• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698096)   Today's Articles (65)
For: Jeong S, Lee JP, Ko M, Kim G, Park S, Cho J. Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. Nano Lett 2013;13:3403-3407. [PMID: 23767680 DOI: 10.1021/nl401836c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Number Cited by Other Article(s)
1
Pan W, Yang C, Zhou L, Cai X, Wang Y, Tan J, Chang J. Ag nanoparticle modified porous Si microspheres as high-performance anodes for Li-ion batteries. Phys Chem Chem Phys 2023;25:31754-31769. [PMID: 37964729 DOI: 10.1039/d3cp03677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
2
Dong W, Zhao Y, Cai M, Dong C, Ma W, Pan J, Lv Z, Dong H, Dong Y, Tang Y, Huang F. Nanoscale Borate Coating Network Stabilized Iron Oxide Anode for High-Energy-Density Bipolar Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2207074. [PMID: 36670067 DOI: 10.1002/smll.202207074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
3
Chen X, Zheng J, Li L, Chu W. Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries. RSC Adv 2022;12:17889-17897. [PMID: 35765341 PMCID: PMC9201707 DOI: 10.1039/d2ra02007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]  Open
4
Qin X, Wang Y, Wang H, Lin H, Zhang X, Li Y, Li Z, Wang L. Reinforced concrete inspired Si/rGO/cPAN hybrid electrode: highly improved lithium storage via Si electrode nanoarchitecture engineering. NANOSCALE 2022;14:6488-6496. [PMID: 35416823 DOI: 10.1039/d2nr00278g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
5
Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. J Colloid Interface Sci 2022;612:679-688. [PMID: 35032925 DOI: 10.1016/j.jcis.2022.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
6
Wang M, Wang J, Xiao J, Ren N, Pan B, Chen CS, Chen CH. Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022;14:16279-16288. [PMID: 35349272 DOI: 10.1021/acsami.2c02169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
7
Wang HC, Hsu CM, Gu B, Chung CC, Wu SC, Ilango PR, Huang JS, Yen WC, Chueh YL. Glancing angle deposition of large-scale helical Si@Cu3Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries. NANOSCALE 2021;13:18626-18631. [PMID: 34734625 DOI: 10.1039/d1nr05297g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
8
Zhao L, Zhang D, Huang Y, Lin K, Chen L, Lv W, He YB, Kang F. Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticles by In-Situ Thiol-Ene Click Reaction for Long Cycling Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021;17:e2102316. [PMID: 34494366 DOI: 10.1002/smll.202102316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
9
Zhou W, Chen J, Xu X, Han X, Chen M, Yang L, Hirano SI. Interface Engineering of Silicon and Carbon by Forming a Graded Protective Sheath for High-Capacity and Long-Durable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021;13:15216-15225. [PMID: 33760583 DOI: 10.1021/acsami.1c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
10
Fabrication of Carbon Nanofibers Decorated with Various Kinds of Metal Oxides for Battery Applications. ENERGIES 2021. [DOI: 10.3390/en14051353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
11
Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
12
Cao L, Huang T, Zhang Q, Cui M, Xu J, Xiao R. Porous Si/Cu Anode with High Initial Coulombic Efficiency and Volumetric Capacity by Comprehensive Utilization of Laser Additive Manufacturing-Chemical Dealloying. ACS APPLIED MATERIALS & INTERFACES 2020;12:57071-57078. [PMID: 33259713 DOI: 10.1021/acsami.0c16887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
13
Karuppiah S, Keller C, Kumar P, Jouneau PH, Aldakov D, Ducros JB, Lapertot G, Chenevier P, Haon C. A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries. ACS NANO 2020;14:12006-12015. [PMID: 32902949 DOI: 10.1021/acsnano.0c05198] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
14
Zhang X, Wang D, Qiu X, Ma Y, Kong D, Müllen K, Li X, Zhi L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat Commun 2020;11:3826. [PMID: 32737306 PMCID: PMC7395733 DOI: 10.1038/s41467-020-17686-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022]  Open
15
Sun C, Zhao K, He Y, Zheng J, Xu W, Zhang C, Wang X, Guo M, Mai L, Wang C, Gu M. Interconnected Vertically Stacked 2D-MoS2 for Ultrastable Cycling of Rechargeable Li-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2019;11:20762-20769. [PMID: 31157525 DOI: 10.1021/acsami.9b02359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
16
Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun 2019;10:1447. [PMID: 30926799 PMCID: PMC6441089 DOI: 10.1038/s41467-019-09510-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022]  Open
17
Chen Z, Chen J, Bu F, Agboola PO, Shakir I, Xu Y. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage. ACS NANO 2018;12:12879-12887. [PMID: 30525431 DOI: 10.1021/acsnano.8b08071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
18
Wang J, Liao L, Li Y, Zhao J, Shi F, Yan K, Pei A, Chen G, Li G, Lu Z, Cui Y. Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries. NANO LETTERS 2018;18:7060-7065. [PMID: 30339401 DOI: 10.1021/acs.nanolett.8b03065] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
19
Dong W, Zhao Y, Wang X, Yuan X, Bu K, Dong C, Wang R, Huang F. Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018;30:e1801409. [PMID: 29995328 DOI: 10.1002/adma.201801409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/21/2018] [Indexed: 06/08/2023]
20
Zhang X, Guo R, Li X, Zhi L. Scallop-Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018;14:e1800752. [PMID: 29745010 DOI: 10.1002/smll.201800752] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/20/2018] [Indexed: 06/08/2023]
21
