1
|
Cheng AC, Pin C, Sunaba Y, Sugiyama T, Sasaki K. Nanoscale Helical Optical Force for Determining Crystal Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312174. [PMID: 38586919 DOI: 10.1002/smll.202312174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.
Collapse
Affiliation(s)
- An-Chieh Cheng
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Christophe Pin
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuji Sunaba
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu, 300093, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
2
|
Hong C, Hong I, Jiang Y, Ndukaife JC. Plasmonic dielectric antennas for hybrid optical nanotweezing and optothermoelectric manipulation of single nanosized extracellular vesicles. ADVANCED OPTICAL MATERIALS 2024; 12:2302603. [PMID: 38899010 PMCID: PMC11185818 DOI: 10.1002/adom.202302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/21/2024]
Abstract
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuxi Jiang
- Department of Electrical and Computer Engineering, University of Maryland College Park, MD, USA
- Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland College Park, MD, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Li X, Ghaffari A, Abbas F, Gu Q. Plasmon near-field coupling and universal scaling behavior in shifted-core coaxial nano-cavity pair. OPTICS EXPRESS 2024; 32:14770-14779. [PMID: 38859413 DOI: 10.1364/oe.516604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/31/2024] [Indexed: 06/12/2024]
Abstract
We computationally and analytically investigate the plasmon near-field coupling phenomenon and the associated universal scaling behavior in a pair of coupled shifted-core coaxial nano-cavities. Each nano-cavity is composed of an InGaAsP gain medium sandwiched between a silver (Ag) core and an Ag shell. The evanescent coupling between the cavities lifts the degeneracy of the cut-off free transverse electromagnetic (TEM) like mode. The mode splitting of the supermodes is intensified by shifting the metal core position, which induces symmetry breaking. This coupling phenomenon is explained with spring-capacitor analogy and circuit analysis. The numerical simulation results reveal an exponential decay in the fractional plasmon wavelength relative to the ratio of gap distance and core shifting distance, which aligns with the plasmon ruler equation. In addition, by shifting the Ag cores in both cavities toward the center of the coupled structure, the electromagnetic field becomes strongly localized in nanoscale regions (hotspots) in the gain medium between the cavities, thus achieving extreme plasmonic nanofocusing. Utilizing this nanofocusing effect, we propose a refractive index sensor by placing a fluidic channel between the two cavities in close vicinity to the hotspots and reaching the highest sensitivity of ∼700nm/RIU.
Collapse
|
4
|
Hong I, Hong C, Tutanov OS, Massick C, Castleberry M, Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Vickers K, Coffey RJ, Ndukaife JC. Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles. NANO LETTERS 2023; 23:7500-7507. [PMID: 37552655 PMCID: PMC10652798 DOI: 10.1021/acs.nanolett.3c02014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
This study addresses the challenge of trapping nanoscale biological particles using optical tweezers without the photothermal heating effect and the limitation presented by the diffraction limit. Optical tweezers are effective for trapping microscopic biological objects but not for nanoscale specimens due to the diffraction limit. To overcome this, we present an approach that uses optical anapole states in all-dielectric nanoantenna systems on distributed Bragg reflector substrates to generate strong optical gradient force and potential on nanoscale biological objects with negligible temperature rise below 1 K. The anapole antenna condenses the accessible electromagnetic energy to scales as small as 30 nm. Using this approach, we successfully trapped nanosized extracellular vesicles and supermeres (approximately 25 nm in size) using low laser power of only 10.8 mW. This nanoscale optical trapping platform has great potential for single molecule analysis while precluding photothermal degradation.
Collapse
Affiliation(s)
- Ikjun Hong
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Chuchuan Hong
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oleg S Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Clark Massick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mark Castleberry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kasey Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Justus C Ndukaife
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Extracellular Vesicles Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Hong C, Ndukaife JC. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun 2023; 14:4801. [PMID: 37558710 PMCID: PMC10412615 DOI: 10.1038/s41467-023-40549-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Bouloumis TD, Kotsifaki DG, Nic Chormaic S. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers. NANO LETTERS 2023. [PMID: 37256850 DOI: 10.1021/acs.nanolett.2c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles with trap stiffnesses as high as 4.18 ± 0.2 (fN/nm)/(mW/μm2) and very low excitation intensity. Simulations reveal the existence of two different groups of hotspots on the plasmonic array. The two hotspots exhibit tunable trap stiffnesses, a unique feature that can allow for sorting of particles and biological molecules based on their characteristics.
Collapse
Affiliation(s)
- Theodoros D Bouloumis
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Domna G Kotsifaki
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Natural and Applied Sciences, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu Province 215316, China
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Zhou J, Lan Q, Li W, Ji LN, Wang K, Xia XH. Single Molecule Protein Segments Sequencing by a Plasmonic Nanopore. NANO LETTERS 2023; 23:2800-2807. [PMID: 36927001 DOI: 10.1021/acs.nanolett.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obtaining sequential and conformational information on proteins is vital to understand their functions. Although the nanopore-based electrical detection can sense single molecule (SM) protein and distinguish among different amino acids, this approach still faces difficulties in slowing down protein translocation and improving ionic current signal-to-noise ratio. Here, we observe the unfolding and multistep sequential translocation of SM cytochrome c (cyt c) through a surface enhanced Raman scattering (SERS) active conical gold nanopore. High bias voltage unfolds SM protein causing more exposure of amino acid residues to the nanopore, which slows down the protein translocation. Specific SERS traces of different SM cyt c segments are then recorded sequentially when they pass through the hotspot inside the gold nanopore. This study shows that the combination of SM SERS with a nanopore can provide a direct insight into protein segments and expedite the development of nanopore toward SM protein sequencing.
Collapse
Affiliation(s)
- Juan Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Babaei E, Wright D, Gordon R. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins. NANO LETTERS 2023; 23:2877-2882. [PMID: 36999922 DOI: 10.1021/acs.nanolett.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single molecule analysis of proteins in an aqueous environment without modification (e.g., labels or tethers) elucidates their biophysics and interactions relevant to drug discovery. By combining fringe-field dielectrophoresis with nanoaperture optical tweezers we demonstrate an order of magnitude faster time-to-trap for proteins when the counter electrode is outside of the solution. When the counter electrode is inside the solution (the more common configuration found in the literature), electrophoresis speeds up the trapping of polystyrene nanospheres, but this was not effective for proteins in general. Since time-to-trap is critical for high-thoughput analysis, these findings are a major advancement to the nanoaperture optical trapping technique for protein analysis.
Collapse
Affiliation(s)
- Elham Babaei
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Demelza Wright
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| |
Collapse
|
9
|
Yang S, Allen JA, Hong C, Arnold KP, Weiss SM, Ndukaife JC. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams. PHYSICAL REVIEW LETTERS 2023; 130:083802. [PMID: 36898095 DOI: 10.1103/physrevlett.130.083802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30 μm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10 k_{B}T using a mW input power.
Collapse
Affiliation(s)
- Sen Yang
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Joshua A Allen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kellen P Arnold
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Sharon M Weiss
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C Ndukaife
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
10
|
Hameed N, Zeghdoudi T, Guichardaz B, Mezeghrane A, Suarez M, Courjal N, Bernal MP, Belkhir A, Baida FI. Stand-alone optical spinning tweezers with tunable rotation frequency. OPTICS EXPRESS 2023; 31:4379-4392. [PMID: 36785408 DOI: 10.1364/oe.480961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Advances in optical trapping design principles have led to tremendous progress in manipulating nanoparticles (NPs) with diverse functionalities in different environments using bulky systems. However, efficient control and manipulation of NPs in harsh environments require a careful design of contactless optical tweezers. Here, we propose a simple design of a fibered optical probe allowing the trapping of dielectric NP as well as a transfer of the angular momentum of light to the NP inducing its mechanical rotation. A polarization conversion from linearly-polarized incident guided to circularly transmitted beam is provoked geometrically by breaking the cylindrical symmetry of a coaxial nano-aperture that is engraved at the apex of a tapered metal coated optical fiber. Numerical simulations show that this simple geometry tip allows powerful light transmission together with efficient polarization conversion. This guarantees very stable trapping of quasi spherical NPs in a non-contact regime as well as potentially very tunable and reversible rotation frequencies in both directions (up to 45 Hz in water and 5.3 MHz in air for 10 mW injected power in the fiber). This type of fiber probe opens the way to a new generation of miniaturized tools for total manipulation (trapping, sorting, spinning) of NPs.
Collapse
|
11
|
Qiu G, Du Y, Guo Y, Meng Y, Gai Z, Zhang M, Wang J, deMello A. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47409-47419. [PMID: 36240070 DOI: 10.1021/acsami.2c12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Near-field optical manipulation has been widely used for guiding and trapping nanoscale objects close to an optical-active interface. This near-field manipulation opens opportunities for next-generation biosensing with the capability of large-area trapping and in situ detection. In this article, we used the finite element method (FEM) to analyze the motion mechanism of nano-objects (50-500 nm) in the near-field optics, especially localized surface plasmon resonance (LSPR). The size-dependent optical forces and hydrodynamic forces of subwavelength nanoparticles (<500 nm) in different hydrodynamic velocity fields were calculated. When the strength of the local electric field was increased, LSPR with two-dimensional gold nanoislands (AuNIs) showed improved capability for manipulating nano-objects near the vicinity of the AuNI interface. Through the experiments of in situ interferometric testing 50-500 nm nano-objects with constant number concentration or volume fraction, it was confirmed that the local plasmonic near-field was able to trap the dielectric polystyrene beads smaller than 200 nm. The plasmofluidic system was further verified by testing biological nanovesicles such as exosomes (40-200 nm) and high- and low-density lipoproteins (10-200 nm). This concept of direct dielectric nano-objects manipulation enables large-scale parallel trapping and dynamic sensing of biological nanovesicles without the need of molecular binding tethers or labeling.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai200240, China
| | - Ying Du
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yujia Guo
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich8091, Switzerland
| | - Ming Zhang
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Jing Wang
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| |
Collapse
|
12
|
Molecular-Scale Plasmon Trapping via a Graphene-Hybridized Tip-Substrate System. MATERIALS 2022; 15:ma15134627. [PMID: 35806751 PMCID: PMC9267308 DOI: 10.3390/ma15134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
We theoretically investigated the plasmon trapping stability of a molecular-scale Au sphere via designing Au nanotip antenna hybridized with a graphene sheet embedded Silica substrate. A hybrid plasmonic trapping model is self-consistently built, which considers the surface plasmon excitation in the graphene-hybridized tip-substrate system for supporting the scattering and gradient optical forces on the optical diffraction-limit broken nanoscale. It is revealed that the plasmon trapping properties, including plasmon optical force and potential well, can be unprecedentedly adjusted by applying a graphene sheet at proper Fermi energy with respect to the designed tip-substrate geometry. This shows that the plasmon potential well of 218 kBT at room temperature can be determinately achieved for trapping of a 10 nm Au sphere by optimizing the surface medium film layer of the designed graphene-hybridized Silica substrate. This is explained as the crucial role of graphene hybridization participating in plasmon enhancement for generating the highly localized electric field, in return augmenting the trapping force acting on the trapped sphere with a deepened potential well. This study can be helpful for designing the plasmon trapping of very small particles with new routes for molecular-scale applications for molecular-imaging, nano-sensing, and high-sensitive single-molecule spectroscopy, etc.
Collapse
|
13
|
Mao L, Cheng P, Liu K, Lian M, Cao T. Sieving nanometer enantiomers using bound states in the continuum from the metasurface. NANOSCALE ADVANCES 2022; 4:1617-1625. [PMID: 36134367 PMCID: PMC9419565 DOI: 10.1039/d1na00764e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/07/2022] [Indexed: 06/16/2023]
Abstract
Enantioseparation of chiral molecules is an important aspect of life sciences, chemical syntheses, and physics. Yet, the prevailing chemical techniques are not effective. Recently, a few types of plasmonic apertures have been theoretically proposed to distinguish between chiral molecules that vary based on their handedness under circularly polarized illumination. Both analytic calculations and numerical simulation demonstrated that enantioselective optical sieving could be obtained at the nanoscale using a large chiral optical force based on plasmonic resonance enhanced near-field chiral gradients in the aperture. Nevertheless, scaling this scheme to chiral entities of a few nanometer size (i.e., proteins and DNA) faces formidable challenges owing to the fabrication limit of a deeply sub-nanometer aperture and the intense power levels needed for nanoscale trapping. In contrast, by extending the Friedrich-Wintgen theory of the bound states in the continuum (BIC) to photonics, one may explore another mechanism to obtain enantioselective separation of chiral nanoparticles using all-dielectric nanostructures. Here, we present a metasurface composed of an array of silicon (Si) nanodisks embedded with off-set holes, which supports a sharp high-quality (Q) magnetic dipolar (MD) resonance originating from a distortion of symmetry-protected BIC, so called quasi-BIC. We, for the very first time, show that such a quasi-BIC MD resonance can markedly improve the chiral lateral force on the paired enantiomers with linearly polarized illumination. This quasi-BIC MD resonance can enhance the chirality density gradient with alternating sign at each octant around the Si nanodisk, while exhibiting a small gradient for the electromagnetic (EM) density. This offers a chiral lateral force that is 1 order larger in magnitude compared to the non-chiral lateral forces on sub-2 nm chiral objects with a chirality parameter of ±0.01. Moreover, the quasi-BIC MD resonance can excite four pairs of diverse optical potential wells (-13k B T) that are distributed uniformly along the outer edge of the resonator, enabling a simultaneous separation of four paired enantiomers. Our proposed dielectric metasurface may move forward the techniques of enantioseparation and enantiopurification, taking a novel perspective to advanced all-optical enantiopure synthesis.
Collapse
Affiliation(s)
- Libang Mao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Peiyuan Cheng
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Kuan Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Meng Lian
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
14
|
Hajisalem G, Babaei E, Dobinson M, Iwamoto S, Sharifi Z, Eby J, Synakewicz M, Itzhaki LS, Gordon R. Accessible high-performance double nanohole tweezers. OPTICS EXPRESS 2022; 30:3760-3769. [PMID: 35209628 DOI: 10.1364/oe.446756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nanohole optical tweezers have been used by several groups to trap and analyze proteins. In this work, we demonstrate that it is possible to create high-performance double nanohole (DNH) substrates for trapping proteins without the need for any top-down approaches (such as electron microscopy or focused-ion beam milling). Using polarization analysis, we identify DNHs as well as determine their orientation and then use them for trapping. We are also able to identify other hole configurations, such as single, trimers and other clusters. We explore changing the substrate from glass to polyvinyl chloride to enhance trapping ability, showing 7 times lower minimum trapping power, which we believe is due to reduced surface repulsion. Finally, we present tape exfoliation as a means to expose DNHs without damaging sonication or chemical methods. Overall, these approaches make high quality optical trapping using DNH structures accessible to a broad scientific community.
Collapse
|
15
|
Lou Y, Ning X, Wu B, Pang Y. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide. FRONTIERS OF OPTOELECTRONICS 2021; 14:399-406. [PMID: 36637761 PMCID: PMC9743861 DOI: 10.1007/s12200-021-1134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongjie Ning
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bei Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Lu F, Zhang W, Sun L, Mei T, Yuan X. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping. OPTICS EXPRESS 2021; 29:37515-37524. [PMID: 34808821 DOI: 10.1364/oe.441689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics of the plasmonic tip. Under axial illumination of a tightly focused radial polarized beam, the circular nanohole etched on a metallic substrate can form a nanocavity to induce an interference effect and further enhance the electric field intensity. When a plasmonic tip is placed closely above such a substrate, the electric field intensity of the gap-plasmon mode can further be improved, which is 10 folds stronger than that of the conventional gap-plasmon mode. Further analysis reveals that the enhanced gap-plasmon mode can significantly strengthen the optical force exerted on a nanoparticle and stably trap a 4-nm-diameter dielectric nanoparticle. Our proposed method can improve the performance of tip-enhanced spectroscopy, plasmonic tweezers and extend their applications. We anticipate that our methods allow simultaneously manipulating and characterizing single nanoparticles in-situ.
Collapse
|
17
|
Lou Y, Wan X, Pang Y. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode. NANOTECHNOLOGY 2021; 33:045201. [PMID: 34530419 DOI: 10.1088/1361-6528/ac2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field. Fabrication of the fiber involved is entirely feasible with existing techniques, such as thermal-drawn and electrospinning, and therefore can be mass-produced.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xinchen Wan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
18
|
Hernández-Sarria JJ, Oliveira ON, Mejía-Salazar JR. Toward Lossless Infrared Optical Trapping of Small Nanoparticles Using Nonradiative Anapole Modes. PHYSICAL REVIEW LETTERS 2021; 127:186803. [PMID: 34767388 DOI: 10.1103/physrevlett.127.186803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
A challenge in plasmonic trapping of small nanoparticles is the heating due to the Joule effect of metallic components. This heating can be avoided with electromagnetic field confinement in high-refractive-index materials, but nanoparticle trapping is difficult because the electromagnetic fields are mostly confined inside the dielectric nanostructures. Herein, we present the design of an all-dielectric platform to capture small dielectric nanoparticles without heating the nanostructure. It consists of a Si nanodisk engineered to exhibit the second-order anapole mode at the infrared regime (λ=980 nm), where Si has negligible losses, with a slot at the center. A strong electromagnetic hot spot is created, thus allowing us to capture nanoparticles as small as 20 nm. The numerical calculations indicate that optical trapping in these all-dielectric nanostructures occurs without heating only in the infrared, since for visible wavelengths the heating levels are similar to those in plasmonic nanostructures.
Collapse
Affiliation(s)
- J J Hernández-Sarria
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP, Brasil
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP, Brasil
| | - J R Mejía-Salazar
- Instituto Nacional de Telecomunicações (Inatel), 37540-000, Santa Rita do Sapucaí, MG, Brazil
| |
Collapse
|
19
|
Zhang S, Zhang Y, Fu Y, Zhu Z, Man Z, Bu J, Fang H, Min C, Yuan X. Nonlinearity-modulated single molecule trapping and Raman scattering analysis. OPTICS EXPRESS 2021; 29:32285-32295. [PMID: 34615303 DOI: 10.1364/oe.437647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Single molecule detection and analysis play important roles in many current biomedical researches. The deep-nanoscale hotspots, being excited and confined in a plasmonic nanocavity, make it possible to simultaneously enhance the nonlinear light-matter interactions and molecular Raman scattering for label-free detections. Here, we theoretically show that a nanocavity formed in a tip-enhanced Raman scattering (TERS) system can also achieve valid optical trapping as well as TERS signal detection for a single molecule. In addition, the nonlinear responses of metallic tip and substrate film can change their intrinsic physical properties, leading to the modulation of the optical trapping force and the TERS signal. The results demonstrate a new degree of freedom brought by the nonlinearity for effectively modulating the optical trapping and Raman detection in single molecule level. This proposed platform also shows a great potential in various fields of research that need high-precision surface imaging.
