-271. [PMID: 29719787 PMCID: PMC5925398 DOI: 10.1016/j.apsb.2018.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB) prevent drug and nano-drug delivery systems from entering the brain. However, ligand-mediated nano-drug delivery systems have significantly enhanced the therapeutic treatment of glioma. In this study we investigated the mechanism especially the integrity of liposomes and lipid disks while traversing the BBB and BBTB both in vitro and in vivo. Fluorophores (DiO, DiI and DiD) were loaded into liposomes and lipid disks to form Förster resonance energy transfer (FRET) nano-drug delivery systems. Using brain capillary endothelial cells as a BBB model, we show that liposomes and disks are present in the cytoplasm as their intact forms and traverse the BBB with a ratio of 0.68‰ and 1.67‰, respectively. Using human umbilical vein endothelial cells as BBTB model, liposomes and disks remained intact and traversed the BBTB with a ratio of 2.31‰ and 8.32‰ at 3 h. Ex vivo imaging and immunohistochemical results revealed that liposomes and disks could traverse the BBB and BBTB in vivo as intact forms. In conclusion, these observations explain in part the mechanism by which nano-drug delivery systems increase the therapeutic treatment of glioma.
Collapse
Affiliation(s)
- Tongcheng Dai
- Department of Pharmaceutics, School of Pharmacy, Fudan University, and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, & State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kuan Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, & State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, & State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Acadimic Health System, Minghang Hospital, Fudan University, Shanghai 201199, & Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
- Corresponding author at: Department of Pharmaceutics, School of Pharmacy, Fudan University, and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China. Tel.: +86 21 51980006; fax: +86 21 5288 0090.
| |
Collapse
|
38
|
Cayre F, Mura S, Andreiuk B, Sobot D, Gouazou S, Desmaële D, Klymchenko AS, Couvreur P. In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles. Adv Healthc Mater 2018; 7. [PMID: 29195020 DOI: 10.1002/adhm.201700830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is used here for the first time to monitor the in vivo fate of nanoparticles made of the squalene-gemcitabine prodrug and two novel derivatives of squalene with the cyanine dyes 5.5 and 7.5, which behave as efficient FRET pair in the NIR region. Following intravenous administration, nanoparticles initially accumulate in the liver, then they show loss of their integrity within 2 h and clearance of the squalene bioconjugates is observed within 24 h. Such awareness is a key prerequisite before introduction into clinical settings.
Collapse
Affiliation(s)
- Fanny Cayre
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Simona Mura
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
- Organic Chemistry Department; Chemistry Faculty; Taras Shevchenko National University of Kyiv; 01601 Kyiv Ukraine
| | - Dunja Sobot
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Sandrine Gouazou
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Didier Desmaële
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie; UMR CNRS 7213; University of Strasbourg; 74 route du Rhin 67401 Illkirch Cedex France
| | - Patrick Couvreur
- Institut Galien Paris-Sud; UMR 8612; CNRS; Univ Paris-Sud; Université Paris-Saclay; Faculté de Pharmacie; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry Cedex France
| |
Collapse
|
39
|
Hu D, Sheng Z, Zhu M, Wang X, Yan F, Liu C, Song L, Qian M, Liu X, Zheng H. Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for In Situ Visualization of Cancer Photothermal Therapy. Am J Cancer Res 2018; 8:410-422. [PMID: 29290817 PMCID: PMC5743557 DOI: 10.7150/thno.22226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/08/2017] [Indexed: 11/05/2022] Open
Abstract
The visualization of the treatment process in situ could facilitate to accurately monitor cancer photothermal therapy (PTT), and dramatically decrease the risk of thermal damage to normal cells and tissues, which represents a major challenge for cancer precision therapy. Herein, we prepare theranostic nanoprobes (NPs) for Förster resonance energy transfer (FRET)-based dual-modal imaging-guided cancer PTT, and clear visualization of the therapeutic process. The FRET-based theranostic NPs exhibit high FRET efficiency (88.2%), good colloidal stability, and tumor-targeting ability. Tumor tissue and surrounding blood vessels are visualized clearly by FRET-based NIR fluorescence imaging with a high signal-to-background ratio (14.5) and photoacoustic imaging with an excellent resolution at 24 h post injection of NPs. Under the guidance of dual-modal imaging, the NPs-induced photothermal effect selectively destructs cancer cells, simultaneously decreasing the FRET efficiency and leading to fluorescence and photoacoustic signal changes. The sensitive self-feedback process enables the in situ visualization of therapeutic process and precision guidance of in vivo cancer PTT. A high therapeutic efficacy and minimum side effects are achieved in C6 tumor-bearing nude mice, holding great promise for precision therapy and cancer theranostics.