Xu T, Lin N, Cai W, Yi Z, Zhou J, Han Y, Zhu Y, Qian Y. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00173a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Wu Y, Wang LY, Li YF, Zhao ZY, Yin LW, Wang HF, Li H, Bai YJ. Electrochemical performance enhancement of graphite negative electrode by nano-metallic-oxides. NEW J CHEM 2018. [DOI: 10.1039/c7nj04870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Kim N, Chae S, Ma J, Ko M, Cho J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat Commun 2017;8:812. [PMID: 28993658 PMCID: PMC5634447 DOI: 10.1038/s41467-017-00973-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]  Open
24
Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS NANO 2017;11:7476-7484. [PMID: 28692250 DOI: 10.1021/acsnano.7b03942] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
25
Hassan FM, Hu Q, Fu J, Batmaz R, Li J, Yu A, Xiao X, Chen Z. Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2017;9:20603-20612. [PMID: 28557416 DOI: 10.1021/acsami.7b04483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
26
Wang Z, Li Z, Fu YQ. Composites of Piezoelectric Materials and Silicon as Anodes for Lithium-Ion Batteries. ChemElectroChem 2017. [DOI: 10.1002/celc.201700043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
27
Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries. C — JOURNAL OF CARBON RESEARCH 2016. [DOI: 10.3390/c2040023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
28
Xia C, Kang C, Patel MD, Cai L, Gwalani B, Banerjee R, Shi SQ, Choi W. Pine Wood Extracted Activated Carbon through Self-Activation Process for High-Performance Lithium-Ion Battery. ChemistrySelect 2016. [DOI: 10.1002/slct.201600926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
29
Kwon HT, Lee CK, Jeon KJ, Park CM. Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode. ACS NANO 2016;10:5701-5709. [PMID: 27243799 DOI: 10.1021/acsnano.6b02727] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
30
Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc Natl Acad Sci U S A 2016;113:7408-13. [PMID: 27313206 DOI: 10.1073/pnas.1603810113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
31
Liu L, Lyu J, Li T, Zhao T. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. NANOSCALE 2016;8:701-722. [PMID: 26666682 DOI: 10.1039/c5nr06278k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
32
Ju YW, Yoo S, Kim C, Kim S, Jeon IY, Shin J, Baek JB, Kim G. Fe@N-Graphene Nanoplatelet-Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016;3:1500205. [PMID: 27722079 PMCID: PMC5049621 DOI: 10.1002/advs.201500205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/27/2015] [Indexed: 05/27/2023]
33
Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
34
Güneş F. A direct synthesis of Si-nanowires on 3D porous graphene as a high performance anode material for Li-ion batteries. RSC Adv 2016. [DOI: 10.1039/c5ra18353g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
35
Li GA, Li WC, Chang WC, Tuan HY. Solution-grown GeO2 nanoparticles with a nearly 100% yield as lithium-ion battery anodes. RSC Adv 2016. [DOI: 10.1039/c6ra20171g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
36
Sun W, Hu R, Zhang H, Wang Y, Yang L, Liu J, Zhu M. A long-life nano-silicon anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
37
Gu X, Yue J, Li L, Xue H, Yang J, Zhao X. General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
38
Huang YY, Han D, He YB, Yun Q, Liu M, Qin X, Li B, Kang F. Si Nanoparticles Intercalated into Interlayers of Slightly Exfoliated Graphite filled by Carbon as Anode with High Volumetric Capacity for Lithium-ion Battery. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Chen Y, Xu M, Zhang Y, Pan Y, Lucht BL, Bose A. All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2015;7:21391-21397. [PMID: 26355591 DOI: 10.1021/acsami.5b06144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
40
Zhou M, Li X, Wang B, Zhang Y, Ning J, Xiao Z, Zhang X, Chang Y, Zhi L. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. NANO LETTERS 2015;15:6222-6228. [PMID: 26308100 DOI: 10.1021/acs.nanolett.5b02697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
41
Kim C, Choi S, Yoo S, Kwon D, Ko S, Kim JM, Lee SY, Kim ID, Park S. A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. NANOSCALE 2015;7:11286-11290. [PMID: 26077514 DOI: 10.1039/c5nr02860d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
42
Li B, Yao F, Bae JJ, Chang J, Zamfir MR, Le DT, Pham DT, Yue H, Lee YH. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Sci Rep 2015;5:7659. [PMID: 25564245 PMCID: PMC4288231 DOI: 10.1038/srep07659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/03/2014] [Indexed: 11/09/2022]  Open
43
Lee J, Noda S. One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries. RSC Adv 2015. [DOI: 10.1039/c4ra11681j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
44
Li S, Qin X, Zhang H, Wu J, He YB, Li B, Kang F. Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
45
Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat Commun 2014;5:5088. [DOI: 10.1038/ncomms6088] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022]  Open
46
Wang MS, Song Y, Song WL, Fan LZ. Three-Dimensional Porous Carbon-Silicon Frameworks as High-Performance Anodes for Lithium-Ion Batteries. ChemElectroChem 2014. [DOI: 10.1002/celc.201402253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
47
Intercalated SiO2&Si/Carbon Composite for High Capacity Li Ion Battery Anodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
48
Ren JG, Wang C, Wu QH, Liu X, Yang Y, He L, Zhang W. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. NANOSCALE 2014;6:3353-3360. [PMID: 24522297 DOI: 10.1039/c3nr05093a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
49
Lee JP, Koh HD, Shin WJ, Kang NG, Park S, Lee JS. CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer. J Colloid Interface Sci 2014;417:166-70. [DOI: 10.1016/j.jcis.2013.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
50
Song T, Hu L, Paik U. One-Dimensional Silicon Nanostructures for Li Ion Batteries. J Phys Chem Lett 2014;5:720-731. [PMID: 26270843 DOI: 10.1021/jz4027979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA