1
|
Soghrati S, Varshosaz J, Rostami M, Mirian M. Co-delivery of dasatinib and miR-30a by liposomes targeting neuropilin-1 receptors for triple-negative breast cancer therapy. J Mater Chem B 2025; 13:1794-1810. [PMID: 39744964 DOI: 10.1039/d4tb02222j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Combinational therapy to treat triple-negative breast cancer (TNBC) by concomitantly influencing different cellular pathways has attracted attention recently. In the present study, co-delivery of dasatinib and miR30a by means of CRGDK-targeted lipopolyplexes was conducted to enhance the inhibition of cell proliferation and migration. For this purpose, we condensed the cationic copolymer poly(1-vinylimidazole-co-2-aminoethyl methacrylate) with miR-30a to form polyplexes. Next, the polyplexes and dasatinib were loaded in targeted liposomes via a thin-film hydration method to form final lipopolyplexes. Physicochemical properties of the nano-carriers were evaluated, and their influence on cellular uptake, cytotoxicity, cell migration, apoptosis induction, and Notch-1 mRNA levels as well as their transfection efficiency were assessed in the MDA-MB-231 cell line. Targeted dasatinib-loaded lipopolyplexes exhibited superior cell proliferation and migration inhibition and cellular uptake than dasatinib, polyplexes and non-targeted lipopolyplexes. Moreover, in comparison with non-targeted lipopolyplexes and polyplexes, targeted lipopolyplexes significantly transfected MDA-MB-231 cells and downregulated Notch-1 mRNA.
Collapse
Affiliation(s)
- Sahel Soghrati
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Pan Y, Qu H, Chen H, Cheng W, Duan Z, Yang J, Wang N, Wu J, Wang Y, Wang C, Xue X. A tumor-targeting porphyrin-micelle with enhanced STING agonist delivery and synergistic photo-/immuno- therapy for cancer treatment. Acta Biomater 2025; 193:377-391. [PMID: 39746530 DOI: 10.1016/j.actbio.2024.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The activation of STING pathway has emerged as a promising strategy in cancer immunotherapy. However, challenges associated with unfavorable physicochemical properties and potential off-target toxicities have limited the application of STING agonists. Here, we develop an amphiphilic and cationic charged porphyrin-polymer to electrostatically load the STING agonist (MSA-2) within a micellar structure, thereby enhancing carrier compatibility and drug-loading content of MSA-2. Additionally, tumor-targeting ligands were functionalized onto the micelle to enhance specificity for tumor cells, aiming to significantly improve tumor accumulation while minimizing undesirable toxicity. The resultant tumor-targeting porphyrin micelle (TPC@M) seamlessly integrates three therapeutic mechanisms: i) tumor ablation via phototherapy; ii) robust activation of the STING pathway by MSA-2; iii) synergistic photo-/immuno- stimulations. TPC@M efficiently ablates primary tumors through phototherapy and further activates adaptive immune responses synergistically with MSA-2-induced innate immunity to suppress metastasis and prevent recurrence. Overall, we transformed a delivery-compromised therapeutic into a precise, stable, and safe nanomedicine that unleashes synergistic immunotherapeutic effects. STATEMENT OF SIGNIFICANCE: This study addresses the urgent need for an efficient delivery system to fully harness the potential of the STING agonist MSA-2 in cancer immunotherapy. The cGAS-STING pathway plays a critical role in modulating anti-tumor immunity; however, the clinical application of MSA-2 has been hindered by its poor physicochemical properties and off-target effects. Our innovative approach introduces a tumor-targeting porphyrin-based polymeric micelle (TPC@M) that efficiently encapsulates MSA-2, overcoming compatibility issues associated with traditional nanocarriers. The TPC@M not only exhibits enhanced tumor targeting and reduced toxicity but also integrates phototherapy with immunotherapy, providing a synergistic strategy for cancer treatment. Our in vivo findings using 4T1 breast cancer mouse models demonstrate significant inhibition of tumor growth and prevention of metastasis, accompanied by a robust and long-lasting immune response.
Collapse
Affiliation(s)
- Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaojiao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjun Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Chen H, Qu H, Pan Y, Cheng W, Xue X. Manganese-coordinated nanoparticle with high drug-loading capacity and synergistic photo-/immuno-therapy for cancer treatments. Biomaterials 2025; 312:122745. [PMID: 39098306 DOI: 10.1016/j.biomaterials.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.
Collapse
Affiliation(s)
- Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Li J, Zhang H, Mao X, Deng H, Fan L, Yue L, Li C, Pan S, Wen X. Preparation, in vitro anti-tumour activity and in vivo pharmacokinetics of RGD-decorated liposomes loaded with shikonin. Pharm Dev Technol 2024; 29:153-163. [PMID: 38330994 DOI: 10.1080/10837450.2024.2315457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Shikonin (SHK) has been evidenced to possess effects against various cancer cells. However, poor aqueous solubility and high toxicity restrict its application. In the study, RGD-decorated liposomes loaded with SHK (RGD-Lipo-SHK) were prepared via thin-film hydration method. Characterization and cellular uptake of liposomes was evaluated. Cytotoxicity of blank liposomes and different SHK formulations was measured against breast cancer cells (MDA-MB-231, MCF-7, and MCF-10A). Anti-tumour effects and pharmacokinetic parameters of different SHK formulations were appraised in tumour spheroids and in rat model, respectively. Liposomes displayed a particle size of less than 127 nm with a polydispersity index about 0.21. The encapsulation efficiency was about 91% for SHK, and drug leakage rate of liposomes was less than 6%. RGD-Lipo-SHK showed superior cellular internalization in the αvβ3-positive MDA-MB-231 cells. Blank liposomes had no cytotoxicity to MDA-MB-231 and MCF-7 cells. Howbeit, different SHK formulations obviously inhibited proliferation of MCF-10A cells, especially free SHK. Meanwhile, RGD-Lipo-SHK significantly inhibited growth inhibition of tumour spheroids. The pharmacokinetics study indicated that the peak concentration, area under plasma concentration-time curves, half-life, and mean residence time of RGD-Lipo-SHK distinctly increased compared with those of free SHK. Altogether, these results demonstrated RGD-Lipo-SHK could reduce cytotoxicity, strengthen the antitumor-targeted effect, and prolong circulation time, which provides a foundation for further in vivo experimentations.