Collapse
|
20
|
Jiang Q, Roy P, Claude JB, Wenger J. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. NANO LETTERS 2021; 21:7030-7036. [PMID: 34398613 DOI: 10.1021/acs.nanolett.1c02449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single photon sources with high brightness and subnanosecond lifetimes are key components for quantum technologies. Optical nanoantennas can enhance the emission properties of single quantum emitters, but this approach requires accurate nanoscale positioning of the source at the plasmonic hotspot. Here, we use plasmonic nanoantennas to simultaneously trap single colloidal quantum dots and enhance their photoluminescence. The nano-optical trapping automatically locates the quantum emitter at the nanoantenna hotspot without further processing. Our dedicated nanoantenna design achieves a high trap stiffness of 0.6 (fN/nm)/mW for quantum dot trapping, together with a relatively low trapping power of 2 mW/μm2. The emission from the nanoantenna-trapped single quantum dot shows 7× increased brightness, 50× reduced blinking, 2× shortened lifetime, and a clear antibunching below 0.5 demonstrating true single photon emission. Combining nano-optical tweezers with plasmonic enhancement is a promising route for quantum technologies and spectroscopy of single nano-objects.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Prithu Roy
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
21
|
Kolbow JD, Lindquist NC, Ertsgaard CT, Yoo D, Oh SH. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. Chemphyschem 2021; 22:1409-1420. [PMID: 33797179 DOI: 10.1002/cphc.202100004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/31/2021] [Indexed: 11/10/2022]
Abstract
Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron-sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials[1] and the laser cooling of atoms.[2,3] More recent development has led to nano-optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real-time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano-optical tweezers and their current and future applications.
Collapse
Affiliation(s)
- Joshua D Kolbow
- Department of Electrical and Computer Engineering, University of Minnesota Kenneth H. Keller Hall, 200, Union St SE, Minneapolis, MN 55455, USA
| | - Nathan C Lindquist
- Department of Physics and Engineering, Bethel University, 3900 Bethel Drive, St. Paul, MN 55112, USA
| | - Christopher T Ertsgaard
- Department of Electrical and Computer Engineering, University of Minnesota Kenneth H. Keller Hall, 200, Union St SE, Minneapolis, MN 55455, USA
| | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota Kenneth H. Keller Hall, 200, Union St SE, Minneapolis, MN 55455, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota Kenneth H. Keller Hall, 200, Union St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Lin ZH, Zhang J, Huang JS. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. NANOSCALE 2021; 13:9185-9192. [PMID: 33960333 DOI: 10.1039/d0nr09080h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple yet effective achiral platform using elliptical nanoholes for chiroptical analysis is demonstrated. Under linearly polarized excitation, an elliptical nanohole in a thin gold film can generate a localized chiral optical field for chiroptical analysis and simultaneously serve as a near-field optical trap to capture dielectric and plasmonic nanospheres. In particular, the trapping potential is enantioselective for dielectric nanospheres, i.e., the hole traps or repels the dielectric nanoparticles depending on the sample chirality. For plasmonic nanospheres, the trapping potential well is much deeper than that for dielectric particles, rendering the enantioselectivity less pronounced. This platform is suitable for chiral analysis with nanoparticle-based solid-state extraction and pre-concentration. Compared to plasmonic chiroptical sensing using chiral structures or circularly polarized light, elliptical nanoholes are a simple and effective platform, which is expected to have a relatively low background because chiroptical noise from the structure or chiral species outside the nanohole is minimized. The use of linearly polarized excitation also makes the platform easily compatible with a commercial optical microscope.
Collapse
Affiliation(s)
- Zhan-Hong Lin
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Jiwei Zhang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany. and MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein Straße 9, 07745 Jena, Germany. and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany and Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, 11529 Taipei, Nankang District, Taiwan and Department of Electrophysics, National Chiao Tung University, 1001 University Road, 30010 Hsinchu, Taiwan
| |
Collapse
|
23
|
Hou SS, Liu Y, Zhang WX, Zhang XD. Separating and trapping of chiral nanoparticles with dielectric photonic crystal slabs. OPTICS EXPRESS 2021; 29:15177-15189. [PMID: 33985222 DOI: 10.1364/oe.423243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Chiral separation is a crucial step in many chemical synthesis processes, particularly for pharmaceuticals. Here we present a novel method for the realization of both separating and trapping of enantiomers using the dielectric photonic crystal (PhC) slabs, which possess quasi-fourfold degenerate Bloch modes (overlapping double degenerate transverse-electric-like and transverse-magnetic-like modes). Based on the designed structure, a large gradient of optical chirality appears near the PhC slab, leading to the extreme enhancement of chiral optical forces about 3 orders of magnitude larger than those obtained with circularly polarized lights. In this case, our method provides a reference for realizing all-optical enantiopure syntheses.
Collapse
|
24
|
Zhang W, Zhang Y, Zhang S, Wang Y, Yang W, Min C, Yuan X. Nonlinear modulation on optical trapping in a plasmonic bowtie structure. OPTICS EXPRESS 2021; 29:11664-11673. [PMID: 33984942 DOI: 10.1364/oe.422493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Surface plasmon optical tweezers based on micro- and nano-structures are capable of capturing particles in a very small spatial scale and have been widely used in many front research fields. In general, distribution of optical forces and potential wells exerted on the particles can be modulated by controlling the geometric parameters of the structures. However, these fabricated structures are irreversible once processed, which greatly limits its application in dynamic manipulation. The plasmonic field in these structures can be enhanced with orders of magnitude compared to the excitation light, offering a possibility to stimulate nonlinear responses as a new degree of freedom for dynamic modulation. Here, we theoretically demonstrate that the optical force and potential well can be modulated on account of the nonlinear Kerr effect of a gold bowtie structure under a pulsed laser with high peak power. The results verify that the trapping states, including the position, width, and depth of the potential well, can be dynamically modulated by changing intensity of the incident laser. It provides an effective approach for stable trapping and dynamic controlling of particles on nanostructure-based plasmonic trapping platforms and thus has great application potential in many fields, such as enhanced Raman detection, super-resolution imaging, and optical sensing.
Collapse
|
25
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
26
|
Lu CG, Hu XF, Yuan ZR, Cui YP. Nano-particle transport and the prediction of a valid area to be trapped based on a plasmonic antenna array. RSC Adv 2021; 11:12102-12106. [PMID: 35423734 PMCID: PMC8696444 DOI: 10.1039/d0ra10946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/28/2021] [Indexed: 11/21/2022] Open
Abstract
Optical antennas are promising for optical trapping and particle manipulation, when converting light between localized energy and freely propagating radiation. In this paper, we proposed a numerical method for the transport of nanoparticles using the optical force field over a plasmonic Au antenna array. The plasmonic Au antenna array is designed to produce strong near-field hot spots when illuminated by a plane wave. The hot spots function as optical traps, separately addressable by their resonant wavelengths. By changing the traps sequentially, the nanoparticles can be handed off between adjacent traps. We also demonstrated a valid area in which the nanoparticles could be trapped and transferred stably by discussing the trapping potential that particles encountered. The simulated and calculated results showed that this method had promising applications in the field of biochemical diagnoses and high-accuracy optical manipulation.
Collapse
Affiliation(s)
- Chang-Gui Lu
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University Nanjing Jiangsu 210096 China
| | - Xue-Fang Hu
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University Nanjing Jiangsu 210096 China
| | - Ze-Rong Yuan
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University Nanjing Jiangsu 210096 China
| | - Yi-Ping Cui
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University Nanjing Jiangsu 210096 China
| |
Collapse
|
27
|
Du G, Lu Y, Lankanath D, Hou X, Chen F. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:759. [PMID: 33803040 PMCID: PMC8002932 DOI: 10.3390/nano11030759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/04/2023]
Abstract
Plasmonic optical tweezers with a symmetry-tunable potential well were investigated based on a heterogeneous model of nano-bowtie antennas made of different noble substances. The typical noble metals Au and Ag are considered as plasmonic supporters for excitation of hybrid plasmonic modes in bowtie dimers. It is proposed that the plasmonic optical trapping force around a quantum dot exhibits symmetry-broken characteristics and becomes increasingly asymmetrical with increasing applied laser electric field. Here, it is explained by the dominant plasmon hybridization of the heterogeneous Au-Ag dimer, in which the plasmon excitations can be inconsistently modified by tuning the applied laser electric field. In the spectrum regime, the wavelength-dependent plasmonic trapping potential exhibits a two-peak structure for the heterogeneous Au-Ag bowtie dimer compared to a single-peak trapping potential of the Au-Au bowtie dimer. In addition, we comprehensively investigated the influence of structural parameter variables on the plasmonic potential well generated from the heterogeneous noble nano-bowtie antenna with respect to the bowtie edge length, edge/tip rounding, bowtie gap, and nanosphere size. This work could be helpful in improving our understanding of wavelength and laser field tunable asymmetric nano-tweezers for flexible and non-uniform nano-trapping applications of particle-sorting, plasmon coloring, SERS imaging, and quantum dot lighting.
Collapse
Affiliation(s)
| | | | | | | | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (G.D.); (Y.L.); (D.L.); (X.H.)
| |
Collapse
|
28
|
Jiang Q, Claude JB, Wenger J. Plasmonic nano-optical trap stiffness measurements and design optimization. NANOSCALE 2021; 13:4188-4194. [PMID: 33576761 DOI: 10.1039/d0nr08635e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic nano-optical tweezers enable the non-invasive manipulation of nano-objects under low illumination intensities, and have become a powerful tool for nanotechnology and biophysics. However, measuring the trap stiffness of nanotweezers remains a complicated task, which hinders the development of plasmonic trapping. Here, we describe an experimental method to measure the trap stiffness based on the temporal correlation of the fluorescence from the trapped object. The method is applied to characterize the trap stiffness in different double nanohole apertures and explore the influence of their design parameters in relationship with numerical simulations. Optimizing the double nanohole design achieves a trap stiffness 10× larger than the previous state-of-the-art. The experimental method and the design guidelines discussed here offer a simple and efficient way to improve the performance of nano-optical tweezers.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| |
Collapse
|
29
|
Miao X, Yan L, Wu Y, Liu PQ. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots. LIGHT, SCIENCE & APPLICATIONS 2021; 10:5. [PMID: 33402668 PMCID: PMC7785746 DOI: 10.1038/s41377-020-00449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Collapse
Affiliation(s)
- Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Peter Q Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
30
|
Jiang Q, Rogez B, Claude JB, Baffou G, Wenger J. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping. NANO LETTERS 2020; 20:8811-8817. [PMID: 33237789 DOI: 10.1021/acs.nanolett.0c03638] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanotweezers use intense electric field gradients to generate optical forces able to trap nano-objects in liquids. However, part of the incident light is absorbed into the metal, and a supplementary thermophoretic force acting on the nano-object arises from the resulting temperature gradient. Plasmonic nanotweezers thus face the challenge of disentangling the intricate contributions of the optical and thermophoretic forces. Here, we show that commonly added surfactants can unexpectedly impact the trap performance by acting on the thermophilic or thermophobic response of the nano-object. Using different surfactants in double nanohole plasmonic trapping experiments, we measure and compare the contributions of the thermophoretic and the optical forces, evidencing a trap stiffness 20× higher using sodium dodecyl sulfate (SDS) as compared to Triton X-100. This work uncovers an important mechanism in plasmonic nanotweezers and provides guidelines to control and optimize the trap performance for different plasmonic designs.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Benoît Rogez
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Guillaume Baffou
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| |
Collapse
|
31
|
Hong C, Yang S, Ndukaife JC. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. NATURE NANOTECHNOLOGY 2020; 15:908-913. [PMID: 32868919 DOI: 10.1038/s41565-020-0760-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 05/07/2023]
Abstract
Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4-13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules.
Collapse
Affiliation(s)
- Chuchuan Hong
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Sen Yang
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
32
|
Calm YM, D'Imperio L, Nesbitt NT, Merlo JM, Rose AH, Yang C, Kempa K, Burns MJ, Naughton MJ. Optical confinement in the nanocoax: coupling to the fundamental TEM-like mode. OPTICS EXPRESS 2020; 28:32152-32164. [PMID: 33115178 DOI: 10.1364/oe.402723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The nanoscale coaxial cable (nanocoax) has demonstrated optical confinement in the visible and the near infrared. We report on a novel nanofabrication process which yields optically addressable, sub-µm diameter, and high aspect ratio metal-insulator-metal nanocoaxes made by atomic layer deposition of Pt and Al2O3. We observe sub-diffraction-limited optical transmission via the fundamental, TEM-like mode by excitation with a radially polarized optical vortex beam. Our experimental results are based on interrogation with a polarimetric imager. Finite element method numerical simulations support these results, and their uniaxial symmetry was exploited to model taper geometries with both an electrically large volume, (15λ)3, and a nanoscopic exit aperture, (λ/200)2.
Collapse
|
33
|
Zhang J, Lu F, Zhang W, Yu W, Zhu W, Premaratne M, Mei T, Xiao F, Zhao J. Optical trapping of single nano-size particles using a plasmonic nanocavity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:475301. [PMID: 32870814 DOI: 10.1088/1361-648x/abaead] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film. It is found that the radial vector mode can produce a nano-sized near field with the electric-field intensity enhancement factor over 103through exciting the plasmon gap mode in the nanocavity. By employing the Maxwell stress tensor formalism, we theoretically demonstrate that this nano-sized near field results in a sharp quasi-harmonic potential well, capable of stably trapping 2 nm quantum dots beneath the tip apex with the laser power as low as 3.7 mW. Further analysis reveals that our nanotweezers can stably work in a wide range of particle-to-tip distances, gap sizes, and operation wavelengths. We envision that our proposed nanometric optical tweezers could be compatible with the tip-enhanced Raman spectroscopy to allow simultaneously manipulating and characterizing single nanoparticles as well as nanoparticle interactions with high sensitivity.
Collapse
Affiliation(s)
- Jiachen Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Fanfan Lu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Wending Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Weixing Yu
- CAS Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, People's Republic of China
| | - Weiren Zhu
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ting Mei
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| | - Fajun Xiao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
- CAS Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, People's Republic of China
| | - Jianlin Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China
| |
Collapse
|
34
|
Ghosh S, Ghosh A. Next-Generation Optical Nanotweezers for Dynamic Manipulation: From Surface to Bulk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5691-5708. [PMID: 32383606 DOI: 10.1021/acs.langmuir.0c00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical traps based on strongly confined electromagnetic fields at metal-dielectric interfaces are far more efficient than conventional optical tweezers. Specifically, these near-field nanotweezers allow the trapping of smaller particles at lower optical intensities, which can impact diverse research fields ranging from soft condensed matter physics to materials science and biology. A major thrust in the past decade has been focused on extending the capabilities of plasmonically enhanced nanotweezers beyond diffusion-limited trapping on surfaces such as to achieve dynamic control in the bulk of fluidic environments. Here, we review the recent efforts in optical nanotweezers, especially those involving hybrid forcing schemes, covering both surface and bulk-based techniques. We summarize the important capabilities demonstrated with this promising approach, with niche applications in reconfigurable nanopatterning and on-chip assembly as well as in sorting and separating colloidal nanoparticles.
Collapse
|
35
|
Kotsifaki DG, Truong VG, Chormaic SN. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. NANO LETTERS 2020; 20:3388-3395. [PMID: 32275440 DOI: 10.1021/acs.nanolett.0c00300] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanostructures overcome Abbe's diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film. A large normalized trap stiffness of 8.65 fN/nm/mW for 20 nm polystyrene particles at a near-resonance trapping wavelength of 930 nm was achieved. The trap stiffness on-resonance is enhanced by a factor of 63 compared to that of off-resonance due to the ultrasmall mode volume, enabling large near-field strengths and a cavity effect contribution. These results facilitate trapping with low incident laser intensity, thereby providing new options for studying transition paths of single molecules such as proteins.
Collapse
Affiliation(s)
- Domna G Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
36
|
Solomon ML, Saleh AAE, Poulikakos LV, Abendroth JM, Tadesse LF, Dionne JA. Nanophotonic Platforms for Chiral Sensing and Separation. Acc Chem Res 2020; 53:588-598. [PMID: 31913015 DOI: 10.1021/acs.accounts.9b00460] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chirality in Nature can be found across all length scales, from the subatomic to the galactic. At the molecular scale, the spatial dissymmetry in the atomic arrangements of pairs of mirror-image molecules, known as enantiomers, gives rise to fascinating and often critical differences in chemical and physical properties. With increasing hierarchical complexity, protein function, cell communication, and organism health rely on enantioselective interactions between molecules with selective handedness. For example, neurodegenerative and neuropsychiatric disorders including Alzheimer's and Parkinson's diseases have been linked to distortion of chiral-molecular structure. Moreover, d-amino acids have become increasingly recognized as potential biomarkers, necessitating comprehensive analytical methods for diagnosis that are capable of distinguishing l- from d-forms and quantifying trace concentrations of d-amino acids. Correspondingly, many pharmaceuticals and agrochemicals consist of chiral molecules that target particular enantioselective pathways. Yet, despite the importance of molecular chirality, it remains challenging to sense and to separate chiral compounds. Chiral-optical spectroscopies are designed to analyze the purity of chiral samples, but they are often insensitive to the trace enantiomeric excess that might be present in a patient sample, such as blood, urine, or sputum, or pharmaceutical product. Similarly, existing separation schemes to enable enantiopure solutions of chiral products are inefficient or costly. Consequently, most pharmaceuticals or agrochemicals are sold as racemic mixtures, with reduced efficacy and potential deleterious impacts.Recent advances in nanophotonics lay the foundation toward highly sensitive and efficient chiral detection and separation methods. In this Account, we highlight our group's effort to leverage nanoscale chiral light-matter interactions to detect, characterize, and separate enantiomers, potentially down to the single molecule level. Notably, certain resonant nanostructures can significantly enhance circular dichroism for improved chiral sensing and spectroscopy as well as high-yield enantioselective photochemistry. We first describe how achiral metallic and dielectric nanostructures can be utilized to increase the local optical chirality density by engineering the coupling between electric and magnetic optical resonances. While plasmonic nanoparticles locally enhance the optical chirality density, high-index dielectric nanoparticles can enable large-volume and uniform-sign enhancements in the optical chirality density. By overlapping these electric and magnetic resonances, local chiral fields can be enhanced by several orders of magnitude. We show how these design rules can enable high-yield enantioselective photochemistry and project a 2000-fold improvement in the yield of a photoionization reaction. Next, we discuss how optical forces can enable selective manipulation and separation of enantiomers. We describe the design of low-power enantioselective optical tweezers with the ability to trap sub-10 nm dielectric particles. We also characterize their chiral-optical forces with high spatial and force resolution using combined optical and atomic force microscopy. These optical tweezers exhibit an enantioselective optical force contrast exceeding 10 pN, enabling selective attraction or repulsion of enantiomers based on the illumination polarization. Finally, we discuss future challenges and opportunities spanning fundamental research to technology translation. Disease detection in the clinic as well as pharmaceutical and agrochemical industrial applications requiring large-scale, high-throughput production will gain particular benefit from the simplicity and relative low cost that nanophotonic platforms promise.
Collapse
Affiliation(s)
- Michelle L. Solomon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Amr A. E. Saleh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Lisa V. Poulikakos
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - John M. Abendroth
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F. Tadesse
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
37
|
Xiao F, Zhang J, Yu W, Zhu W, Mei T, Premaratne M, Zhao J. Reversible optical binding force in a plasmonic heterodimer under radially polarized beam illumination. OPTICS EXPRESS 2020; 28:3000-3008. [PMID: 32121976 DOI: 10.1364/oe.380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
We investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size. Further analysis yields that the inhomogeneous polarization state of RPB can be utilized to readily control the bonding type of plasmon modes and distribute the underlying local field confined in the gap (the periphery) of the dimer, leading to a positive (negative) optical binding force. Our findings provide a clear strategy to engineer optical binding forces via changes in device geometry and its illumination profile. Thus, we envision a significant role for our device in emerging nanophotonics structures.
Collapse
|
38
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
39
|
Li N, Cadusch J, Crozier K. Algorithmic approach for designing plasmonic nanotweezers. OPTICS LETTERS 2019; 44:5250-5253. [PMID: 31674980 DOI: 10.1364/ol.44.005250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We use machine learning (simulated annealing) to design plasmonic nanoapertures that function as optical nanotweezers. The nanoapertures have irregular shapes that are chosen by our algorithm. We present electromagnetic simulations that show that these produce stronger field enhancements and extraction energies than nanoapertures comprising double nanoholes with the same gap geometry. We show that performance is further improved by etching one or more rings into the gold surrounding the nanoaperture. Lastly, we provide a direct comparison between our design and work that is representative of the state of the art in plasmonic nanotweezers at the time of writing.
Collapse
|
40
|
Plasmonic Tweezers towards Biomolecular and Biomedical Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the capability of confining light into subwavelength scale, plasmonic tweezers have been used to trap and manipulate nanoscale particles. It has huge potential to be utilized in biomolecular research and practical biomedical applications. In this short review, plasmonic tweezers based on nano-aperture designs are discussed. A few challenges should be overcome for these plasmonic tweezers to reach a similar level of significance as the conventional optical tweezers.
Collapse
|
41
|
Zhen Z, Huang Y, Feng Y, Shen Y, Li Z. An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials. OPTICS EXPRESS 2019; 27:9178-9188. [PMID: 31052726 DOI: 10.1364/oe.27.009178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photonic nanojet (PNJ) is a tightly focused beam that emerges from the shadow surface of microparticles. Due to its high peak intensity and subwavelength beam waist, the PNJ has increasingly attracted attention, with potential applications in optical imaging, nanolithography, and nanoparticle sensing. A variety of ways have been demonstrated to further shrink the beam waist of PNJs, such as engineering the microparticle geometry and optimizing a multilayer structure. In this simulation work, we report the realization of an ultranarrow PNJ, which is formed by an engineered two-layer microcylinder of high refractive-index materials. Finite element analysis shows that under 632.8 nm illumination, the full width at half maximum of the beam waist can reach 87 nm (~λ/7.3). As far as we know, this is the narrowest PNJ ever reported. Using the backscattering intensity as a contrast mechanism, we also demonstrated the imaging resolution and capability of the ultranarrow PNJ through numerical simulations. We anticipate that this ultranarrow PNJ will open new possibilities in a variety of research areas, including nanoparticle detection, biomedical imaging, and nanolithography.
Collapse
|
42
|
Xiao F, Ren Y, Shang W, Zhu W, Han L, Lu H, Mei T, Premaratne M, Zhao J. Sub-10 nm particle trapping enabled by a plasmonic dark mode. OPTICS LETTERS 2018; 43:3413-3416. [PMID: 30004530 DOI: 10.1364/ol.43.003413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate that a highly localized plasmonic dark mode with radial symmetry, termed quadrupole-bonded radial breathing mode, can be used for optically trapping the dielectric nanoparticles. In particular, the annular potential well produced by this dark mode shows a sufficiently large depth to stably trap the 5 nm particles under a relatively low optical power. Our results address the quest for precisely trapping sub-10 nm particles with high yield and pave the way for placing sub-10 nm particles conforming to a specific geometric pattern.
Collapse
|
43
|
Jin Q, Wang L, Yan S, Wei H, Huang Y. Plasmonic nano-tweezer based on square nanoplate tetramers. APPLIED OPTICS 2018; 57:5328-5332. [PMID: 30117824 DOI: 10.1364/ao.57.005328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The research fields of trapping nanoparticles have experienced a huge development in recent years, which mainly benefits from the unique field enhancement in plasmonic nanomaterials. Since the large field enhancement originates from the excited localized surface plasmon at the metal surface, exploring novel metal nanostructures with high trapping efficiency is always the main goal in this field. In this work, the plasmonic trapping of nanoparticles based on the gold periodic square tetramers (PST) was investigated through full-wave simulations using the finite-difference time-domain (FDTD) method. The electric field and surface charge distributions on the surface of PST indicate that both the trapping position and efficiency are influenced by orientations of the square nanoplates. The maximum electromagnetic enhancement is achieved when all square nanoplates rotate 45° along the z axis. Therefore, the gradient force and trapping potential of this PST with optimal orientation were further studied, and the results indicate that a dielectric nanoparticle of 15 nm radius can be stably captured. Furthermore, the calculation results show that the plasmonic trapping with this PST exhibits strong polarization dependence. It is easy to change the trapping position and the field intensity by tuning the polarization of the incident wave. Our work enables a deeper understanding of this kind of plasmonic trapping and could have potential applications in biomedical research and life science.
Collapse
|
44
|
Yoo D, Gurunatha KL, Choi HK, Mohr DA, Ertsgaard CT, Gordon R, Oh SH. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. NANO LETTERS 2018; 18:3637-3642. [PMID: 29763566 DOI: 10.1021/acs.nanolett.8b00732] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kargal L Gurunatha
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Han-Kyu Choi
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher T Ertsgaard
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Reuven Gordon
- Department of Electrical and Computer Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
45
|
Yoo D, Mohr DA, Vidal-Codina F, John-Herpin A, Jo M, Kim S, Matson J, Caldwell JD, Jeon H, Nguyen NC, Martin-Moreno L, Peraire J, Altug H, Oh SH. High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. NANO LETTERS 2018; 18:1930-1936. [PMID: 29437401 DOI: 10.1021/acs.nanolett.7b05295] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a wafer-scale array of resonant coaxial nanoapertures as a practical platform for surface-enhanced infrared absorption spectroscopy (SEIRA). Coaxial nanoapertures with sub-10 nm gaps are fabricated via photolithography, atomic layer deposition of a sacrificial Al2O3 layer to define the nanogaps, and planarization via glancing-angle ion milling. At the zeroth-order Fabry-Pérot resonance condition, our coaxial apertures act as a "zero-mode resonator (ZMR)", efficiently funneling as much as 34% of incident infrared (IR) light along 10 nm annular gaps. After removing Al2O3 in the gaps and inserting silk protein, we can couple the intense optical fields of the annular nanogap into the vibrational modes of protein molecules. From 7 nm gap ZMR devices coated with a 5 nm thick silk protein film, we observe high-contrast IR absorbance signals drastically suppressing 58% of the transmitted light and infer a strong IR absorption enhancement factor of 104∼105. These single nanometer gap ZMR devices can be mass-produced via batch processing and offer promising routes for broad applications of SEIRA.
Collapse
Affiliation(s)
- Daehan Yoo
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Mohr
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ferran Vidal-Codina
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Aurelian John-Herpin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Minsik Jo
- Department of Physics and Department of Energy Systems Research , Ajou University , Suwon 16499 , Korea
| | - Sunghwan Kim
- Department of Physics and Department of Energy Systems Research , Ajou University , Suwon 16499 , Korea
| | - Joseph Matson
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37212 , United States
| | - Joshua D Caldwell
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37212 , United States
| | - Heonsu Jeon
- Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Korea
| | - Ngoc-Cuong Nguyen
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Luis Martin-Moreno
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza , E-50009 Zaragoza , Spain
| | - Jaime Peraire
- Department of Aeronautics and Astronautics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
46
|
Shi YZ, Xiong S, Zhang Y, Chin LK, Chen YY, Zhang JB, Zhang TH, Ser W, Larrson A, Lim SH, Wu JH, Chen TN, Yang ZC, Hao YL, Liedberg B, Yap PH, Wang K, Tsai DP, Qiu CW, Liu AQ. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 2018; 9:815. [PMID: 29483548 PMCID: PMC5827716 DOI: 10.1038/s41467-018-03156-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/24/2018] [Indexed: 01/21/2023] Open
Abstract
Particle trapping and binding in optical potential wells provide a versatile platform for various biomedical applications. However, implementation systems to study multi-particle contact interactions in an optical lattice remain rare. By configuring an optofluidic lattice, we demonstrate the precise control of particle interactions and functions such as controlling aggregation and multi-hopping. The mean residence time of a single particle is found considerably reduced from 7 s, as predicted by Kramer’s theory, to 0.6 s, owing to the mechanical interactions among aggregated particles. The optofluidic lattice also enables single-bacteria-level screening of biological binding agents such as antibodies through particle-enabled bacteria hopping. The binding efficiency of antibodies could be determined directly, selectively, quantitatively and efficiently. This work enriches the fundamental mechanisms of particle kinetics and offers new possibilities for probing and utilising unprecedented biomolecule interactions at single-bacteria level. Optical trapping is a versatile tool for biomedical applications. Here, the authors use an optofluidic lattice to achieve controllable multi-particle hopping and demonstrate single-bacteria-level screening and measurement of binding efficiency of biological binding agents through particle-enabled bacteria hopping.
Collapse
Affiliation(s)
- Y Z Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - S Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Y Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - L K Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Y -Y Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - J B Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - T H Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - W Ser
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - A Larrson
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - S H Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - J H Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - T N Chen
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Z C Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Y L Hao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - B Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - P H Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - K Wang
- College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.,Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - D P Tsai
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - C-W Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen, 518060, China.
| | - A Q Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore. .,National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China.
| |
Collapse
|
47
|
Cao T, Bao J, Mao L. Switching of Giant Lateral Force on Sub-10 nm Particle Using Phase-Change Nanoantenna. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201700027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science; Dalian University of Technology; Dalian 116024 China
| | - Jiaxin Bao
- School of Optoelectronic Engineering and Instrumentation Science; Dalian University of Technology; Dalian 116024 China
| | - Libang Mao
- School of Optoelectronic Engineering and Instrumentation Science; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
48
|
Cao T, Qiu Y. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region. NANOSCALE 2018; 10:566-574. [PMID: 29182186 DOI: 10.1039/c7nr05464e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chiral gradient force allows a passive separation of an enantiomer since its direction is dependent on the handedness of its chiral entities. However, chiral polarisability is much weaker than electric polarisability. As a consequence, the non-chiral gradient force dominates over chiral force, which makes enantioselective sorting challenging. We present here, both numerically and analytically, that the chiral gradient force acting on chiral nanoparticles can overcome the non-chiral force when specimens are placed in a Fano-enhanced chiral gradient near-field using a plasmonic nanoaperture. Under circularly polarized light illumination, the interaction between the resonant modes of symmetric outer and asymmetric inner Au split-rings results in a splitting of the modal energies, which excites multipolar interference Fano resonances (FRs). This enables a local aperture between the two split-rings to possess very large optical chirality gradients while maintaining low gradients of electromagnetic energy density around the FRs from the visible region. By way of the lateral resultant force composed of both chiral and non-chiral gradient forces, we can accomplish a helicity-dependent transverse deflection of the chiral nanoparticles positioned above the aperture, which may offer a good platform for all-optical enantiopure compounds.
Collapse
Affiliation(s)
- Tun Cao
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | | |
Collapse
|
49
|
Shi Y, Xiong S, Chin LK, Zhang J, Ser W, Wu J, Chen T, Yang Z, Hao Y, Liedberg B, Yap PH, Tsai DP, Qiu CW, Liu AQ. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. SCIENCE ADVANCES 2018; 4:eaao0773. [PMID: 29326979 PMCID: PMC5756665 DOI: 10.1126/sciadv.aao0773] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/30/2017] [Indexed: 05/18/2023]
Abstract
The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10-8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10-10 to 10-8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Sha Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| | - Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jingbo Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wee Ser
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiuhui Wu
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Tianning Chen
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Zhenchuan Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Yilong Hao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Din Ping Tsai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, China
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| |
Collapse
|
50
|
Padhy P, Zaman MA, Hansen P, Hesselink L. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films. OPTICS EXPRESS 2017; 25:26198-26214. [PMID: 29041280 DOI: 10.1364/oe.25.026198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles trapped on resonant near-field apertures/engravings carved in plasmonic films experience optical forces due to the steep intensity gradient field of the aperture/engraving as well as the image like interaction with the substrate. For non-resonant nanoparticles the contribution of the substrate interaction to the trapping force in the vicinity of the trap (aperture/engraving) mode is negligible. But, in the case of plasmonic nanoparticles, the contribution of the substrate interaction to the low frequency stable trapping mode of the coupled particle-trap system increases as their resonance is tuned to the trap resonance. The strength of the substrate interaction depends on the height of the nanoparticle above the substrate. As a result, a difference in back action mechanism arises for nanoparticle displacements perpendicular to the substrate and along it. For nanoparticle displacements perpendicular to the substrate, the self induced back action component of the trap force arises due to changing interaction with the substrate as well as the trap. On the other hand, for displacements along the substrate, it arises solely due to the changing interaction with the trap. This additional contribution of the substrate leads to more pronounced back action. Numerical simulation results are presented to illustrate these effects using a bowtie engraving as the near-field trap and a nanorod as the trapped plasmonic nanoparticle. The substrate's role may be important in manipulation of plasmonic nanoparticles between successive traps of on-chip optical conveyor belts, because they have to traverse over regions of bare substrate while being handed off between these traps.
Collapse
|