1
|
Goswami R, Nagaraj H, Cicek YA, Nasim N, Mirza SS, Hassan MA, Mhaske R, Saravanan DM, Noonan C, Pham E, Mager J, Rotello VM. Polymer-siRNA nanovectors for treating lung inflammation. J Control Release 2025; 378:1092-1102. [PMID: 39730067 PMCID: PMC11830555 DOI: 10.1016/j.jconrel.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects. siRNA is a promising therapeutic modality for immune regulation. However, effective delivery of siRNA is challenged by issues related to cellular uptake and localization within tissues. This study investigates a series of guanidinium-functionalized polymers (Cn-Guan) designed to explore the effects of amphiphilicity on siRNA complexation and efficiency in vitro and in vivo. Nine polymers with varying side chain lengths (C3, C5, C7) and molecular weights (17 kDa, 30 kDa, 65 kDa) were synthesized, forming polyplexes with siRNA. Characterization revealed that C7-Guan/si_scr polymers exhibited the smallest polyplex sizes and the tightest complexation with siRNA. In vitro studies showed that 65 kDa polymers had the highest gene knockdown efficiency, with C3 and C5-Guan/si_TNF-α achieving ∼70 % knockdown, while C7-Guan/si_TNF-α achieved ∼30 %. In vivo, C7-Guan/Cy5-siRNA demonstrated the highest lung accumulation, and all polymers showed ∼70 % TNF-α knockdown with a low siRNA dosage (0.14 mg/kg) in a murine lung inflammation model. C7-Guan polymers, despite lower in vitro efficiency, were quite effective in vivo, potentially due to enhanced serum stability. These findings demonstrate that Cn-Guan/siRNA polyplexes are effective and safe for attenuating pulmonary inflammation and provide important insights for the development of future siRNA delivery vectors for lung disease treatment.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Nourina Nasim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rukmini Mhaske
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Deepthika M Saravanan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Cedar Noonan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Edward Pham
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
Jeon T, Luther DC, Goswami R, Bell C, Nagaraj H, Anil Cicek Y, Huang R, Mas-Rosario JA, Elia JL, Im J, Lee YW, Liu Y, Scaletti F, Farkas ME, Mager J, Rotello VM. Engineered Polymer-siRNA Polyplexes Provide Effective Treatment of Lung Inflammation. ACS NANO 2023; 17:4315-4326. [PMID: 36802503 PMCID: PMC10627429 DOI: 10.1021/acsnano.2c08690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Javier A. Mas-Rosario
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - James L. Elia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Michelle E. Farkas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
4
|
Zhang H, Ding F, Zhu Z, Sun Q, Yang C. Engineered ionizable lipid nanoparticles mediated efficient siRNA delivery to macrophages for anti-inflammatory treatment of acute liver injury. Int J Pharm 2023; 631:122489. [PMID: 36521639 DOI: 10.1016/j.ijpharm.2022.122489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Small interfering RNA (siRNA) mediating specific gene silencing provides a promising strategy for anti-inflammatory therapy. However, the development of potent carriers for anti-inflammatory siRNA to macrophages remains challenging. With the aim of realizing potent delivery of siRNA to macrophages, we engineered ionizable lipid nanoparticles (LNPs) with the key component of synthetic lipid-like materials. By varying the amine molecules in the structure of synthetic lipid-like materials, a potent LNP (1O14-LNP) was identified, which exhibited efficient transfection of macrophages by facilitating efficient internalization and endosomal escape. The 1O14-LNP successfully delivered anti-inflammatory siRNA against interleukin-1β (siIL-1β) with more than 90% downregulation of IL-1β expression in LPS-activated macrophages. From in vivo studies, systemic administrated 1O14-LNP/siRNA mainly distributed in liver and efficiently captured by hepatic macrophages without notable sign of toxicity. Furthermore, LPS/d-GalN-induced acute liver injury model treated with 1O14-LNP/siIL-1β resulted in significant suppression of IL-1β expression and amelioration of liver tissue damage. These results demonstrate that the engineered ionizable LNP provides a powerful tool for siRNA delivery to macrophages and that the strategy of silencing of pro-inflammatory cytokines holds great potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
5
|