Collapse
Affiliation(s)
- Jiping Li
- Public Health School, Qiqihar Medical University, Qiqihar, China
| | - Hao Zhang
- Pharmacy School, Qiqihar Medical University, Qiqihar, China
| | - Xinliang Mao
- Pharmacy School, Qiqihar Medical University, Qiqihar, China
| | - Huilin Deng
- Pharmacy School, Qiqihar Medical University, Qiqihar, China
| | - Li Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Chengchong Li
- Mental Health School, Qiqihar Medical University, Qiqihar, China
| | - Siwen Pan
- Pathology School, Qiqihar Medical University, Qiqihar, China
| | - Xianchun Wen
- Medical Techinology School, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
5
|
Liu X, Cao Y, Wang S, Liu J, Hao H. Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Deliv Transl Res 2024; 14:295-311. [PMID: 37581742 DOI: 10.1007/s13346-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Extracellular vesicles (EVs), which are nanoparticles that are actively released by cells, contain a variety of biologically active substances, serve as significant mediators of intercellular communication, and participate in many processes, in health and pathologically. Compared with traditional nanodrug delivery systems (NDDSs), EVs have unique advantages due to their natural physiological properties, such as their biocompatibility, stability, ability to cross barriers, and inherent homing properties. A growing number of studies have reported that EVs deliver therapeutic proteins, small-molecule drugs, siRNAs, miRNAs, therapeutic proteins, and nanomaterials for targeted therapy in various diseases. However, due to the lack of standardized techniques for isolating, quantifying, and characterizing EVs; lower-than-anticipated drug loading efficiency; insufficient clinical production; and potential safety concerns, the practical application of EVs still faces many challenges. Here, we systematically review the current commonly used methods for isolating EVs, summarize the types and methods of loading therapeutic drugs into EVs, and discuss the latest progress in applying EVs as NDDs. Finally, we present the challenges that hinder the clinical application of EVs.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yinfang Cao
- Department of Laboratory Medicine, Inner Mongolia People's Hospital, No. 17 Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, People's Republic of China
| | - Shuming Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jiahui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
- Department of Chemistry and Chemical Engineering, Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
6
|
Dzhumashev D, Anton-Joseph S, Morel VJ, Timpanaro A, Bordon G, Piccand C, Aleandri S, Luciani P, Rössler J, Bernasconi M. Rapid liposomal formulation for nucleolin targeting to rhabdomyosarcoma cells. Eur J Pharm Biopharm 2024; 194:49-61. [PMID: 38029941 DOI: 10.1016/j.ejpb.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Victoria J Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
7
|
Yazdian-Robati R, Amiri E, Kamali H, Khosravi A, Taghdisi SM, Jaafari MR, Mashreghi M, Moosavian SA. CD44-specific short peptide A6 boosts cellular uptake and anticancer efficacy of PEGylated liposomal doxorubicin in vitro and in vivo. Cancer Nanotechnol 2023; 14:84. [DOI: 10.1186/s12645-023-00236-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/15/2023] [Indexed: 10/14/2024] Open
Abstract
AbstractAlthough liposomes have improved patient safety and the pharmacokinetic profile of free drugs, their therapeutic efficacy has only shown marginal improvement. The incorporation of active-targeted ligands to enhance cellular uptake has shown promise in preclinical studies. However, no active-targeted liposomes have successfully translated into clinical use thus far. This study aimed to evaluate the targeting ability and antitumor efficiency of A6, a specific short peptide (KPSSPPEE) when incorporated into PEGylated liposomal doxorubicin (PLD). The results revealed significantly enhanced cellular uptake. The cytotoxicity of the formulations was determined by 3 h and 6 h incubation of formulations with cells, followed by 48 h incubation to evaluate the targeted ability of the formulations and the results indicated the higher cytotoxicity of A6-PLD (IC50 of 7.52 µg/mL after 6 h incubation) in the CD44 overexpressing C26 cell line compared to non-targeted PLD (IC50 of 15.02 µg/mL after 6 h incubation). However, CD44-negative NIH-3T3 cells exhibited similar uptake and in vitro cytotoxicity for both A6-PLD (IC50 of 38.05 µg/mL) and PLD (IC50 of 34.87 µg/mL). In animal studies, A6-PLD demonstrated significantly higher tumor localization of doxorubicin (Dox) (~ 8 and 15 µg Dox/g tumor for 24 and 48 after injection) compared to PLD (~ 6 and 8 µg Dox/g tumor for 24 and 48 after injection), resulting in effective inhibition of tumor growth. The median survival time (MST) for Dextrose 5% was 10, PLD was 14 and A6-PLD was 22 days. In conclusion, A6-PLD, a simple and effective targeted liposome formulation, exhibits high potential for clinical translation. Its improved targetability and antitumor efficacy make it a promising candidate for future clinical applications.
Collapse
|
8
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
9
|
Li S, Li F, Wan D, Chen Z, Pan J, Liang XJ. A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery. Bioact Mater 2023; 25:783-795. [PMID: 37056277 PMCID: PMC10086681 DOI: 10.1016/j.bioactmat.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Chemotherapy remains the mainstay of cancer treatment, benefiting millions of patients each year, but the side effects of chemotherapy drugs severely limit their clinical use. Doxorubicin (DOX) can cause various side effects such as heart damage and treatment-related tumors. The effective use of active and passive targeting will improve the clinical application of DOX. Here, TPGS3350 and bioactive peptides were utilized to construct a micelle-based stage-by-stage impelled efficient system (missiles) for DOX delivery (DOX missiles). By taking advantage of the EPR effect, DOX missiles are efficiently enriched at the tumor site. After being cleaved by matrix metalloproteinase2 (MMP2), the peptide (VRGD) targets tumor cells to facilitate uptake of the missiles by the tumor cells via receptor-mediated endocytosis. The intracellular activated caspase-3-catalyzed explosion of DOX missiles further enables efficient tumor killing. This study provides an efficient approach for DOX delivery and toxicity reduction.
Collapse
Affiliation(s)
- Sunfan Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Zuqin Chen
- Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, PR China
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
- Department of Radiology, Chinese PAP Guangxi Corps Hospital, Nanning, Guangxi, PR China
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
10
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
11
|
Sivagnanam S, Das K, Pan I, Barik A, Stewart A, Maity B, Das P. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:836-847. [PMID: 36757106 DOI: 10.1021/acsabm.2c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
12
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Russi M, Valeri R, Marson D, Danielli C, Felluga F, Tintaru A, Skoko N, Aulic S, Laurini E, Pricl S. Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. Eur J Pharm Sci 2023; 180:106311. [PMID: 36273785 DOI: 10.1016/j.ejps.2022.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Rachele Valeri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Chiara Danielli
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Aura Tintaru
- Aix Marseille Univ, CNRS - Centre Interdisciplinaire de Nanosciences de Marseille (CINaM) UMR 7325 - Département IMMF - Campus Luminy, 163, Avenue de Luminy, Marseille 13288, France
| | - Natasa Skoko
- Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Department of General Biophysics, University of Łódź, ul. Pomorska 141/143, Łódź 90-236, Poland
| |
Collapse
|
14
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging Role of Edible Exosomes-Like Nanoparticles (ELNs) as Hepatoprotective Agents. Nanotheranostics 2022; 6:365-375. [PMID: 35795340 PMCID: PMC9254361 DOI: 10.7150/ntno.70999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Liver diseases are responsible for over 2 million deaths each year and the number is rapidly increasing. There is a strong link between edibles, gut microbiota, liver fat and the liver damage. There are very limited therapeutic options for treatment specifically for Alcoholic liver disease (ALD) and Non-Alcoholic liver disease (NAFLD). Recently, identified Edible Exosomes-like nanoparticles (ELNs) are plant derived membrane bound particles, released by microvesicular bodies for cellular communication and regulate immune responses against many pathogens. Many studies have identified their role as hepatoprotective agent as they carry bioactive material as cargoes which are transferred to recipient cells and affect various biological functions in liver. They are also known to carry specific miRNA, which increases the copy number of beneficial bacteria and the production of lactic acid metabolites in gut and hence restrains from liver injury through portal vein. Few in-vitro studies also have been reported about the anti-inflammatory, anti-oxidant and detoxification properties of ELNs which again protects the liver. The properties such as small size, biocompatibility, stability, low toxicity and non-immunogenicity make ELNs as a better therapeutic option. But, till now, studies on the effect of ELNs as therapeutics are still at its infancy yet promising. Here we discuss about the isolation, characterization, their role in maintaining the gut microbiome and liver homeostasis. Also, we give an outline about the latest advances in ELNs modifications, its biological effects, limitations and we propose the future prospective of ELNs as therapeutics.