Collapse
|
40
|
Feiner-Gracia N, Buzhor M, Fuentes E, Pujals S, Amir RJ, Albertazzi L. Micellar Stability in Biological Media Dictates Internalization in Living Cells. J Am Chem Soc 2017; 139:16677-16687. [PMID: 29076736 DOI: 10.1021/jacs.7b08351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamic nature of polymeric assemblies makes their stability in biological media a crucial parameter for their potential use as drug delivery systems in vivo. Therefore, it is essential to study and understand the behavior of self-assembled nanocarriers under conditions that will be encountered in vivo such as extreme dilutions and interactions with blood proteins and cells. Herein, using a combination of fluorescence spectroscopy and microscopy, we studied four amphiphilic PEG-dendron hybrids and their self-assembled micelles in order to determine their structure-stability relations. The high molecular precision of the dendritic block enabled us to systematically tune the hydrophobicity and stability of the assembled micelles. Using micelles that change their fluorescent properties upon disassembly, we observed that serum proteins bind to and interact with the polymeric amphiphiles in both their assembled and monomeric states. These interactions strongly affected the stability and enzymatic degradation of the micelles. Finally, using spectrally resolved confocal imaging, we determined the relations between the stability of the polymeric assemblies in biological media and their cell entry. Our results highlight the important interplay between molecular structure, micellar stability, and cell internalization pathways, pinpointing the high sensitivity of stability-activity relations to minor structural changes and the crucial role that these relations play in designing effective polymeric nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Marina Buzhor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University , Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Edgar Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Sílvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University , Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University , Tel-Aviv 6997801, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel-Aviv University , Tel-Aviv 6997801, Israel
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Baldiri Reixac 15-21, 08028 Barcelona, Spain
| |
Collapse
|
41
|
Joseph J, Baumann KN, Koehler P, Zuehlsdorff TJ, Cole DJ, Weber J, Bohndiek SE, Hernández-Ainsa S. Distance dependent photoacoustics revealed through DNA nanostructures. NANOSCALE 2017; 9:16193-16199. [PMID: 29043366 DOI: 10.1039/c7nr05353c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular rulers that rely on the Förster resonance energy transfer (FRET) mechanism are widely used to investigate dynamic molecular processes that occur on the nanometer scale. However, the capabilities of these fluorescence molecular rulers are fundamentally limited to shallow imaging depths by light scattering in biological samples. Photoacoustic tomography (PAT) has recently emerged as a high resolution modality for in vivo imaging, coupling optical excitation with ultrasound detection. In this paper, we report the capability of PAT to probe distance-dependent FRET at centimeter depths. Using DNA nanotechnology we created several nanostructures with precisely positioned fluorophore-quencher pairs over a range of nanoscale separation distances. PAT of the DNA nanostructures showed distance-dependent photoacoustic signal enhancement and demonstrated the ability of PAT to reveal the FRET process deep within tissue mimicking phantoms. Further, we experimentally validated these DNA nanostructures as a novel and biocompatible strategy to augment the intrinsic photoacoustic signal generation capabilities of small molecule fluorescent dyes.
Collapse
Affiliation(s)
- James Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fan H, Li Y, Yang J, Ye X. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. J Phys Chem B 2017; 121:9708-9717. [PMID: 28925709 DOI: 10.1021/acs.jpcb.7b06165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Haiyan Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yixia Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jinxian Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
43
|
Racine L, Guliyeva A, Wang I, Larreta-Garde V, Auzély-Velty R, Texier I. Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Racine
- University of Grenoble Alpes; F-38000 Grenoble France
- CEA LETI MlNATEC Campus; Grenoble F-38054 France
- University of Grenoble Alpes; CERMAV-CNRS; Grenoble F-38000 France
| | - Aynur Guliyeva
- University of Grenoble Alpes; CERMAV-CNRS; Grenoble F-38000 France
| | - Irène Wang
- University of Grenoble Alpes; CNRS, LIPhy; Grenoble F-38000 France
| | - Véronique Larreta-Garde
- Laboratoire ERRMECe UFR Sciences et Techniques Université de Cergy-Pontoise; 2 avenue Adolphe Chauvin Pontoise Cedex BP222-95302 France
| | | | - Isabelle Texier
- University of Grenoble Alpes; F-38000 Grenoble France
- CEA LETI MlNATEC Campus; Grenoble F-38054 France
| |
Collapse
|
44
|
Bouchaala R, Anton N, Anton H, Vandamme T, Vermot J, Smail D, Mély Y, Klymchenko AS. Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. Colloids Surf B Biointerfaces 2017; 156:414-421. [PMID: 28551576 DOI: 10.1016/j.colsurfb.2017.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022]
Abstract
Light is an attractive trigger for release of active molecules from nanocarriers in biological systems. Here, we describe a phenomenon of light-induced release of a fluorescent dye from lipid nano-droplets under visible light conditions. Using auto-emulsification process we prepared nanoemulsion droplets of 32nm size encapsulating the hydrophobic analogue of Nile Red, NR668. While these nano-droplets cannot spontaneously enter the cells on the time scale of hours, after illumination for 30s under the microscope at the wavelength of NR668 absorption (535nm), the dye showed fast accumulation inside the cells. The same phenomenon was observed in zebrafish, where nano-droplets initially staining the blood circulation were released into endothelial cells and tissues after illumination. Fluorescence correlation spectroscopy revealed that laser illumination at relatively low power (60mW/cm2) could trigger the release of the dye into recipient media, such as 10% serum or blank lipid nanocarriers. The photo-release can be inhibited by deoxygenation with sodium sulfite, suggesting that at least in part the release could be related to a photochemical process involving oxygen, though a photo-thermal effect could also take place. Finally, we showed that illumination of NR668 can provoke the release into the cells of another highly hydrophobic dye co-encapsulated into the lipid nanocarriers. These results suggest dye-loaded lipid nano-droplets as a prospective platform for preparation of light-triggered nanocarriers of active molecules.
Collapse
Affiliation(s)
- Redouane Bouchaala
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France; Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Nicolas Anton
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Halina Anton
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Julien Vermot
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U964, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 ILLKIRCH, France
| | - Djabi Smail
- Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Yves Mély
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
45
|
Roger E, Gimel JC, Bensley C, Klymchenko AS, Benoit JP. Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model. J Control Release 2017; 253:11-18. [PMID: 28274740 DOI: 10.1016/j.jconrel.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Lipid nanocapsules (LNCs) have demonstrated great potential for the oral delivery of drugs having very limited oral bioavailability (BCS class II, III and IV molecules). It has been shown previously that orally-administered LNCs can permeate through mucus, increase drug absorption by the epithelial tissue, and finally, increase drug bioavailability. However, even if transport mechanisms through mucus and the intestinal barrier have already been clarified, the preservation of particle integrity is still not known. The aim of the present work is to study in vitro the fate of LNCs after their transportation across an intestinal epithelium model (Caco-2 cell model). For this, two complementary techniques were employed: Förster Resonance Energy Transfer (FRET) and Nanoparticle Tracking Analysis (NTA). Results showed, after 2h, the presence of nanoparticles in the basolateral side of the cell layer and a measurable FRET signal. This provides very good evidence for the transcellular intact crossing of the nanocarriers.
Collapse
Affiliation(s)
- Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France.
| | - Jean-Christophe Gimel
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| | - Conor Bensley
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| | - Andrey S Klymchenko
- University of Strasbourg, CNRS UMR7213, Laboratoire de Biophotonique et Pharmacologie, 74 Route du Rhin, 67401 Illkirch, Cedex, France
| | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, 4 rue Larrey, 49933 Angers, France
| |
Collapse
|
46
|
Chauvierre C, Letourneur D. The European project NanoAthero to fight cardiovascular diseases using nanotechnologies. Nanomedicine (Lond) 2016; 10:3391-400. [PMID: 26582278 DOI: 10.2217/nnm.15.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the main causes of death in the world. Nanosystems with contrast agents or drugs appear as promising tools for early detection and treatments. NanoAthero, a large-scale 5-year project funded by the European Union FP7 gathers 16 partners from ten different countries to demonstrate the benefit of the use of nanoparticle technologies. Through the design and characterization of nanosystems, preclinical and clinical validations, toxicology, industrial development and production in good manufacturing practice forms, several studies are underway for plaque and stroke both for imaging and treatment. A clinical study was already completed using a good manufacturing practice liposomal formulation in patients with carotid atheroma. NanoAthero is a unique opportunity to open new strategies for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Cédric Chauvierre
- Inserm, U1148, Department of Cardiovascular Bio-Engineering, X Bichat Hospital, University Paris Diderot, 46 rue H Huchard, 75018 Paris, France.,Institut Galilée, University Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - Didier Letourneur
- Inserm, U1148, Department of Cardiovascular Bio-Engineering, X Bichat Hospital, University Paris Diderot, 46 rue H Huchard, 75018 Paris, France.,Institut Galilée, University Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| |
Collapse
|
47
|
3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy. Sci Rep 2016; 6:29936. [PMID: 27435424 PMCID: PMC4951682 DOI: 10.1038/srep29936] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.
Collapse
|
48
|
Bouchaala R, Mercier L, Andreiuk B, Mély Y, Vandamme T, Anton N, Goetz JG, Klymchenko AS. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J Control Release 2016; 236:57-67. [PMID: 27327767 PMCID: PMC4968657 DOI: 10.1016/j.jconrel.2016.06.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Lipid nanocarriers are considered as promising candidates for drug delivery and cancer targeting because of their low toxicity, biodegradability and capacity to encapsulate drugs and/or contrasting agents. However, their biomedical applications are currently limited because of a poor understanding of their integrity in vivo. To address this problem, we report on fluorescent nano-emulsion droplets of 100 nm size encapsulating lipophilic near-infrared cyanine 5.5 and 7.5 dyes with a help of bulky hydrophobic counterion tetraphenylborate. Excellent brightness and efficient Förster Resonance Energy Transfer (FRET) inside lipid NCs enabled for the first time quantitative fluorescence ratiometric imaging of NCs integrity directly in the blood circulation, liver and tumor xenografts of living mice using a whole-animal imaging set-up. This unique methodology revealed that the integrity of our FRET NCs in the blood circulation of healthy mice is preserved at 93% at 6 h of post-administration, while it drops to 66% in the liver (half-life is 8.2 h). Moreover, these NCs show fast and efficient accumulation in tumors, where they enter in nearly intact form (77% integrity at 2 h) before losing their integrity to 40% at 6 h (half-life is 4.4 h). Thus, we propose a simple and robust methodology based on ratiometric FRET imaging in vivo to evaluate quantitatively nanocarrier integrity in small animals. We also demonstrate that nano-emulsion droplets are remarkably stable nano-objects that remain nearly intact in the blood circulation and release their content mainly after entering tumors.
Collapse
Affiliation(s)
- Redouane Bouchaala
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France; Laboratory of Photonic Systems and Nonlinear Optics, Institute of Optics and Fine Mechanics, University of Setif 1, 19000, Algeria
| | - Luc Mercier
- MN3T, Inserm U1109, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, F-67200, France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France; Organic Chemistry Department, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Nicolas Anton
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Jacky G Goetz
- MN3T, Inserm U1109, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, F-67200, France.
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
49
|
Demonstration of the interactions between aromatic compound-loaded lipid nanocapsules and Acinetobacter baumannii bacterial membrane. Int J Pharm 2016; 506:280-8. [DOI: 10.1016/j.ijpharm.2016.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/19/2016] [Indexed: 11/22/2022]
|
50
|
Nguyen HTP, Allard-Vannier E, Gaillard C, Eddaoudi I, Miloudi L, Soucé M, Chourpa I, Munnier E. On the interaction of alginate-based core-shell nanocarriers with keratinocytes in vitro. Colloids Surf B Biointerfaces 2016; 142:272-280. [PMID: 26962764 DOI: 10.1016/j.colsurfb.2016.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/30/2023]
Abstract
Calcium alginate nanocarriers (CaANCs) were developed as a potential tool for delivery of hydrophobic active molecules such as pharmaceutical and cosmetic active ingredients. In this study, we focused on interactions between CaANCs and keratinocytes in culture and examined toxicity, internalization and drug release. Prior to cellular interactions, cryogenic transmission electron microscopy images showed that CaANCs appear as regular, spherical and dense particles, giving evidence of the surface gelation of CaANCs. Their size, around 200nm, was stable under tested conditions (temperature, culture media, presence of serum and presence of encapsulated dye), and their toxicity on keratinocytes was very low. Flow cytometry assays showed that CaANCs are internalized into keratinocytes by endocytosis with a predominant implication of the caveolae-mediated route. Förster resonance energy transfer (FRET) demonstrated that after a 2h contact, the release of CaANC contents in the cytoplasm of keratinocytes was almost complete. The endocytosis of CaANCs by a lysosome-free pathway, and the rapid release of their contents inside keratinocytes, will allow vectorized molecules to fully exhibit their pharmacological or cosmetic activity.
Collapse
Affiliation(s)
- Hoang Truc Phuong Nguyen
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Emilie Allard-Vannier
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Cédric Gaillard
- U.R. 1268 BIA Biopolymères Interactions Assemblages INRA, rue de la Géraudière, 44316 Nantes, France
| | - Imane Eddaoudi
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Lynda Miloudi
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Martin Soucé
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Igor Chourpa
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- Université François Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|