De Santi C, Nally FK, Afzal R, Duffy CP, Fitzsimons S, Annett SL, Robson T, Dowling JK, Cryan SA, McCoy CE. Enhancing arginase 2 expression using target site blockers as a strategy to modulate macrophage phenotype. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:643-655. [PMID: 36090747 PMCID: PMC9424864 DOI: 10.1016/j.omtn.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Macrophages are plastic cells playing a crucial role in innate immunity. While fundamental in responding to infections, when persistently maintained in a pro-inflammatory state they can initiate and sustain inflammatory diseases. Therefore, a strategy that reprograms pro-inflammatory macrophages toward an anti-inflammatory phenotype could hold therapeutic potential in that context. We have recently shown that arginase 2 (Arg2), a mitochondrial enzyme involved in arginine metabolism, promotes the resolution of inflammation in macrophages and it is targeted by miR-155. Here, we designed and tested a target site blocker (TSB) that specifically interferes and blocks the interaction between miR-155 and Arg2 mRNA, leading to Arg2 increased expression and activity. In bone marrow-derived macrophages transfected with Arg2 TSB (in the presence or absence of the pro-inflammatory stimulus LPS), we observed an overall shift of the polarization status of macrophages toward an anti-inflammatory phenotype, as shown by significant changes in surface markers (CD80 and CD71), metabolic parameters (mitochondrial oxidative phosphorylation) and cytokines secretion (IL-1β, IL-6, and TNF). Moreover, in an in vivo model of LPS-induced acute inflammation, intraperitoneal administration of Arg2 TSB led to an overall decrease in systemic levels of pro-inflammatory cytokines. Overall, this proof-of-concept strategy represent a promising approach to modulating macrophage phenotype.
Collapse
Affiliation(s)
- Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Corresponding author Chiara De Santi, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland.
| | - Frances K. Nally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Remsha Afzal
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Conor P. Duffy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Stephen Fitzsimons
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Stephanie L. Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
6
|
Lin S, Wen Z, Li S, Chen Z, Li C, Ouyang Z, Lin C, Kuang M, Xue C, Ding Y. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis. Acta Biomater 2022; 142:345-360. [PMID: 35151924 DOI: 10.1016/j.actbio.2022.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Aseptic loosening (AL), secondary to particle-caused periprosthetic osteolysis, is one of the main reasons of artificial joint failure. Suppressing the macrophage inflammatory response caused by wear particles extends the life of prosthesis, and the long noncoding RNAs (lncRNAs) may play a predominant part in it. Here, titanium particles' (TiPs') stimulation increases both the cytoplasmic and nuclear levels of lncRNA Neat1 in bone marrow derived macrophages (BMDMs), which further induces the inflammatory response. Mechanically, Neat1 facilitates Bruton's tyrosine kinase (BTK) transcription by reducing the transcriptional factor KLF4, which further activates the NF-κB pathway, NLRP3 inflammation, and M1 polarization in BMDMs. Cytoplasmic Neat1 also works as an miRNA sponge in miR-188-5p-regulated BTK expression in the post-transcriptional stage. In vivo, Neat1 downregulation can reduce the TiP-induced pro-inflammatory factors and reverse the osteolysis induced by BTK overexpression. In addition, the PLGA-based microparticles loaded with si-Neat1 are developed for the treatment of the mouse calvarial osteolysis model via local injection, presenting satisfactory anti-osteolysis efficacy. These findings indicate that Neat1 is a key regulator of AL. STATEMENT OF SIGNIFICANCE: Due to released particles, aseptic loosening (AL) is the most common reason for prosthesis failure and surgical revision and represents a substantial economic burden worldwide. Herein, we reported that lncRNA Neat1 is a key regulator in regulating wear particles-induced osteolysis by activating NF-κB pathway, NLRP3 inflammation and M1 polarization via BTK, and the underlying mechanisms of Neat1-BTK interaction were further portrayed. For potential clinical application, the microparticles are developed for effective si-Neat1 delivery, leading to a dramatically enhanced effect for the treatment of osteolysis, which might be a novel strategy to extend the life of the implant.
Collapse
|
7
|
Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem Biol Interact 2021; 351:109706. [PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
Collapse
|
8
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
9
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Vencken S, Foged C, Ramsey JM, Sweeney L, Cryan SA, MacLoughlin RJ, Greene CM. Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res 2019; 5:00161-2018. [PMID: 30972350 PMCID: PMC6452044 DOI: 10.1183/23120541.00161-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of microRNAs (miRNAs), endogenous regulators of gene expression, is a promising strategy for tackling inflammatory lung diseases. In this proof-of-concept study, we tested delivery of miR-17 to bronchial epithelial cells (BECs) using nebulised lipid-polymer hybrid nanoparticles (LPNs). The primary aim was to reduce the induced secretion of miR-17's target, i.e. the pro-inflammatory chemokine interleukin (IL)-8. Synthetic miR-17 mimics were loaded into LPNs composed of poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium)propane (DOTAP) using a double emulsion solvent evaporation method and nebulised using the Aerogen Solo nebuliser. The physicochemical, aerosol, inflammatory and cytotoxic properties of LPNs were characterised. The effect of LPNs on lipopolysaccharide (LPS)-induced IL-8 production from human NuLi-1 BECs was tested by ELISA. The z-average, polydispersity index and ζ-potential of the LPNs and the aerodynamic properties of nebulised suspensions were in a range optimal for deposition in the bronchi and bronchioles post-inhalation. Cytotoxic and pro-inflammatory effects were minimal for LPNs loaded with a model cargo. Nebulisation did not affect the physicochemical or functional properties of the LPNs. Nebulised miR-17-loaded LPNs downregulated LPS-induced IL-8 secretion by >40% in BECs. This study suggests that DOTAP-modified PLGA LPNs are efficient and well-tolerated carriers for delivery of miRNA mimics to BECs.
Collapse
Affiliation(s)
- Sebastian Vencken
- Lung Biology Group, Dept of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Camilla Foged
- Dept of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne M Ramsey
- Drug Delivery and Advanced Materials Team and Tissue Engineering Research Group, School of Pharmacy and Dept of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team and Tissue Engineering Research Group, School of Pharmacy and Dept of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CURAM), Royal College of Surgeons in Ireland, Dublin and NUI Galway, Galway, Ireland
| | | | - Catherine M Greene
- Lung Biology Group, Dept of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, Miller SD, Shea LD. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300:185-196. [PMID: 30822435 DOI: 10.1016/j.jconrel.2019.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Inflammation associated with autoimmune diseases and chronic injury is an initiating event that leads to tissue degeneration and dysfunction. Inflammatory monocytes and neutrophils systemically circulate and enter inflamed tissue, and pharmaceutical based targeting of these cells has not substantially improved outcomes and has had side effects. Herein, we investigated the design of drug-free biodegradable nanoparticles, notably without any active pharmaceutical ingredient or targeting ligand, that target circulating inflammatory monocytes and neutrophils in the vasculature to inhibit them from migrating into inflamed tissue. Nanoparticles were formed from 50:50 poly(DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly(DL-lactide) (PLA) (termed PLG-L, PLG-H, and PDLA, respectively) and were analyzed for their association with monocytes and neutrophils and their impact on disease course along with immune cell trafficking. For particles injected intravenously for 6 consecutive days to mice with experimental autoimmune encephalomyelitis (EAE), PLG-H particles had significantly lower EAE clinical scores than PBS control, while PLG-L and PDLA particles had modest or negligible effect on EAE onset. In vivo and in vitro data suggests that PLG-H particles had high association with immune cells, with preferential association with blood neutrophils relative to other particles. PLG-H particles restrained immune cells from the central nervous system (CNS), with increased accumulation in the spleen, which was not observed for mice receiving PDLA or control treatments. These results demonstrate that the particle composition influences the association with inflammatory monocytes and neutrophils in the vasculature, with the potential to redirect trafficking and ameliorate inflammation.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Cheung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Science, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Zhou J, Bai W, Liu Q, Cui J, Zhang W. Silencing of ADAM33 restrains proliferation and induces apoptosis of airway smooth muscle cells in ovalbumin-induced asthma model. J Cell Biochem 2019; 120:1435-1443. [PMID: 30450713 DOI: 10.1002/jcb.27263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