Collapse
Affiliation(s)
- P Debishree Subudhi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| |
Collapse
|
16
|
Jeong M, Kim H, Yoon J, Kim DH, Park JH. Co-immunomodulation of tumor and tumor-draining lymph node during in situ vaccination promotes antitumor immunity. JCI Insight 2022; 7:146608. [PMID: 35579961 PMCID: PMC9309043 DOI: 10.1172/jci.insight.146608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
In situ vaccination has demonstrated the feasibility of priming local immunity for systemic antitumor responses. Although direct intratumoral delivery of adjuvant is the mainstay, tumor-draining lymph nodes (TDLNs) also play essential roles in antitumor immunity. We report that directing an adjuvant to both tumors and TDLNs during in situ vaccination can induce robust antitumor responses. Conventional intratumoral dosing leads to tumor-limited delivery of agents; however, delivery to both tumors and TDLNs can be ensured through a micellar formation. The peritumoral delivery of micellar MEDI9197 (mcMEDI), a toll-like receptor 7/8 agonist, induced significantly stronger innate and adaptive immune responses than those on conventional dosing. Optimal dosing was crucial because excessive or insufficient accumulation of the adjuvant in the TDLNs compromised therapeutic efficacy. The combination of local mcMEDI therapy significantly improved the efficacy of systemic anti-programmed death receptor-1 therapy. These data suggest that rerouting adjuvants to tumors and TDLNs can augment the therapeutic efficacy of in situ vaccination.
Collapse
Affiliation(s)
- Moonkyoung Jeong
- Department of Bio and Brain Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | - Heegon Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Junyong Yoon
- Department of Bio and Brain Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea, Republic of
| |
Collapse
|
17
|
Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J Control Release 2022; 346:43-70. [PMID: 35405165 DOI: 10.1016/j.jconrel.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
18
|
Chen N, Sun J, Zhu Z, Cribbs AP, Xiao B. Edible plant-derived nanotherapeutics and nanocarriers: recent progress and future directions. Expert Opin Drug Deliv 2022; 19:409-419. [PMID: 35285349 DOI: 10.1080/17425247.2022.2053673] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/11/2022] [Indexed: 12/19/2022]
Abstract
INTRODUCTION High drug delivery efficiency, desirable therapeutic effects, and low toxicity have become crucial to develop nanotherapeutics. Natural nanoparticles (NPs) from edible plants contain a large quantity of bioactive small molecules, proteins, glycolipids, and microRNAs. The development of these NPs has rapidly attracted increasing attention due to their merits of green production, excellent biocompatibility, anti-inflammatory activities, and antitumor capacities. AREAS COVERED Here, we introduce the extraction, purification, and construction strategies of plant-derived exosome-like NPs (PDENs) and expound on their physicochemical properties, biomedical functions, and therapeutic effects against various diseases. We also recapitulate future directions and challenges of the emerging nanotherapeutics. EXPERT OPINION PDENs have been used as natural nanotherapeutics and nanocarriers. The challenges of applying PDENs primarily stem from the lack of understanding of the mechanisms that drive the tissue-specific targeting properties. Elucidating the underlying targeting mechanisms is one of the major focuses in this review, which helps to gain new research opportunities for the development of natural nanotherapeutics. Despite excellent biosafety and therapeutic effects in the treatment of various diseases, the medical translation of these NPs has still been limited by low yields and cold-chain dependence. Therefore, exploiting new techniques will be required for their massive production and storage.
Collapse
Affiliation(s)
- Nanxi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, UK
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, UK
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, Sichuan, China
| |
Collapse
|
19
|
Qin J, Xue L, Gong N, Zhang H, Shepherd SJ, Haley RM, Swingle KL, Mitchell MJ. RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Adv 2022; 12:25397-25404. [PMID: 36199352 PMCID: PMC9450108 DOI: 10.1039/d2ra02771b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
mRNA therapeutics are promising platforms for protein replacement therapies and gene editing technologies. When delivered via non-viral gene delivery systems, such as lipid nanoparticles (LNPs), mRNA therapeutics are easy to produce and show low toxicity and immunogenicity. However, LNPs show limited delivery efficiency and tissue specificity in certain applications. To overcome this, we designed RGD peptide (Arg-Gly-Asp) based ionizable lipids, which can be formulated into LNPs for integrin binding on cells and targeted mRNA delivery. RGD-LNPs were formulated using microfluidic devices and screened in vitro for size, mRNA encapsulation efficiency, transfection efficiency, and cell viability. A lead candidate, 1A RGD-based hybrid LNP, showed effective mRNA encapsulation and transfection, and was selected for further testing, including the co-delivery of Cas9 mRNA and sgRNA for gene editing applications. In vitro, 1A RGD-based hybrid LNP outperformed a non-targeted control LNP and showed GFP knockout efficiencies up to 90%. Further, the improved cellular uptake was reversed in the presence of soluble RGD, supporting the hypothesis that this improved uptake is RGD-dependent. In vivo, 1A RGD-based hybrid LNPs showed comparable mRNA delivery to the liver and spleen, when compared to a non-targeted control, and had increased expression in the whole body. Overall, this RGD-based hybrid LNP system is a promising platform for targeted mRNA delivery, which may allow for mRNA-based protein replacement and gene editing in a more efficient and specific manner with reduced off-target effects. We developed RGD peptide based ionizable lipids, which can be formulated into LNPs for integrin-dependent targeted mRNA delivery and gene editing applications.![]()
Collapse
Affiliation(s)
- Jingya Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanwen Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J. Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L. Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
20
|
Zhang Y, Qu H, Xue X. Blood-brain barrier penetrating liposomes with synergistic chemotherapy for glioblastoma treatment. Biomater Sci 2021; 10:423-434. [PMID: 34873606 DOI: 10.1039/d1bm01506k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and malignant brain tumor with high mortality. The current treatment strategies are still unsatisfactory for this devastating disease. Here, we developed a glucose-functionalized liposome (gLTP) that co-loads temozolomide (TMZ) and pro-apoptotic peptide (PAP) to achieve synergistic efficacy towards GBM. The gLTP can readily penetrate the blood-brain barrier via the glucose-GLUT1 pathway and release the TMZ and PAP in the cells. The PAP destroys the mitochondria and subsequently depletes ATP generation, making the GBM cells more sensitive to TMZ-mediated chemotherapy. gLTP exhibits the best anti-tumor effect on the subcutaneous brain tumor model compared to other treatments, including a single drug (TMZ or PAP) liposome and TMZ and PAP physical mixture. On the highly aggressive intracranial tumor model, gLTP can readily penetrate the BBB and efficiently deliver the drugs into the brain tumor, leading to striking improvements in total survival compared to the other treatments. This strategy potentially inspires new attempts to design more effective anti-GBM formulations.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Haijing Qu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangdong Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China. .,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Chibhabha F, Yang Y, Ying K, Jia F, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer's disease. J Mater Chem B 2021; 8:7438-7452. [PMID: 32662804 DOI: 10.1039/d0tb01101k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease clinically characterized by impaired memory and progressive cognitive decline. Despite the advances in AD research, an effective method to timely diagnose AD has remained elusive, and until now, most AD patients receive the available symptomatic treatments late. Although the pathological hallmarks of AD have been traditionally described in the brain, recent studies have shown similar pathological changes in the retina which is developmentally an extension of the forebrain. Interestingly, retinal beta-amyloid (Aβ) accumulation preceded that of the brain in a transgenic mouse model of AD. In the quest of finding an early reliable biomarker for AD, researchers have targeted the optical imaging of retinal Aβ plaques as a method of diagnosing AD. One promising polyphenol compound that has found application in this area is curcumin due to its natural binding affinity to Aβ fibrils and oligomers while giving out a strong fluorescence signal. However, the clinical applications of curcumin have been difficult due to problems related to its bioavailability and retention in the body since it is a hydrophobic molecule. To address these limitations, we herein report the development of anionic and water-soluble DSPE-PEG2000 curcumin polymeric micelles (also referred to as curcumin micelles) that can label both brain and retinal Aβ plaques ex vivo. Following their intravitreal injection in the APPswe/PS1ΔE9 transgenic mouse model of AD, green-labeled retinal deposits were optically imaged live using a rodent retinal microscope. Furthermore, these micelles had excellent intraocular biocompatibility, low hemolytic ratio, and were safe for use in two key retinal cell lines (ARPE-19 and 661W cells). Taken together, these findings provide an alternative insight into the optical imaging of Aβ plaques for the diagnosis of AD using the eyes. More importantly, this study can be translated to humans in the future to improve on early diagnosis and timely management of the disease.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jia F, Chibhabha F, Yang Y, Kuang Y, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Detection and monitoring of the neuroprotective behavior of curcumin micelles based on an AIEgen probe. J Mater Chem B 2021; 9:731-745. [PMID: 33315037 DOI: 10.1039/d0tb02320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the role of mitochondrial injury in the pathogenesis of Alzheimer's disease (AD) has attracted extensive attention. Studies have shown that curcumin (Cur) can protect nerve cells from beta-amyloid (Aβ)-induced mitochondrial damage. However, natural Cur encounters limited application due to its poor biocompatibility and bioavailability. To improve the solubility and biocompatibility of natural Cur, we prepared water-soluble curcumin micelles (CurM). Furthermore, the mitochondria-specific aggregation-induced emission (AIE) probe (TPE-Ph-In) was employed to observe the protective effect of CurM on the damage of mitochondrial morphology, distribution, and membrane potential caused by Aβ. Results showed that CurM had higher solubility, stronger stability and retention effect, and better cellular uptake than that of natural Cur. Furthermore, the inhibitory effects of CurM on mitochondrial morphology, distribution, and membrane potential damage induced by Aβ25-35 were observed utilizing TPE-Ph-In as an indicator of mitochondrial morphology and membrane potential. Thus, this method provides a useful strategy for experimental research and clinical treatment of AD with mitochondrial damage as the pathogenic mechanism.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou X, Shang L, Wang Z, Guo Y, Zhang J, Ye W, Zhong L, Jiang H. RETRACTED: Novel thermally activated delayed fluorescence nano-micelle for tumor imaging. Photodiagnosis Photodyn Ther 2021; 33:102178. [PMID: 33429096 DOI: 10.1016/j.pdpdt.2021.102178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. In Figure 8, the results showed that the average fluorescence lifetime of TADF-NM was 212 μs. Further research found that TADF-NM did not have this effect. The authors apologize for any inconvenience this may cause.
Collapse
Affiliation(s)
- Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin 150081, China; Department of Radiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Liang Shang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhaopeng Wang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yufeng Guo
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiarui Zhang
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Ye
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Huijie Jiang
- Department of Radiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
24
|
Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang XJ. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J Control Release 2021; 331:282-295. [DOI: 10.1016/j.jconrel.2020.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
|
25
|
Zheng Y, Fang X, Yang Y, Wang C. Peptide-directed delivery of drug-loaded nanocarriers targeting CD36 overexpressing cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ozaki M, Yoshida S, Tsuruoka T, Usui K. Intracellular mineralization of gold nanoparticles using gold ion-binding peptides with cell-penetrating ability. Chem Commun (Camb) 2021; 57:725-728. [PMID: 33411858 DOI: 10.1039/d0cc06117d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a system to directly produce gold nanoparticles in cells by intracellular mineralization in lower concentration than conventional methods using a peptide consisting of a cell-penetrating sequence and a gold ion-binding sequence. Furthermore, we could control the uniquely shaped gold nanostructures that were produced by changing peptide structures.
Collapse
Affiliation(s)
- Makoto Ozaki
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 6500047, Kobe, Japan.
| |
Collapse
|
27
|
Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J Control Release 2021; 333:41-64. [PMID: 33450321 DOI: 10.1016/j.jconrel.2021.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
For the past few years, nanotechnology has provided a lot of new treatment opportunities for prostate cancer patients, and brilliant achievements have been acquired indeed. It not only prolonged circulation time in vivo but also increased bio-availability of drugs. Among them, nanoparticles with specificity ligand can be better targeted at prostate cancer, which improves the curative effect and reduces side effects. What's more, in terms of combined administration, the synergistic effect of chemotherapeutic drugs and hormones, or co-delivery two or more different drugs into the same delivery system, has achieved good therapeutic progress as well. In this paper, a comprehensive overview of nano-technology and the combination therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies have been proposed to further appreciate and recommend the design and development of prostate cancer treatment.
Collapse
|
28
|
Wang S, An J, Dong W, Wang X, Sheng J, Jia Y, He Y, Ma X, Wang J, Yu D, Jia X, Wang B, Yu W, Liu K, Zhao Y, Wu Y, Zhu W, Pan Y. Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway. Int J Nanomedicine 2020; 15:7951-7965. [PMID: 33116511 PMCID: PMC7569050 DOI: 10.2147/ijn.s213079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma. Methods Different solutions including 5% glucose, 1*PBS, ddH2O, 0.9% NaCl, cell culture medium were selected, and only 5% glucose and ddH2O exhibited BBR-related nanoparticles. After heating for a longer time or adding a higher concentration of glucose solution, BBR nanoparticles were detected by TEM analysis. The uptake of BBR-Glu or BBR-Water nanoparticles were detected by immunofluorescence analysis for BBR autofluorescence. Cell viability was measured by MTT assay and Western blotting analysis. Apoptosis was performed with flow cytometric analysis and was detected by cleaved caspase-3 immuno-fluorescent staining. Cell cycle was used by flow cytometric analysis. Cytoskeleton was observed by confocal analysis using the neuron specific Class III ß-tubulin and ß-tubulin antibodies. Mitochondrial-related proteins were detected by Western blotting analyses and mito-tracker staining in live cells. Mitochondrion structures were observed by TEM analysis. ROS generation and ATP production were detected by related commercial kits. The tracking of BBR-Glu or BBR-Water nanoparticles into blood–brain barrier was observed in primary tumor-bearing models. The fluorescence of BBR was detected by confocal analyses in brains and gliomas. Results BBR-Glu nanoparticles became more homogenized and smaller with dose- and time-dependent manners. BBR-Glu nanoparticles were easily absorbed in glioma cells. The IC50 of BBR-Glu in U87 and U251 was far lower than that of BBR-Water. BBR-Glu performed better cytotoxicity, with higher G2/M phase arrest, decreased cell viability by targeting mitochondrion. In primary U87 glioma-bearing mice, BBR-Glu exhibited better imaging in brains and gliomas, indicating that more BBR moved across the blood–brain tumor barrier. Discussion BBR-Glu nanoparticles have better solubility and stability, providing a promising strategy in glioma precision treatment.
Collapse
Affiliation(s)
- Shubin Wang
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Juan An
- Department of Basic Research Medical Sciences, Qinghai University, Xining 810001, People's Republic of China
| | - Weiwei Dong
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing 100085, People's Republic of China
| | - Xin Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jianqiu Sheng
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yan Jia
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yuqi He
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Xianzong Ma
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jiheng Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Dedong Yu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Xiuqin Jia
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Bingyu Wang
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Wenbo Yu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Kejia Liu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Yuanyuan Zhao
- National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yun Wu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Yuanming Pan
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China.,Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China.,National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
29
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
30
|
Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, Mutalik S. Factors affecting the morphology of some organic and inorganic nanostructures for drug delivery: characterization, modifications, and toxicological perspectives. Expert Opin Drug Deliv 2020; 17:1737-1765. [PMID: 32878492 DOI: 10.1080/17425247.2020.1819237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Abhjieet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Aswathi Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Shaik Mohammad Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway, NSW, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| |
Collapse
|
31
|
Ilhami FB, Alemayehu YA, Fan WL, Tsai HC, Kao CY, Cheng CC. Adenine-Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy. Macromol Biosci 2020; 20:e2000233. [PMID: 32869957 DOI: 10.1002/mabi.202000233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Indexed: 11/09/2022]
Abstract
Functional supramolecular micelles containing self-complementary multiple hydrogen bonding adenine groups (A-PPG) can spontaneously self-assemble into stable nanosized micelles in aqueous solution. These micelles can be used to selectively deliver anticancer drugs to cancer cells and effectively promote tumor cell death via apoptosis, without harming normal cells. The drug-loaded micelles exhibit tunable drug-loading capacity and rapid pH-triggered drug release under acidic conditions, as well as a high drug-entrapment stability in serum-rich media due to the reversible hydrogen-bonded adenine-adenine interactions within the micellar interior; these properties are critical to achieving effective chemotherapeutic drug delivery and controlled drug release. In vitro assays show that the drug-loaded micelles exert significant cytotoxic effects on cancer cells, with minimal effects on normal cells under physiological conditions. Cytotoxicity assays using A-PPG micelles loaded with different anticancer drugs confirm these effects. Importantly, cellular internalization and flow cytometric analyses demonstrate that the adenine moieties within A-PPG micelles significantly increase selective endocytic uptake of the supramolecular micelles by cancer cells, which in turn induce apoptotic cell death and substantially enhance the response to chemotherapy. Thus, A-PPG micelles can improve the safety and efficacy of cancer chemotherapy.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.,Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yihalem Abebe Alemayehu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Wen-Lu Fan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chen-Yu Kao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
32
|
Ahn J, Jin H, Park J, Lee B, Ok M, Lee JH, Bae J, Jung JH. Coassembled Nanoparticles Composed of Functionalized Mesoporous Silica and Pillar[5]arene‐Appended Gold Nanoparticles as Mitochondrial‐Selective Dual‐Drug Carriers. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2020; 37. [DOI: 10.1002/ppsc.202000136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/20/2024]
Abstract
AbstractCoassembled nanoparticles composed of functionalized mesoporous silica and pillar[5]arene‐appended Au nanoparticles obtained through the formation of a host–guest complex are designed and synthesized as a mitochondrial‐selective dual‐drug delivery system. A pyridinium‐based ligand and fluorescein isothiocyanate are immobilized onto mesoporous silica to act as the mitochondria‐targeting ligand and fluorescence tracker, respectively, of a material dubbed NP‐3. Carboxylated pillar[5]arene‐capped Au nanoparticles (CP‐AuNPs) are fabricated by the templated reduction of Au3+. Interestingly, coassembled nanoparticles (NP‐1) composed of doxorubicin (DOX) loaded NP‐3 and CP‐AuNPs are then prepared via the formation of a host–guest complex between the pyridinium‐based ligand of NP‐3 and the pillar[5]arene of CP‐AuNPs. To demonstrate the effectiveness of NP‐2 and NP‐1 as mitochondrial targeting drug delivery systems, DOX and F16 are employed as model drugs. These drugs loaded onto NP‐2 and CP‐AuNPs, respectively, are selectively delivered to mitochondria, indicating the usefulness of NP‐2 and CP‐AuNPs as mitochondrial‐specific drug‐delivery carriers in cancer cells. More interestingly, the use of NP‐1 is also associated with the selective accumulation of DOX and F16 in mitochondria. The selective mitochondrial‐targeting of NP‐1 is possible by NP‐2 and F16 exposed to the cytoplasm, allowing the codelivery of the two drugs to the mitochondria.
Collapse
Affiliation(s)
- Junho Ahn
- Carbon Composites Department Korea Institute of Materials Science (KIMS) 797 Changwondaero Changwon 51508 Republic of Korea
| | - Hanyong Jin
- School of Pharmacy Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu Seoul 06974 Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University 501 jinjudaero Jinju 52828 Republic of Korea
| | - Boeun Lee
- School of Pharmacy Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu Seoul 06974 Republic of Korea
| | - Mirae Ok
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University 501 jinjudaero Jinju 52828 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Jeehyeon Bae
- School of Pharmacy Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu Seoul 06974 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University 501 jinjudaero Jinju 52828 Republic of Korea
| |
Collapse
|
33
|
Zhang W, Yu L, Ji T, Wang C. Tumor Microenvironment-Responsive Peptide-Based Supramolecular Drug Delivery System. Front Chem 2020; 8:549. [PMID: 32775317 PMCID: PMC7388741 DOI: 10.3389/fchem.2020.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Physical and biochemical differences between tumor tissues and normal tissues provide promising triggering factors that can be utilized to engineer stimuli-responsive drug delivery platforms for cancer treatment. Rationally designed peptide-based supramolecular architectures can perform structural conversion by responding to the tumor microenvironment and achieve the controlled release of antitumor drugs. This mini review summarizes recent approaches for designing internal trigger-responsive drug delivery platforms using peptide-based materials. Peptide assemblies that exhibit a stimuli-responsive structural conversion upon acidic pH, high temperature, high oxidative potential, and the overexpressed proteins in tumor tissues are emphatically introduced. We also discuss the challenges of current peptide-based supramolecular delivery platforms against cancer.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Zhang M, Weng Y, Cao Z, Guo S, Hu B, Lu M, Guo W, Yang T, Li C, Yang X, Huang Y. ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32289-32300. [PMID: 32584027 DOI: 10.1021/acsami.0c06614] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small interfering RNA (siRNA) shows excellent pharmaceutical prospects in treating diverse life-threatening diseases. Photodynamic therapy (PDT) is a clinically employed noninvasive treatment method that can trigger selective damage toward targeted tissue and cells. However, insufficient delivery of siRNA and photosensitizer to cancer cells remarkably hindered the application of siRNA and PDT in the treatment of cancer. In this study, a unique reactive oxygen species (ROS)-activatable polyplex, which consists of the PEGylated cationic polymer, ROS-cleavable linker, photosensitizer Ce6, and RRM2-against siRNA, termed PPTC/siRNA, was engineered. Upon irradiation of near-infrared (NIR) light, the polyplex efficiently generated ROS, which triggered degradation of the ROS-sensitive linker, disassembling the complex, destabilization of the cell membrane, and significantly accelerated cellular entry and endosomal escape of siRNA. Besides achieving effective siRNA internalization and gene silence in cancer cells in vitro, PPTC/siRNA synergistically inhibited tumor growth in both cell line-derived xenograft and patient-derived xenograft hepatocellular carcinoma murine models by repressing the RRM2 expression (reducing cell proliferation) and triggering photodynamic killing (enhancing cell apoptosis). The proposed polyplex also showed ideal safety profiles both in cell line and in animal. It provides a novel strategy for NIR-triggered RNAi and PDT combinational cancer treatment.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuai Guo
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Hu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mei Lu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Tongren Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunhui Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai 519085, P. R. China
| |
Collapse
|
35
|
Zhao W, Wei H, Liu F, Ran C. Glucose ligand modififed thermally activated delayed fluorescence targeted nanoprobe for malignant cells imaging diagnosis. Photodiagnosis Photodyn Ther 2020; 30:101744. [DOI: 10.1016/j.pdpdt.2020.101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
|
36
|
Zu R, Fang X, Lin Y, Xu S, Meng J, Xu H, Yang Y, Wang C. Peptide-enabled receptor-binding-quantum dots for enhanced detection and migration inhibition of cancer cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1604-1621. [PMID: 32419632 DOI: 10.1080/09205063.2020.1764191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the efforts to construct active targeting quantum dots using receptor-binding peptide for enhanced detection and migration inhibition of cancer cells. Peptide E5 has specific binding with chemokine receptor 4 (CXCR4), which is a transmembrane G-coupled receptor involved in the metastasis of various types of cancers. E5 was introduced to the surface of CdSe/ZnS quantum dots via biotin-streptavidin interactions. The constructed CXCR4-targeting quantum dots (E5@QDs) was observed to display improved detection sensitivity and significantly enhanced binding affinity for CXCR4 over-expressed cancer cells, and the ability to inhibit cancer cells migration induced by CXCL12.
Collapse
Affiliation(s)
- Ruijuan Zu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuchen Lin
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Tolentino MQ, Hartmann AK, Loe DT, Rouge JL. Controlled release of small molecules and proteins from DNA-surfactant stabilized metal organic frameworks. J Mater Chem B 2020; 8:5627-5635. [PMID: 32391534 DOI: 10.1039/d0tb00767f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work highlights a multifunctional nanoscale material which can effectively compartmentalize small molecules and biomolecules into a single, micellar structure with programmable degradation properties resulting in highly controllable release properties. The nanomaterial consists of a ZIF-8 metal organic framework (MOF) encapsulated within a DNA surfactant micelle assembly, referred to as a nucleic acid nanocapsule (NAN). NANs have been demonstrated to enter cells through endocytosis and result in intracellular cargo release upon enzyme-triggered degradation. By combining the favorable properties of MOFs (large storage capacity) with those of NANs (triggerable release), we show diverse molecular cargo can be integrated into a single, highly programmable nanomaterial with controllable release profiles. The hybrid MOF-NANs exhibit double-gated regulation capabilities as evidenced by kinetic studies of encapsulated enzymes that indicate individual layers of the particle influence the overall enzymatic rate of turnover. The degradation of MOF-NANs can be controlled under multiple combined stimuli (i.e. varying pH, enzymes), enabling selective release profiles in solutions representative of more complex biological systems. Lastly, the enhanced control over the release of small molecules, proteins and plasmids, is evaluated through a combination of cell culture and in vitro fluorescence assays, indicating the potential of MOF-NANs for both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Mark Q Tolentino
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
38
|
Liu D, Wang C, Yang J, An Y, Yang R, Teng G. CRGDK-Functionalized PAMAM-Based Drug-Delivery System with High Permeability. ACS OMEGA 2020; 5:9316-9323. [PMID: 32363282 PMCID: PMC7191571 DOI: 10.1021/acsomega.0c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The low tumor permeability of nanomedicines is a major challenge for their application in tumor therapy. Reducing the size of nanomedicines or integrating penetrating peptides has been demonstrated to be very helpful to improve the tumor permeability of nanomedicines. In this paper, poly(amidoamine) (PAMAM) functionalized with the penetrating peptide CRGDK was designed as a drug carrier with a diameter of ∼5 nm. Paclitaxel (PTX) was used as a model drug and covalently linked to the carrier via a biocleavable ester bond. The CRGDK-functionalized drug-loaded nanoparticle exhibited a higher cellular uptake and a higher tumor accumulation and penetration than its nontargeted counterpart, which also endowed the functionalized nanomedicine with a higher antitumor efficiency than its nontargeted counterpart and the clinical Taxol formulation. The good performance of the peptide-bearing PAMAM-based nanomedicine indicates that our strategy is feasible to improve the tumor accumulation and penetration of nanomedicines.
Collapse
Affiliation(s)
- Dongfang Liu
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Chao Wang
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Jian Yang
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Yanli An
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Rui Yang
- Central
Laboratory, Wuxi Maternity and Child Health
Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, Jiangsu Province, China
| | - Gaojun Teng
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Medical School, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| |
Collapse
|
39
|
Yang C, Zhang M, Lama S, Wang L, Merlin D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J Control Release 2020; 323:293-310. [PMID: 32335157 DOI: 10.1016/j.jconrel.2020.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
Abstract
The anti-inflammatory drug candidate, 6-shogaol, has demonstrated excellent efficacies in various in vitro studies. However, its rapid metabolism after oral administration results in poor bioavailability and undetectable in vivo pharmacokinetics. Here, we constructed a natural-lipid (NL) nanoparticle drug delivery system (NP-DDS) to encapsulate 6-shogaol and undertake its controlled release to the proposed drug target (colon). Our in vitro drug-release assay revealed that NL-encapsulated 6-shogaol (6-S-NL) exhibits a delayed drug-release profile compared to free 6-shogaol (free-6-S). Consistent with our expectations, orally administrated 6-S-NL exhibits a superior anti-inflammatory efficacy likely due to the controlled release compared to free 6-S in a dextran sulfate sodium (DSS)-induced mouse model of colitis. Although 6-S-NL treatment yields an enhanced concentration of 6-shogaol at the target site (colon), this concentration is still far below the effective level. We hypothesize that the released 6-shogaol undergoes rapid metabolism and that the metabolites of 6-shogaol may contribute to the anti-inflammatory efficacy of 6-S-NL. We thus examined the in vitro anti-inflammatory efficacies of two highly abundant colonic metabolites, M2 (a cysteine-conjugated metabolite) and M13 (a glutathione-conjugated metabolite), against macrophage cells. Reverse transcription-polymerase chain reaction (RT-PCR) data showed that both M2 and M13 (at 1.0 μg/mL) could down-regulate pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and up-regulate an anti-inflammatory factor (IL-10) in inflamed Raw 264.7 cells. Subsequent in vitro wound-healing assays also confirmed that M2 and M13 accelerate the wound recovery process of Caco-2 cells at the concentrations seen in the colon (1.0 μg/mL). Further, in the DSS-induced mouse model of colitis, oral administration of M2- or M13-loaded NL nanoparticles (M2-NL, M13-NL) demonstrated excellent in vivo wound-healing effects, and these activities were better than those observed for 6-S-NL. Combined with the 6-S-NL's bio-distribution assay, our data show that: the 6-shogaol metabolites, M2 and M13, are more potent anti-inflammatory compounds than 6-shogaol itself; NL nanoparticles can effectively deliver 6-shogaol to the colon, with little accumulation seen in the kidney or liver; and the actions of M2 and M13 mostly confer the anti-inflammatory effect of 6-S-NL. Our results explained the discrepancy between the low tissue concentrations of NL delivered 6-shogaol and its effectiveness against ulcerative colitis (UC) in a mouse model. This study paved the way for further developing the NL-loaded active metabolites, M2 or M13, as novel targeted therapeutic approaches for curing UC.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA.
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Sudeep Lama
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA
| | - Lixin Wang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30303, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA 30302, USA
| |
Collapse
|
40
|
Wang HW, Ma KL, Liu H, Zhou JY. Reversal of multidrug resistance in leukemia cells using a transferrin-modified nanomicelle encapsulating both doxorubicin and psoralen. Aging (Albany NY) 2020; 12:6018-6029. [PMID: 32259795 PMCID: PMC7185111 DOI: 10.18632/aging.102992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
To ameliorate multidrug resistance (MDR) observed in leukemia cells, nanomicelles modified by transferrin (Tf-M-DOX/PSO), coencapsulating doxorubicin (DOX) and psoralen (PSO), were designed, synthesized and tested in K562 and doxorubicin-resistant K562 (K562/DOX) cells. In vitro drug release kinetics for constructed nanomicelles were measured using high-performance liquid chromatography. Characterization of the produced nanomicelles was completed using transmission electron microscopy and dynamic light scattering. Uptake of the nanomicelles in K562 cells was investigated using both confocal microscopy and flow cytometry. Apoptosis levels as well as the expression of glycoprotein (P-gp) were analyzing by western blotting and flow cytometry. Cellular cytotoxicity resulting from the exposure of nanomicelles was evaluated using MTT assays. The nanomicelles all showed mild release of DOX in PBS solution. In K562/DOX cells, Tf-M-Dox/PSO exhibited higher uptake compared to the other nanomicelles observed. Furthermore, cellular cytotoxicity when exposed to Tf-M-Dox/PSO was 2.8 and 1.6-fold greater than observed in the unmodified DOX and Tf-nanomicelles loaded with DOX alone, respectively. Tf-M-Dox/PSO strongly increased apoptosis of K562/DOX cells. Finally, the reversal of the drug resistance when cells are exposed to Tf-M-DOX/PSO was associated with P-gp expression inhibition. The Tf-M-Dox/PSO nanomicelle showed a reversal of MDR, with enhanced cellular uptake and delivery release.
Collapse
Affiliation(s)
- He-Wen Wang
- Department of Pediatrics, Rizhao People's Hospital, Shandong, China
| | - Ke-Ling Ma
- Department of Pediatrics, Rizhao People's Hospital, Shandong, China
| | - Hua Liu
- Department of Pediatrics, Rizhao People's Hospital, Shandong, China
| | - Jia-Yun Zhou
- Department of Pediatrics, Rizhao People's Hospital, Shandong, China
| |
Collapse
|
41
|
Liu W, Li J, Qin Z, Yao M, Tian X, Zhang Z, Zhang L, Guo Q, Zhang L, Zhu D, Yao F. Zwitterionic Unimolecular Micelles with pH and Temperature Response: Enhanced In Vivo Circulation Stability and Tumor Therapeutic Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3356-3366. [PMID: 32160754 DOI: 10.1021/acs.langmuir.0c00206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circulation stability in vivo and stimuli-responsiveness under a tumor microenvironment of the polymeric prodrug micellar drug delivery systems are very critical to improve the tumor therapeutic efficiency. In this study, a series of polyamidoamine (PAMAM)-graft-poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA)-block-poly(betaine sulfonate) (PSBMA) (PDS) unimolecular micelles were prepared via atom transfer radical polymerization. PAMAM served as a hydrophobic core to load the drug, the PDMAEMA segment was a middle layer to provide both thermo- and pH-sensitivity, whereas the PSMBA shell layer was used to improve the stability of the unimolecular micelles. The PDS exhibited a spherical structure with the size of 10-20 nm at pH 7.4. PDS micelles had excellent stability to resist the large volume liquid dilution. Moreover, it exhibited excellent stability in a complex biological microenvironment because of a superhigh antiprotein adhesion capacity of the PSBMA shell layer compared with PAMAM micelles. Drug release studies confirmed that the DOX can remain in the PDS micelles at pH 7.4 and 37 °C, whereas it can rapidly be released when the pH decreases to 5.0 and/or the temperature increases to 40 °C. In vitro studies suggested that the PDS drug delivery system can effectivity induce apoptosis and inhibit the proliferation of cancer cells. In vivo studies suggested that the PDS micelles prolonged the circulation time, decreased the side effects, and increased the antitumor efficacy. Therefore, the prepared PDS micelles are a potential anticancer drug delivery carrier for cancer therapy.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhihui Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinlu Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Li Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qin Guo
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
42
|
Shadmani P, Mehrafrooz B, Montazeri A, Naghdabadi R. Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:115101. [PMID: 31751982 DOI: 10.1088/1361-648x/ab5a14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Upon incubation of nanoparticles in biological fluids, a new layer called the protein corona is formed on their surface affecting the interactions between nanoparticles and targeted cells during the endocytosis process. In the present study, a mathematical model based on the diffusion of membrane mobile receptors is proposed. Opposing the endocytosis proceeding, membrane bending and tension energies are named as resistant energy. Also, the binding energy and free-energy associated with the configurational entropy are collectively termed promoter energy. Utilizing this model, endocytosis of gold nanoparticle (GNP) is simulated to explore the biological media effect. The results reveal that there exists a nanoparticle size of 60 nm at which, the endocytosis time is at a minimum. It has been illustrated that, although for sufficiently small particles of diameter 30nm, membrane tension has a negligible contribution (<10%) in the resistant energy, it noticeably increases the endocytosis processing time for large particles. Therefore, we report several parametric studies to provide a better insight into the effects of biological media on the ingestion of nanoparticles. Through a detailed analysis of the engulfment of the nanoparticles, it is shown that the nanoparticle radius corresponding to the quickest possible ingestion time is affected in the presence of corona. Moreover, it is found that the formation of this layer does not only affect the endocytosis time but also can lead to incomplete engulfment by decreasing the ligand density on the nanoparticle surface. Use of the proposed model can play a significant role in advancing the design of nanoparticles in targeted drug delivery applications.
Collapse
Affiliation(s)
- P Shadmani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | | | | |
Collapse
|
43
|
Ge C, Yang J, Duan S, Liu Y, Meng F, Yin L. Fluorinated α-Helical Polypeptides Synchronize Mucus Permeation and Cell Penetration toward Highly Efficient Pulmonary siRNA Delivery against Acute Lung Injury. NANO LETTERS 2020; 20:1738-1746. [PMID: 32039603 DOI: 10.1021/acs.nanolett.9b04957] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mucus layer and cell membrane are two major barriers against pulmonary siRNA delivery. Commonly used polycationic gene vectors can hardly penetrate the mucus layer due to the adsorption of mucin glycoproteins that trap and destabilize the polyplexes. Herein, guanidinated and fluorinated bifunctional helical polypeptides were developed to synchronizingly overcome these two barriers. The guanidine domain and α-helix facilitated trans-membrane siRNA delivery into macrophages, whereas fluorination of the polypeptides dramatically enhanced the mucus permeation capability by ∼240 folds, because incorporated fluorocarbon segments prevented adsorption of mucin glycoproteins onto polyplexes surfaces. Thus, when delivering TNF-α siRNA intratracheally, the top-performing polypeptide P7F7 provoked highly efficient gene knockdown by ∼96% at 200 μg/kg siRNA and exerted pronounced anti-inflammatory effect against acute lung injury. This study thus provides an effective strategy for transmucosal gene delivery, and it also renders promising utilities for the noninvasive, localized treatment of inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jiandong Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yong Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Self-assembled PEI nanomicelles with a fluorinated core for improved siRNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Gonçalves M, Mignani S, Rodrigues J, Tomás H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J Control Release 2020; 317:347-374. [PMID: 31751636 DOI: 10.1016/j.jconrel.2019.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide and, as such, efforts are being done to find new chemotherapeutic drugs or, alternatively, novel approaches for the delivery of old ones. In this scope, when used as vehicles for drugs, nanomaterials may potentially maximize the efficacy of the treatment and reduce its side effects, for example by a change in drug's pharmacokinetics, cell targeting and/or specific stimuli-responsiveness. This is the case of doxorubicin (DOX) that presents a broad spectrum of activity and is one of the most widely used chemotherapeutic drugs as first-line treatment. Indeed, DOX is a very interesting example of a drug for which several nanosized delivery systems have been developed over the years. While it is true that some of these systems are already in the market, it is also true that research on this subject remains very active and that there is a continuing search for new solutions. In this sense, this review takes the example of doxorubicin, not so much with the focus on the drug itself, but rather as a case study around which very diverse and imaginative nanotechnology approaches have emerged.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Serge Mignani
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
46
|
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2019; 319:135-156. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a salient feature observed in most solid malignancies that holds a pivotal role in angiogenesis, metastasis and resistance to conventional cancer therapeutic approaches, and thus enables cancer progression. However, the typical characteristics of hypoxic cells such as low oxygen levels and highly bio-reductive environment can offer stimuli-responsive drug release to aid in tumor-specific chemo, radio, photodyanamic and sonodynamic therapies. This approach based on targeting the poorly oxygenated tumor habitats offers the prospective to overcome the difficulties that arises due to heterogenic nature of tumor and could be possibly used in the design of diagnostic as well as therapeutic nanocarriers for targeting various types of solid cancers. Consequently, hypoxia triggered nanoparticle based drug delivery systems is a rapidly progressing research area in developing effective strategies to combat drug-resistance in solid tumors. The present review presents the recent advances in the development of hypoxia-responsive nanovehicles for drug delivery to heterogeneous tumors. The initial sections of the article provides insights into the development of hypoxia in growing cancer and its role in disease progression. The current limitations and the future prospective of hypoxia-stimulated nanomachines for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
47
|
Xue X, Lindstrom A, Qu H, Li Y. Recent advances on small-molecule nanomedicines for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1607. [PMID: 31840421 DOI: 10.1002/wnan.1607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023]
Abstract
Nanomedicines have made important contributions in the development of cancer therapies due to their tumor selectivity, multifunctionality, and synergistic effect between the payloads. In addition to the required pharmaceutical ingredients, nanomedicines are generally composed of nonpharmaceutical excipients. These excipients generally form a large proportion of the nanomedicine, and they may have potential toxicity and greatly increase the cost for drug development. Small molecule nanomedicines (SMNs) minimize or abandon the excipients and are directly assembled from pharmaceutical ingredients, which can largely improve the drug delivery efficiency and biosafety while also relieving the financial burden of drug development. In this review, we summarize recently developed SMNs that are composed of a single drug, physical mixtures of multiple drugs, drug-drug covalent conjugates, dyes with drugs, photosensitizers with drugs, photosensitizers with peptides, and drugs with peptides. This review focuses on the SMN's applications in cancer treatments, their limitations, and the future development outlook of SMNs. We hope that our insights on SMNs may be helpful to the future of drug development and make nanomedicine more powerful in the battle with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| |
Collapse
|
48
|
The Duration of Nerve Block from Local Anesthetic Formulations in Male and Female Rats. Pharm Res 2019; 36:179. [PMID: 31705417 DOI: 10.1007/s11095-019-2715-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE It is unknown whether there are sex differences in response to free or encapsulated local anesthetics. METHODS We examined nerve block duration and toxicity following peripheral nerve blockade in male and female rats. We studied the local anesthetic bupivacaine (free or encapsulated) as well as tetrodotoxin, which acts on a different site of the same voltage-gated channel. RESULTS Sensory nerve blockade was 158.5 [139-190] minutes (median [interquartile range]) (males) compared to 173 [134-171] minutes (females) (p = 0.702) following bupivacaine injection, N = 8 male, 8 female. Motor nerve blockade was 157 [141-171] minutes (males) compared to 172 [146-320] minutes (females) (p = 0.2786). Micellar bupivacaine (N = 8 male, 8 female) resulted in sensory nerve blockade of 266 [227-320] minutes (males) compared to 285 [239-344] minutes (females) (p = 0.6427). Motor nerve blockade was 264 [251-264] minutes (males) compared to 287 [262-287] minutes (females) (p = 0.3823). Liposomal bupivacaine (N = 8 male, 8 female) resulted in sensory nerve blockade of 240 [207-277] minutes (males) compared to 289 [204-348] minutes (females) (p = 0.1654). Motor nerve blockade was 266 [237-372] minutes (males) compared to 317 [251-356] minutes (females) (p = 0.6671). Following tetrodotoxin injection (N = 12 male,12 female) sensory nerve blockade was 54.8 [5-117] minutes (males) compared to 54 [14-71] minutes (females) (p = 0.6422). Motor nerve blockade was 72 [40-112] minutes (males) compared to 64 [32-143] minutes (females) (p = 0.971). CONCLUSIONS We found no statistically significant sex differences associated with the formulations tested. In both sexes, durations of nerve block were similar between micellar and liposomal bupivacaine formulations, despite the micellar formulation containing less drug.
Collapse
|
49
|
Cano-Cortes MV, Navarro-Marchal SA, Ruiz-Blas MP, Diaz-Mochon JJ, Marchal JA, Sanchez-Martin RM. A versatile theranostic nanodevice based on an orthogonal bioconjugation strategy for efficient targeted treatment and monitoring of triple negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102120. [PMID: 31676374 DOI: 10.1016/j.nano.2019.102120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
A novel chemical-based orthogonal bioconjugation strategy to produce tri-functionalized nanoparticles (NPs) an chemotherapy drug, doxorubicin (DOX), a near-infrared cyanine dye (Cy7) and CRGDK homing peptide, a peptide specifically binds to neuropilin-1 (Nrp-1) overexpressed on triple negative breast cancer (TNBC) cells, has been validated. These theranostic NPs have been evaluated in vitro and in vivo using an orthotopic xenotransplant mouse model using TNBC cells. In vitro assays show that theranostic NPs improve the therapeutic index in comparison with free DOX. Remarkably, in vivo studies showed preferred location of theranostic NPs in the tumor area reducing the volume at the same level than free DOX while presenting lower side effects. This multifunctionalized theranostic nanodevice based on orthogonal conjugation strategies could be a good candidate for the treatment and monitoring of Nrp-1 overexpressing tumors. Moreover, this versatile nanodevice can be easily adapted to treat and monitor different cancer types by adapting the conjugation strategy.
Collapse
Affiliation(s)
- María Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Saúl Abenhamar Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain; Department of Human Anatomy and Embryology and Excellence Research Unit "Modeling Nature" (MNat), Faculty of Medicine, University of Granada, Granada, Spain
| | - María Paz Ruiz-Blas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan José Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain; Department of Human Anatomy and Embryology and Excellence Research Unit "Modeling Nature" (MNat), Faculty of Medicine, University of Granada, Granada, Spain.
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain.
| |
Collapse
|
50
|
Feng X, Dixon H, Glen‐Ravenhill H, Karaosmanoglu S, Li Q, Yan L, Chen X. Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue Feng
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Hannah Dixon
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Harriet Glen‐Ravenhill
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Sena Karaosmanoglu
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Quan Li
- School of EngineeringInstitute for Energy SystemsThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Li Yan
- Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria 3052 Australia
| | - Xianfeng Chen
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
- Translational Medicine CenterThe Second Affiliated HospitalGuangzhou Medical University Guangzhou 510182 P. R. China
| |
Collapse
|