A defibrinogen and metalloproteinase 33 (ADAM33) was reported to play an important role in asthma. Furthermore, ADAM33 may play a possible role in airway remodeling due to its high expression in myo-/fibroblasts, epithelium, as well as the airway smooth muscle cells (ASMCs). Thus, the study is supposed to investigate the effect of the downregulation of ADAM33 on the proliferation and apoptosis of ASMCs in allergic asthma. An ovalbumin-induced asthma model in rats was established for investigating the function of the silencing of ADAM33. ASMCs were cultured and divided into four groups after transfection. The messenger RNA and protein expressions of ADAM33 were measured by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Cell proliferation was tested by cell counting kit-8 and cell apoptosis by TdT-mediated dUTP nick-end labeling. The allergic asthma rats showed a large number of inflammatory cell infiltration, airway smooth muscle hypertrophy and hyperplasia, and increased WA t , WA m , and numbers of bronchial smooth muscle nucleus. Additionally, increased numbers of eosinophils and neutrophils, expressions of immunoglobulin E and interleukin-4, content of airway air pressure, and NO, although decreased in expression of interferon-γ, were exhibited in rats with allergic asthma. In our study, upregulated ADAM33 was found, and after the silencing of ADAM33, decreased proliferation and increased apoptosis of ASMCs were observed. The study evidences that silencing of ADAM33 can decrease the proliferation and increase the apoptosis of ASMCs in a rat model of allergic asthma, suggesting ADAM33 represents a potential investigative focus target aiding allergic asthma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Cui
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
McKiernan PJ, Lynch P, Ramsey JM, Cryan SA, Greene CM. Knockdown of Gene Expression in Macrophages by microRNA Mimic-Containing Poly (Lactic- co-glycolic Acid) Microparticles. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E133. [PMID: 30558310 PMCID: PMC6313440 DOI: 10.3390/medicines5040133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023]
Abstract
Background: microRNA (miRNA) regulate target gene expression through translational repression and/or mRNA degradation and are involved in the regulation of inflammation. Macrophages are key inflammatory cells that are important in chronic inflammatory lung diseases such as cystic fibrosis (CF). Macrophage-expressed miRNA represent therapeutic drug targets, yet delivery of nucleic acids to macrophages has proved challenging. Methods: miRNAs were encapsulated in poly (lactic-co-glycolic acid) (PLGA)-based microparticles using double emulsion solvent evaporation and characterised for physicochemical features. Phorbol myristic acetate (PMA)-differentiated U937 macrophages were transfected with empty PLGA microparticles or those encapsulating a premiR-19b-3p or scrambled control miRNA mimic. miRNA internalisation and knockdown of a miR-19b-3p target gene, secretory leucoprotease inhibitor (SLPI), were determined by qRT-PCR. Results: Microparticle formulations were consistently found to be 2⁻3μm and all had a negative ζ potential (-5 mV to -14 mV). Encapsulation efficiency of premiR-19b-3p was 37.6 ± 13.4%. Levels of mature miR-19b-3p were higher in macrophages after delivery of premiR-19b-3p microparticles compared to empty or scrambled control miRNA-containing microparticles. Significant SLPI knockdown was achieved 72 hours post-delivery of premiR-19b-3p microparticles compared to controls. Conclusions: miRNA-encapsulating PLGA microparticles offer a new treatment paradigm for delivery to macrophages that could potentially be administered to CF lungs via inhalation.
Collapse
Affiliation(s)
- Paul J McKiernan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Patrick Lynch
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Joanne M Ramsey
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway H91 HE94, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | - Sally Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway H91 HE94, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
14
|
Fernández Fernández E, Santos-Carballal B, de Santi C, Ramsey JM, MacLoughlin R, Cryan SA, Greene CM. Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. MATERIALS 2018; 11:ma11010122. [PMID: 29342838 PMCID: PMC5793620 DOI: 10.3390/ma11010122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Lung gene therapy for cystic fibrosis disease has not been successful due to several challenges such as the absence of an appropriate vector. Therefore, optimal delivery of emerging therapeutics to airway epithelial cells demands suitable non-viral systems. In this work, we describe the formulation and the physicochemical investigation of biocompatible and biodegradable polymeric nanoparticles (NPs), including PLGA and chitosan (animal and non-animal), as novel methods for the safe and efficient delivery of CFTR-specific locked nucleic acids (LNAs).
Collapse
Affiliation(s)
- Elena Fernández Fernández
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | - Chiara de Santi
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Joanne M Ramsey
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Ronan MacLoughlin
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland.
- Aerogen Ltd., Galway Business Park, Dangan, Galway H91 HE94, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
15
|
Li N, Song Y, Zhao W, Han T, Lin S, Ramirez O, Liang L. Small interfering RNA targeting NF-κB attenuates lipopolysaccharide-induced acute lung injury in rats. BMC PHYSIOLOGY 2016; 16:7. [PMID: 28031043 PMCID: PMC5192588 DOI: 10.1186/s12899-016-0027-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND To investigate the anti-inflammatory effects of specific small interfering RNA targeting NF-κB on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. METHOD Acute lung injury was induced in Sprague-Dawley rats by intraperitoneal injection with LPS (5 mg/kg), followed by immediate intratracheal instillation of siRNA targeting NF-κB p65 (40 μg/ml). Animals in each group were sacrificed at 1 h or 8 h after the instillation. Pulmonary histological changes were evaluated by hematoxylin-eosin staining. The levels of NF-κB and TNF-α were measured by qRT-PCR. Expressions of NF-κB in lung cells and TNF-α in bronchoalveolar lavage fluid (BALF) were determined by western blot analysis and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS LPS administration reduced the rectal temperature and white blood cell counts at 1 h, increased lung wet/dry weight ratios, caused evident lung histopathological injury, and increased the detectable transcript and cytokine levels of TNF-α in lung tissue in BALF. siRNA targeting of NF-κB p65 effectively abrogated the expression of NF-κB p65 in lung cells and, aside from rectal temperatures, ameliorated all changes induced by LPS. CONCLUSIONS NF-κB knockdown exerts anti-inflammatory effects on LPS-induced ALI especially in the initial phase, which may be due in part to reduced levels of the proinflammatory cytokine TNF-α. NF-κB siRNA's rapidity and effectiveness to abrogate ALI development may provide an effective therapeutic method with future clinical applications.
Collapse
Affiliation(s)
- Ning Li
- Department of Neonatology, Dongguan Children Hospital, Guangdong Medical University, Dongguan, China
| | - Yuanbin Song
- Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuhui Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Oscar Ramirez
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Iyer R, Hsia CCW, Nguyen KT. Nano-Therapeutics for the Lung: State-of-the-Art and Future Perspectives. Curr Pharm Des 2016; 21:5233-44. [PMID: 26412358 DOI: 10.2174/1381612821666150923095742] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022]
Abstract
Inhalation of aerosolized compounds is a popular, non-invasive route for the targeted delivery of therapeutic molecules to the lung. Various types of nanoparticles have been used as carriers to facilitate drug uptake and intracellular action in order to treat lung diseases and/or to facilitate lung repair and growth. These include polymeric nanoparticles, liposomes, and dendrimers, among many others. In addition, nanoparticles are sometimes used in combination with small molecules, cytokines, growth factors, and/or pluripotent stem cells. Here we review the rationale and state-of-the-art nanotechnology for pulmonary drug delivery, with particular attention to new technological developments and approaches as well as the challenges associated with them, the emerging advances, and opportunities for future development in this field.
Collapse
Affiliation(s)
| | | | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, ERB 241, Arlington, TX 76019.
| |
Collapse
|
17
|
Brayden DJ, Cryan SA, Dawson KA, O'Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today 2015; 20:942-57. [PMID: 25908578 DOI: 10.1016/j.drudis.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
Abstract
High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland; UCD Conway Institute, Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth A Dawson
- UCD Centre for Bionano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Sciences, Belfield, Dublin 4, Ireland; UCD Conway Institute, Dublin 2, Ireland
| |
Collapse
|
18
|
Neuhaus B, Frede A, Westendorf AM, Epple M. Gene silencing of the pro-inflammatory cytokine TNF-α with siRNA delivered by calcium phosphate nanoparticles, quantified by different methods. J Mater Chem B 2015; 3:7186-7193. [DOI: 10.1039/c5tb01377a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The expression of the proinflammatory cytokine TNF-α was efficiently downregulated with nanoparticles, opening a way to combat inflammatory reactions.
Collapse
Affiliation(s)
- Bernhard Neuhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Annika Frede
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- 45122 Essen
- Germany
| | - Astrid Maria Westendorf
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- 45122 Essen
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|