1
|
Sadeghi SM, Knox H, Roberts DT, Gutha RR, Sharp C, Hatef A. Infrared routing and switching with tunable spectral bandwidth using arrays of metallic nanoantennas. NANOTECHNOLOGY 2024; 35:465202. [PMID: 39163870 DOI: 10.1088/1361-6528/ad713e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
We study infrared routing and switching with tunable spectral bandwidth using in-plane scattering of light by flat Au nanoantenna arrays. The base dimensions of these nanoantennas are approximately 250 by 850 nm, while their heights vary from 20 to 150 nm. Our results show that, with the increase in height, the arrays become more efficient scatterers while their spectra broaden within the 1-1.6µm range. Our findings demonstrate that such processes strongly depend on the incident light polarization. For a given polarization, the incident light is efficiently scattered in only two opposite directions along the plane of the arrays, with insignificant transmission. Switching such a polarization by 90∘, however, suppresses this process, allowing the light to mostly pass through the arrays with minimal scattering. These unique characteristics suggest a tunable beam splitter application in the 1-1.6µm range and even longer wavelengths.
Collapse
Affiliation(s)
- Seyed M Sadeghi
- Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL 35899, United States of America
| | - Harrison Knox
- Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL 35899, United States of America
| | - Dustin T Roberts
- Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL 35899, United States of America
| | - Rithvik R Gutha
- Department of Physics and Astronomy, University of Alabama in Huntsville, Huntsville, AL 35899, United States of America
| | - Christina Sharp
- Department of Physics and Astronomy, University of Exeter, Exeter EX44QD, United Kingdom
| | - Ali Hatef
- Nipissing Computational Physics Laboratory (NCPL), Department of Computer Science and Mathematics, Nipissing University, North Bay, Ontario P1B8L7 Canada
| |
Collapse
|
2
|
Verneuil A, Di Francescantonio A, Zilli A, Proust J, Béal J, Petti D, Finazzi M, Celebrano M, Baudrion AL. Far-field mapping and efficient beaming of second harmonic by a plasmonic metagrating. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3609-3614. [PMID: 39634829 PMCID: PMC11501601 DOI: 10.1515/nanoph-2023-0842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 12/07/2024]
Abstract
We study numerically and experimentally the second-harmonic generation (SHG) from rectangular metagratings of V-shaped gold nanoantennas. We show that by carefully engineering the array pitch to steer the diffraction orders toward the single antenna emission, the extracted signal is maximized. This enhancement is attributed to the angular overlap between the radiation pattern and array factor and is comparable to the improvement yielded by the coupling of surface lattice resonances (SLRs) with local modes. Moreover, we demonstrate a simple technique to experimentally reconstruct the emission diagram of an antenna from measurements of the collective grating response as a function of the excitation angle. Excellent agreement is obtained with simulations when the sample is immersed either in air or in water, which is crucial in view of future sensing application. Thanks to the high signal-to-noise ratio and low dependence on the statistical particle dispersity, this method constitutes an effective alternative to back-focal plane imaging when very weak signals such as SHG are involved.
Collapse
Affiliation(s)
- Augustin Verneuil
- Light, Nanomaterials, Nanotechnologies, Université de Technologie de Troyes, Troyes, France
| | | | - Attilio Zilli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Julien Proust
- Light, Nanomaterials, Nanotechnologies, Université de Technologie de Troyes, Troyes, France
| | - Jérémie Béal
- Light, Nanomaterials, Nanotechnologies, Université de Technologie de Troyes, Troyes, France
| | - Daniela Petti
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Marco Finazzi
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | | | - Anne-Laure Baudrion
- Light, Nanomaterials, Nanotechnologies, Université de Technologie de Troyes, Troyes, France
| |
Collapse
|
3
|
Sun X, Wang F, Sun X, Wang X, Cao Y, Ding X, Dou Y, Fang R, Wang C, Liu H, Lu X, Gao H, Huang C. Directional surface plasmon polariton scattering using single magnetic nanoparticles. OPTICS LETTERS 2024; 49:3408-3411. [PMID: 38875632 DOI: 10.1364/ol.523793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Directional surface plasmon polaritons (SPPs) are expected to promote the energy efficiency of plasmonic devices, via limiting the energy in a given spatial domain. The directional scattering of dielectric nanoparticles induced by the interference between electric and magnetic responses presents a potential candidate for directional SPPs. Magnetic nanoparticles can introduce permeability as an extra manipulation, whose directional scattered SPPs have not been investigated yet. In this work, we demonstrated the directional scattered SPPs by using single magnetic nanoparticles via simulation and experiment. By increasing the permeability and particle size, the high-order TEM modes are excited inside the particle and induce more forward directional SPPs. It indicated that the particle size manifests larger tuning range compared with the permeability. Experimentally, the maximum forward-to-backward (F-to-B) SPP scattering intensity ratio of 118.52:1 is visualized by using a single 1 μm Fe3O4 magnetic nanoparticle. The directional scattered SPPs of magnetic nanoparticles are hopeful to improve the efficiency of plasmonic devices and pave the way for plasmonic circuits on-chip.
Collapse
|
4
|
Duan Y, Rahmanudin A, Chen S, Kim N, Mohammadi M, Tybrandt K, Jonsson MP. Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303949. [PMID: 37528506 DOI: 10.1002/adma.202303949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Indexed: 08/03/2023]
Abstract
A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light.
Collapse
Affiliation(s)
- Yulong Duan
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| |
Collapse
|
5
|
Kotte TPS, Adam AJL, Zuidwijk T, Heerkens CTH, Xu M, Urbach HP. Broadband directional scattering through a phase difference acquired in composite nanoparticles. OPTICS EXPRESS 2023; 31:38815-38830. [PMID: 38017976 DOI: 10.1364/oe.498461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 11/30/2023]
Abstract
We study the broadband scattering of light by composite nanoparticles through the Born approximation, FEM simulations, and measurements. The particles consist of two materials and show broadband directional scattering. From the analytical approach and the subsequent FEM simulations, it was found that the directional scattering is due to the phase difference between the fields scattered by of each of the two materials of the nanoparticle. To confirm this experimentally, composite nanoparticles were produced using ion-beam etching. Measurements of SiO2 / Au composite nanoparticles confirmed the directional scattering which was predicted by theory and simulations.
Collapse
|
6
|
Nan F, Rodríguez-Fortuño FJ, Yan S, Kingsley-Smith JJ, Ng J, Yao B, Yan Z, Xu X. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun 2023; 14:6361. [PMID: 37821466 PMCID: PMC10567843 DOI: 10.1038/s41467-023-42076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength). The underlying physics is attributed to the multipolar interplay in the particle, leading to a reduction in symmetry. Direct experimental evidence of switchable LOF is captured by polarization-angle-controlled manipulation of single Ag nanowires using holographic optical tweezers. This work provides a minimalist paradigm to achieve interface-free LOF for optomechanical applications, such as optical sorting and light-driven micro/nanomotors.
Collapse
Affiliation(s)
- Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonics Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Francisco J Rodríguez-Fortuño
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| | - Jack J Kingsley-Smith
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| |
Collapse
|
7
|
Rasoga O, Dragoman D, Dinescu A, Dirdal CA, Zgura I, Nastase F, Baracu AM, Iftimie S, Galca AC. Tuning the infrared resonance of thermal emission from metasurfaces working in near-infrared. Sci Rep 2023; 13:7499. [PMID: 37161016 PMCID: PMC10169807 DOI: 10.1038/s41598-023-34741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
We simulated numerically and demonstrated experimentally that the thermal emittance of a metasurface consisting of an array of rectangular metallic meta-atoms patterned on a layered periodic dielectric structure grown on top of a metallic layer can be tuned by changing several parameters. The resonance frequency, designed to be in the near-infrared spectral region, can be tuned by modifying the number of dielectric periods, and the polarization and incidence angle of the incoming radiation. In addition, the absorbance/emittance value at the resonant wavelength can be tuned by modifying the orientation of meta-atoms with respect to the illumination direction.
Collapse
Affiliation(s)
- Oana Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, 077125, Magurele, Romania.
| | - Daniela Dragoman
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125, Magurele, Romania.
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Voluntari, Romania
| | | | - Irina Zgura
- National Institute of Materials Physics, 405A Atomistilor Street, 077125, Magurele, Romania
| | - Florin Nastase
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Voluntari, Romania
| | - Angela Mihaela Baracu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190, Voluntari, Romania
| | - Sorina Iftimie
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125, Magurele, Romania
| | - Aurelian Catalin Galca
- National Institute of Materials Physics, 405A Atomistilor Street, 077125, Magurele, Romania
| |
Collapse
|
8
|
Zheng K, Li W, Sun B, Wang Y, Guan C, Liu J, Shi J. Annular and unidirectional transverse scattering with high directivity based on magnetoelectric coupling. OPTICS EXPRESS 2023; 31:14037-14047. [PMID: 37157276 DOI: 10.1364/oe.485916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transverse scattering is a special directional scattering perpendicular to the propagation direction, which has attracted great interest due to its potential applications from directional antennas, optical metrology to optical sensing. Here we reveal annular transverse scattering and unidirectional transverse scattering by magnetoelectric coupling of Omega particle. The annular transverse scattering can be achieved by the longitudinal dipole mode of the Omega particle. Furthermore, we demonstrate the highly asymmetric unidirectional transverse scattering by adjusting the transverse electric dipole (ED) and longitudinal magnetic dipole (MD) modes. Meanwhile, the forward scattering and backward scattering are suppressed by the interference of transverse ED and longitudinal MD modes. In particular, the lateral force exerted on the particle is accompanied by the transverse scattering. Our results provide a useful toolset for manipulating light scattered by the particle and broaden the application range of the particle with magnetoelectric coupling.
Collapse
|
9
|
Granchi N, Fagiani L, Salvalaglio M, Barri C, Ristori A, Montanari M, Gurioli M, Abbarchi M, Voigt A, Vincenti MA, Intonti F, Bollani M. Engineering and detection of light scattering directionalities in dewetted nanoresonators through dark-field scanning microscopy. OPTICS EXPRESS 2023; 31:9007-9017. [PMID: 36860003 DOI: 10.1364/oe.481971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Dewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement. The knowledge of islands' aspect ratio is then benchmarked by 3D, anisotropic phase-field simulations and contributes to a correct interpretation of the experimental data.
Collapse
|
10
|
Liu L, Shen J, Li Z. Tuning magneto-electric coherent resonance with a deep-subwavelength localized spoof surface plasmonic structure. OPTICS LETTERS 2023; 48:855-858. [PMID: 36790958 DOI: 10.1364/ol.480451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
It has been recently shown that an ultrathin corrugated spiral metal strip can simultaneously support electric and magnetic localized spoof plasmonic modes at lower frequencies. In this Letter, we report a mirror quasi-symmetrical corrugated spiral metal disk which can support coherent resonance of an orthogonal electric dipole and a magnetic dipole to achieve azimuthally symmetric unidirectional scattering. By tuning the geometric dimensions, reconfigurable magneto-electric (ME) coherent resonance enhancement is realized. Excellent agreement between numerical simulations and experimental results verifies the tunable ME coherent resonance phenomenon. Our finding could anticipate future sensitive and versatile functional devices based on high-Q coherent resonance from the microwave to the terahertz bands.
Collapse
|
11
|
Azzam SI, Parto K, Moody G. Purcell enhancement and polarization control of single-photon emitters in monolayer WSe 2 using dielectric nanoantennas. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:477-484. [PMID: 39635399 PMCID: PMC11501704 DOI: 10.1515/nanoph-2022-0628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) materials have shown great promise as hosts for high-purity deterministic single-photon sources. In the last few years, the underlying physics of single photon emission in 2D materials have been uncovered, and their optical properties have been improved to meet criteria for a variety of quantum technologies and applications. In this work, we take advantage of the unique characteristics of dielectric nanoantennas in manipulating the electromagnetic response on a sub-wavelength scale to localize and control defect-based single-photon emitters (SPEs) in 2D layered materials. We show that dielectric nanoantennas are capable of inducing high Purcell enhancement >20 and therefore brighter single-photon emission, which is characterized by a reduction of the emitters' radiative lifetimes and enhancement of their brightness by more than an order of magnitude. We demonstrate that the sub-wavelength-scale dielectric nanoantennas can be designed to also impose a predetermined strain profile that determines the confinement potential of the SPE, leading to robust control over the optical polarization with up to 94% extinction ratio. The combination of large Purcell enhancement, polarization orientation, and site control through strain engineering demonstrates the advantages and unique capabilities of dielectric nanoantennas for enhancing the quantum optical properties of 2D SPEs for quantum information technologies.
Collapse
Affiliation(s)
- Shaimaa I. Azzam
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
- California Nanosystems Institute, University of California, Santa Barbara, CA93106, USA
| | - Kamyar Parto
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
| | - Galan Moody
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
- California Nanosystems Institute, University of California, Santa Barbara, CA93106, USA
| |
Collapse
|
12
|
Lei X, Wang R, Liu L, Xu C, Wu A, Zhan Q. Multifunctional on-chip directional coupler for spectral and polarimetric routing of Bloch surface wave. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4627-4636. [PMID: 39634740 PMCID: PMC11501675 DOI: 10.1515/nanoph-2022-0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2024]
Abstract
Integration of multiple diversified functionalities into an ultracompact platform is crucial for the development of on-chip photonic devices. Recently, a promising all-dielectric two-dimensional platform based on Bloch surface waves (BSWs) sustained by dielectric multilayer has been proposed to enable various functionalities and provide novel approach to photonic devices. Here, we design and fabricate a multifunctional directional coupler to achieve both spectral and polarimetric routing by employing asymmetric nanoslits in a dielectric multilayer platform. Due to the dispersion property of BSWs, the directional coupling behavior is sensitive to wavelength and polarization. We demonstrate numerically and experimentally the wavelength selective directional coupling of TE BSW mode with an intensity ratio of the BSW excitation in opposite directions reaching 10 dB. Polarization selective directional coupling is also achieved at specific operating wavelength due to different response to a nanoantenna for TE and TM BSWs. The proposed two-dimensional photonic device opens new pathway for a wide range of practical applications such as molecular sensing, imaging with different polarization, and spectral requirements.
Collapse
Affiliation(s)
- Xinrui Lei
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| | - Ruxue Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengjie Xu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aimin Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
13
|
Kishen S, Tapar J, Emani NK. Tunable directional emission from electrically driven nano-strip metal-insulator-metal tunnel junctions. NANOSCALE ADVANCES 2022; 4:3609-3616. [PMID: 36134358 PMCID: PMC9400511 DOI: 10.1039/d2na00149g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
Electrically driven nanoantennas for on-chip generation and manipulation of light have attracted significant attention in recent times. Metal-insulator-metal (MIM) tunnel junctions have been extensively used to electrically excite surface plasmons and photons via inelastic electron tunneling. However, the dynamic switching of light from MIM junctions into spatially separate channels has not been shown. Here, we numerically demonstrate switchable, highly directional light emission from electrically driven nano-strip Ag-SiO2-Ag tunnel junctions. The top electrode of our Ag-SiO2-Ag stack is divided into 16 nano-strips, with two of the tunnel junctions at the centre (S L and S R) acting as sources. Using full-wave electromagnetic simulations, we show that when S L is excited, the emission is highly directional with an angle of emission of -30° and an angular spread of ∼11°. When the excitation is switched to S R, the emission is redirected to an angle of 30° with an identical angular spread. A directivity of 29.4 is achieved in the forward direction, with a forward-to-backward ratio of 12. We also demonstrate wavelength-selective directional switching by changing the width, and thereby the resonance wavelength, of the sources. The emission can be tuned by varying the periodicity of the structure, paving the way for electrically driven, reconfigurable light sources.
Collapse
Affiliation(s)
- Saurabh Kishen
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| | - Jinal Tapar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| | - Naresh Kumar Emani
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad 502285 India
| |
Collapse
|
14
|
Zhu F, Sanz-Paz M, Fernández-Domínguez AI, Pilo-Pais M, Acuna GP. Optical Ultracompact Directional Antennas Based on a Dimer Nanorod Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2841. [PMID: 36014705 PMCID: PMC9416387 DOI: 10.3390/nano12162841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Controlling directionality of optical emitters is of utmost importance for their application in communication and biosensing devices. Metallic nanoantennas have been proven to affect both excitation and emission properties of nearby emitters, including the directionality of their emission. In this regard, optical directional nanoantennas based on a Yagi-Uda design have been demonstrated in the visible range. Despite this impressive proof of concept, their overall size (~λ2/4) and considerable number of elements represent obstacles for the exploitation of these antennas in nanophotonic applications and for their incorporation onto photonic chips. In order to address these challenges, we investigate an alternative design. In particular, we numerically study the performance of a recently demonstrated "ultracompact" optical antenna based on two parallel gold nanorods arranged as a side-to-side dimer. Our results confirm that the excitation of the antiphase mode of the antenna by a nanoemitter placed in its near-field can lead to directional emission. Furthermore, in order to verify the feasibility of this design and maximize the functionality, we study the effect on the directionality of several parameters, such as the shape of the nanorods, possible defects in the dimer assembly, and different positions and orientations of the nanoemitter. We conclude that this design is robust to structural variations, making it suitable for experimental upscaling.
Collapse
Affiliation(s)
- Fangjia Zhu
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - María Sanz-Paz
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Antonio I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Guillermo P. Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Wu X, Ehehalt R, Razinskas G, Feichtner T, Qin J, Hecht B. Light-driven microdrones. NATURE NANOTECHNOLOGY 2022; 17:477-484. [PMID: 35449413 DOI: 10.1038/s41565-022-01099-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 μm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.
Collapse
Affiliation(s)
- Xiaofei Wu
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | - Raphael Ehehalt
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Jin Qin
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Yu Y, Liu J, Yu Y, Qiao D, Li Y, Salas-Montiel R. Broadband unidirectional transverse light scattering in a V-shaped silicon nanoantenna. OPTICS EXPRESS 2022; 30:7918-7927. [PMID: 35299544 DOI: 10.1364/oe.450943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The efficient manipulation of light-matter interactions in subwavelength all-dielectric nanostructures offers a unique opportunity for the design of novel low-loss visible- and telecom-range nanoantennas for light routing applications. Several studies have achieved longitudinal and transverse light scattering with a proper amplitude and phase balance among the multipole moments excited in dielectric nanoantennas. However, they only involve the interaction between electric dipole, magnetic dipole, and up to the electric quadrupole. Here, we extend and demonstrate a unidirectional transverse light scattering in a V-shaped silicon nanoantenna that involves the balance up to the magnetic quadrupole moment. Based on the long-wavelength approximation and exact multipole decomposition analysis, we find the interference conditions needed for near-unity unidirectional transverse light scattering along with near-zero scattering in the opposite direction. These interference conditions involve relative amplitude and phases of the electromagnetic dipoles and quadrupoles supported by the silicon nanoantenna. The conditions can be applied for the development of either polarization- or wavelength- dependent light routing on a V-shaped silicon and plasmonic nanoantennas.
Collapse
|
17
|
Lyu H, Kong L, Wang S, Xu M. Robust and accurate measurement of optical freeform surfaces with wavefront deformation correction. OPTICS EXPRESS 2022; 30:7831-7844. [PMID: 35299537 DOI: 10.1364/oe.454169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The non-null test to detect the modulated wavefront is a widely used method in optical freeform surface measurement. In this study, the wavefront deformation in the non-null test of an optical freeform surface measurement was corrected based on the wavefront propagation model to improve measurement accuracy. A freeform surface wavefront correction (FSWC) measurement system was established to validate the proposed method. Simulation and experimental studies indicated that the proposed method can reduce the influence of freeform surface wavefront deformation in space propagation. Moreover, the freeform surface form accuracy measured by FSWC can reach a root-mean-squared value of 10 nm.
Collapse
|
18
|
Chen Q, Nan X, Chen M, Pan D, Yang X, Wen L. Nanophotonic Color Routing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103815. [PMID: 34595789 DOI: 10.1002/adma.202103815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Recent advances in low-dimensional materials and nanofabrication technologies have stimulated many breakthroughs in the field of nanophotonics such as metamaterials and plasmonics that provide efficient ways of light manipulation at a subwavelength scale. The representative structure-induced spectral engineering techniques have demonstrated superior design of freedom compared with natural materials such as pigment/dye. In particular, the emerging spectral routing scheme enables extraordinary light manipulation in both frequency-domain and spatial-domain with high-efficiency utilization of the full spectrum, which is critically important for various applications and may open up entirely new operating paradigms. In this review, a comparative introduction on the operating mechanisms of spectral routing and spectral filtering schemes is given and recent progress on various color nanorouters based on metasurfaces, plasmonics, dielectric antennas is reviewed with a focus on the potential application in high-resolution imaging. With a thorough analysis and discussion on the advanced properties and drawbacks of various techniques, this report is expected to provide an overview and vision for the future development and application of nanophotonic color (spectral) routing techniques.
Collapse
Affiliation(s)
- Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianghong Nan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Mingjie Chen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dahui Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianguang Yang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
19
|
Blanquer G, Loo V, Rahbany N, Couteau C, Blaize S, Salas-Montiel R, De Wilde Y, Krachmalnicoff V. Waveguide efficient directional coupling and decoupling via an integrated plasmonic nanoantenna. OPTICS EXPRESS 2021; 29:29034-29043. [PMID: 34615021 DOI: 10.1364/oe.432637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of integrated photonic devices has led to important advancements in the field of light-matter interaction at the nanoscale. One of the main focal points is the coupling between single photon emitters and optical waveguides aiming to achieve efficient optical confinement and propagation. In this work, we focus on the characterization of a hybrid dielectric/plasmonic waveguide consisting of a gold triangular nanoantenna placed on top of a TiO2 waveguide. The strong directionality of the device is experimentally demonstrated by comparing the intensity scattered by the nanotriangle to the one scattered by a SNOM tip for different illumination geometries. The ability of the plasmonic antenna to generate powerful coupling between a single emitter and the waveguide will also be highlighted through numerical simulations.
Collapse
|
20
|
Zhang H, Gao K, Han L, Liu S, Mei T, Xiao F, Zhao J. Nanometric displacement sensor with a switchable measuring range using a cylindrical vector beam excited silicon nanoantenna. OPTICS EXPRESS 2021; 29:25109-25117. [PMID: 34614849 DOI: 10.1364/oe.434287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a nanometric displacement sensor with a switchable measuring range by using a single silicon nanoantenna. It is revealed that the interference between the longitudinal and transverse dipolar scattering can be well tuned by moving the nanoantenna in the focal field of the cylindrical vector beam. As a result, a position related scattering directivity is found and is used as a displacement sensor with a 4.5 nm lateral resolution. Interestingly, the measuring range of this displacement sensor can be extended by twice through simply changing the excitation from the azimuthally polarized beam to the radially polarized beam. Our results provide a facile way to tune the measuring range of the nanometric displacement sensor and may open up an avenue to super-resolution microscopy and optical nanometrology.
Collapse
|
21
|
Tiwari S, Vasista AB, Paul D, Chaubey SK, Kumar GVP. Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity. J Phys Chem Lett 2021; 12:6589-6595. [PMID: 34242502 DOI: 10.1021/acs.jpclett.1c01923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the experimental observation of beaming elastic and surface enhanced Raman scattering (SERS) emission from a bent-nanowire on a mirror (B-NWoM) cavity. The system was probed with polarization resolved Fourier plane and energy-momentum imaging to study the spectral and angular signature of the emission wavevectors. The out-coupled elastically scattered light from the kink occupies a narrow angular spread. We used a self-assembled monolayer of molecules with a well-defined molecular orientation to utilize the out-of-plane electric field in the cavity for enhancing Raman emission from the molecules and in achieving beaming SERS emission. Calculated directionality for elastic scattering and SERS emission was found to be 16.2 and 12.5 dB, respectively. The experimental data were corroborated with three-dimensional numerical finite element and finite difference time domain based numerical simulations. The results presented here may find relevance in understanding coupling of emitters with elongated plasmonic cavities and in designing on-chip optical antennas.
Collapse
Affiliation(s)
- Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Adarsh B Vasista
- Department of Physics and Astronomy, University of Exeter, Exeter EX44QL, United Kingdom
| | - Diptabrata Paul
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shailendra K Chaubey
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
22
|
Sterl F, Herkert E, Both S, Weiss T, Giessen H. Shaping the Color and Angular Appearance of Plasmonic Metasurfaces with Tailored Disorder. ACS NANO 2021; 15:10318-10327. [PMID: 34115488 DOI: 10.1021/acsnano.1c02538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The optical properties of plasmonic nanoparticle ensembles are determined not only by the particle shape and size but also by the nanoantenna arrangement. To investigate the influence of the spatial ordering on the far-field optical properties of nanoparticle ensembles, we introduce a disorder model that encompasses both "frozen-phonon" and correlated disorder. We present experimental as well as computational approaches to gain a better understanding of the impact of disorder. A designated Fourier microscopy setup allows us to record the real- and Fourier-space images of plasmonic metasurfaces as either RGB images or fully wavelength-resolved data sets. Furthermore, by treating the nanoparticles as dipoles, we calculate the electric field based on dipole-dipole interaction, extract the far-field response, and convert it to RGB images. Our results reveal how the different disorder parameters shape the optical far field and thus define the optical appearance of a disordered metasurface and show that the relatively simple dipole approximation is able to reproduce the far-field behavior accurately. These insights can be used for engineering metasurfaces with tailored disorder to produce a desired bidirectional reflectance distribution function.
Collapse
Affiliation(s)
- Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ediz Herkert
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Steffen Both
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
23
|
Zhang F, Martin J, Murai S, Adam PM, Plain J, Tanaka K. Evidence of the retardation effect on the plasmonic resonances of aluminum nanodisks in the symmetric/asymmetric environment. OPTICS EXPRESS 2021; 29:14799-14814. [PMID: 33985194 DOI: 10.1364/oe.425136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.
Collapse
|
24
|
Wang X, Dai C, Yao X, Qiao T, Chen M, Li S, Shi Z, Wang M, Huang Z, Hu X, Li Z, Zhang J, Zhang X. Asymmetric angular dependence for multicolor display based on plasmonic inclined-nanopillar array. NANOSCALE 2021; 13:7273-7278. [PMID: 33889906 DOI: 10.1039/d1nr00473e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric multicolor displays have unique and fascinating applications in the field of artificial color engineering. However, the realization of such multicolor displays still faces challenges, due to limitations associated with nanofabrication techniques. In this work, asymmetric photonic structures were realized through inclined 2D aluminum nanopillar arrays, which demonstrate asymmetric angle-dependence as multicolor displays. It was numerically and experimentally demonstrated that the distinctive symmetry breaking leads to the plasmonic coupling effect with angle-dependence and reflection differences with the opposite observing angle. Based on this concept, several color printings were designed as prototypes, which prove the utility of the controlled asymmetric color display with varied observing angles. Our results demonstrate a simple and efficient platform for asymmetric plasmonic nanostructures, which paves the way for further study and designation in artificial color engineering.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ding J, Huang L, Liu W, Ling Y, Wu W, Li H. Mechanism and performance analyses of optical beam splitters using all-dielectric oligomer-based metasurfaces. OPTICS EXPRESS 2020; 28:32721-32737. [PMID: 33114951 DOI: 10.1364/oe.403927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Compact and planar optical beam splitters are highly desirable in various optical and photonic applications. Here, we investigate two kinds of optical beam splitters by using oligomer-based metasurfaces, one is trimer-based metasurface for 3-dB beam splitting, and the other is pentamer-based metasurface for 1:4 beam splitting. Through electromagnetic multipole decomposition and in-depth mechanism analyses, we reveal that the electromagnetic multipolar interactions and the strong near-field coupling between neighboring nanoparticles play critical roles in beam-splitting performance. Our work offers a deeper understanding of electromagnetic coupling effect in oligomer-based metasurfaces, and provides an alternative approach to planar beam splitters.
Collapse
|
26
|
Huang CH, Kudo T, Bresolí-Obach R, Hofkens J, Sugiyama T, Masuhara H. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. OPTICS EXPRESS 2020; 28:27727-27735. [PMID: 32988060 DOI: 10.1364/oe.401158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Laser trapping at an interface is a unique platform for aligning and assembling nanomaterials outside the focal spot. In our previous studies, Au nanoparticles form a dynamically evolved assembly outside the focus, leading to the formation of an antenna-like structure with their fluctuating swarms. Herein, we unravel the role of surface plasmon resonance on the swarming phenomena by tuning the trapping laser wavelength concerning the dipole mode for Au nanoparticles of different sizes. We clearly show that the swarm is formed when the laser wavelength is near to the resonance peak of the dipole mode together with an increase in the swarming area. The interpretation is well supported by the scattering spectra and the spatial light scattering profiles from single nanoparticle simulations. These findings indicate that whether the first trapped particle is resonant with trapping laser or not essentially determines the evolution of the swarming.
Collapse
|
27
|
Barelli M, Mazzanti A, Giordano MC, Della Valle G, Buatier de Mongeot F. Color Routing via Cross-Polarized Detuned Plasmonic Nanoantennas in Large-Area Metasurfaces. NANO LETTERS 2020; 20:4121-4128. [PMID: 32401524 PMCID: PMC7735747 DOI: 10.1021/acs.nanolett.9b05276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/03/2020] [Indexed: 05/29/2023]
Abstract
Bidirectional nanoantennas are of key relevance for advanced functionalities to be implemented at the nanoscale and, in particular, for color routing in an ultracompact flat-optics configuration. Here we demonstrate a novel approach avoiding complex collective geometries and/or restrictive morphological parameters based on cross-polarized detuned plasmonic nanoantennas in a uniaxial (quasi-1D) bimetallic configuration. The nanofabrication of such a flat-optics system is controlled over a large area (cm2) by a novel self-organized technique exploiting ion-induced nanoscale wrinkling instability on glass templates to engineer tilted bimetallic nanostrip dimers. These nanoantennas feature broadband color routing with superior light scattering directivity figures, which are well described by numerical simulations and turn out to be competitive with the response of lithographic nanoantennas. These results demonstrate that our large-area self-organized metasurfaces can be implemented in real-world applications of flat-optics color routing from telecom photonics to optical nanosensing.
Collapse
Affiliation(s)
- Matteo Barelli
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
| | - Andrea Mazzanti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy
| | | | - Giuseppe Della Valle
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy
- IFN-CNR, Piazza L. da Vinci 32, I-20133 Milano, Italy
| | | |
Collapse
|
28
|
Wen T, Zhang W, Liu S, Hu A, Zhao J, Ye Y, Chen Y, Qiu CW, Gong Q, Lu G. Steering valley-polarized emission of monolayer MoS 2 sandwiched in plasmonic antennas. SCIENCE ADVANCES 2020; 6:eaao0019. [PMID: 32490202 PMCID: PMC7239647 DOI: 10.1126/sciadv.aao0019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/09/2020] [Indexed: 05/22/2023]
Abstract
Monolayer transition metal dichalcogenides have intrinsic spin-valley degrees of freedom, making it appealing to exploit valleytronic and optoelectronic applications at the nanoscale. Here, we demonstrate that a chiral plasmonic antenna consisting of two stacked gold nanorods can modulate strongly valley-polarized photoluminescence (PL) of monolayer MoS2 in a broad spectral range at room temperature. The valley-polarized PL of the MoS2 using the antenna can reach up to ~47%, with approximately three orders of PL magnitude enhancement within the plasmonic nanogap. Besides, the K and K' valleys under opposite circularly polarized light excitation exhibit different emission intensities and directivities in the far field, which can be attributed to the modulation of the valley-dependent excitons by the chiral antenna in both the excitation and emission processes. The distinct features of the ultracompact hybrid suggest potential applications for valleytronic and photonic devices, chiral quantum optics, and high-sensitivity detection.
Collapse
Affiliation(s)
- Te Wen
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weidong Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuai Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Aiqin Hu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Jingyi Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yang Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
29
|
Zhu J, Goddard LL. All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. NANOSCALE ADVANCES 2019; 1:4615-4643. [PMID: 36133120 PMCID: PMC9419186 DOI: 10.1039/c9na00430k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/09/2019] [Indexed: 05/22/2023]
Abstract
The photonic nanojet (PNJ) is a narrow high-energy beam that was originally found on the back side of all-dielectric spherical structures. It is a unique type of energy concentration mode. The field of PNJs has experienced rapid growth in the past decade: nonspherical and even pixelized PNJ generators based on new physics and principles along with extended photonic applications from linear optics to nonlinear optics have driven the re-evaluation of the role of PNJs in optics and photonics. In this article, we give a comprehensive review for the emerging sub-topics in the past decade with a focus on two specific areas: (1) PNJ generators based on natural materials, artificial materials and nanostructures, and even programmable systems instead of conventional dielectric geometries such as microspheres, cubes, and trihedral prisms, and (2) the emerging novel applications in both linear and nonlinear optics that are built upon the specific features of PNJs. The extraordinary features of PNJs including subwavelength concentration of electromagnetic energy, high intensity focusing spot, and lower Joule heating as compared to plasmonic resonance systems, have made PNJs attractive to diverse fields spanning from optical imaging, nanofabrication, and integrated photonics to biosensing, optical tweezers, and disease diagnosis.
Collapse
Affiliation(s)
- Jinlong Zhu
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| | - Lynford L Goddard
- Photonic Systems Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 208 N. Wright St., MNTL 2231 Urbana IL 61801 USA
| |
Collapse
|
30
|
Wiecha PR, Majorel C, Girard C, Cuche A, Paillard V, Muskens OL, Arbouet A. Design of plasmonic directional antennas via evolutionary optimization. OPTICS EXPRESS 2019; 27:29069-29081. [PMID: 31684648 DOI: 10.1364/oe.27.029069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate inverse design of plasmonic nanoantennas for directional light scattering. Our method is based on a combination of full-field electrodynamical simulations via the Green dyadic method and evolutionary optimization (EO). Without any initial bias, we find that the geometries reproducibly found by EO work on the same principles as radio-frequency antennas. We demonstrate the versatility of our approach by designing various directional optical antennas for different scattering problems. EO-based nanoantenna design has tremendous potential for a multitude of applications like nano-scale information routing and processing or single-molecule spectroscopy. Furthermore, EO can help to derive general design rules and to identify inherent physical limitations for photonic nanoparticles and metasurfaces.
Collapse
|
31
|
Zheng X, Kupresak M, Verellen N, Moshchalkov VV, Vandenbosch GAE. A Review on the Application of Integral Equation‐Based Computational Methods to Scattering Problems in Plasmonics. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xuezhi Zheng
- Department of Electrical Engineering (ESAT), the TELEMIC GroupKU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Mario Kupresak
- Department of Electrical Engineering (ESAT), the TELEMIC GroupKU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Niels Verellen
- Life Science Technologies and Integrated PhotonicsIMEC Kapeldreef 75 Leuven B‐3001 Belgium
| | - Victor V. Moshchalkov
- Nanoscale Superconductivity and MagnetismKU Leuven Celestijnenlaan 200D, BUS 2414 Leuven B‐3001 Belgium
| | - Guy A. E. Vandenbosch
- Department of Electrical Engineering (ESAT), the TELEMIC GroupKU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| |
Collapse
|
32
|
Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna. NANOMATERIALS 2019; 9:nano9040629. [PMID: 31003409 PMCID: PMC6523482 DOI: 10.3390/nano9040629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 11/25/2022]
Abstract
Light manipulation at the nanoscale is the vanguard of plasmonics. Controlling light radiation into a desired direction in parallel with high optical signal enhancement is still a challenge for designing ultracompact nanoantennas far below subwavelength dimensions. Here, we theoretically demonstrate the unidirectional emissions from a local nanoemitter coupled to a hybrid nanoantenna consisting of a plasmonic dipole antenna and an individual silicon nanorod. The emitter near-field was coupled to the dipolar antenna plasmon resonance to achieve a strong radiative decay rate modification, and the emitting plasmon pumped the multipoles within the silicon nanorod for efficient emission redirection. The hybrid antenna sustained a high forward directivity (i.e., a front-to-back ratio of 30 dB) with broadband operating wavelengths in the visible range (i.e., a spectral bandwidth of 240 nm). This facilitated a large library of plasmonic nanostructures to be incorporated, from single element dipole antennas to gap antennas. The proposed hybrid optical nanorouter with ultracompact structural dimensions of 0.08 λ2 was capable of spectrally sorting the emission from the local point source into distinct far-field directions, as well as possessing large emission gains introduced by the nanogap. The distinct features of antenna designs hold potential in the areas of novel nanoscale light sources, biosensing, and optical routing.
Collapse
|
33
|
Esposito M, Todisco F, Bakhti S, Passaseo A, Tarantini I, Cuscunà M, Destouches N, Tasco V. Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances. NANO LETTERS 2019; 19:1922-1930. [PMID: 30721077 DOI: 10.1021/acs.nanolett.8b05062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We describe a novel plasmonic-mode engineering, enabled by the structural symmetry of a plasmonic crystal with a metallic oligomer as unit cell. We show how the oligomer symmetry can tailor the scattering directions to spatially overlap with the diffractive orders directions of a plasmonic array. Applied to the color generation field, the presented approach enables the challenging achievement of a broad spectrum of angle-dependent colors since smooth and continuous generation of transmitted vibrant colors, covering both the cyan-magenta-yellow and the red-green-blue color spaces, is demonstrated by scattering angle- and polarization-dependent optical response. The addition of a symmetry driven level of control multiplies the possibility of optical information storage, being of potential interest for secured optical information encoding but also for nanophotonic applications, from demultiplexers or signal processing devices to on-chip optical nanocircuitry.
Collapse
Affiliation(s)
- Marco Esposito
- CNR NANOTEC-Nanotechnology Institute , Campus Ecotekne, via Monteroni , IT-73100 Lecce , Italy
| | - Francesco Todisco
- Center for Nano Optics , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Said Bakhti
- Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516 , University of Lyon, UJM-Saint-Etienne, CNRS , F-42023 , Saint-Etienne , France
| | - Adriana Passaseo
- CNR NANOTEC-Nanotechnology Institute , Campus Ecotekne, via Monteroni , IT-73100 Lecce , Italy
| | - Iolena Tarantini
- Department of Mathematics and Physics Ennio De Giorgi , University of Salento , Via Arnesano , Lecce 73100 Italy
| | - Massimo Cuscunà
- CNR NANOTEC-Nanotechnology Institute , Campus Ecotekne, via Monteroni , IT-73100 Lecce , Italy
| | - Nathalie Destouches
- Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516 , University of Lyon, UJM-Saint-Etienne, CNRS , F-42023 , Saint-Etienne , France
| | - Vittorianna Tasco
- CNR NANOTEC-Nanotechnology Institute , Campus Ecotekne, via Monteroni , IT-73100 Lecce , Italy
| |
Collapse
|
34
|
Zhuo X, Yip HK, Cui X, Wang J, Lin HQ. Colour routing with single silver nanorods. LIGHT, SCIENCE & APPLICATIONS 2019; 8:39. [PMID: 31016015 PMCID: PMC6467987 DOI: 10.1038/s41377-019-0150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Elongated plasmonic nanoparticles have been extensively explored over the past two decades. However, in comparison with the dipolar plasmon mode that has attracted the most interest, much less attention has been paid to multipolar plasmon modes because they are usually thought to be "dark modes", which are unable to interact with far-field light efficiently. Herein, we report on an intriguing far-field scattering phenomenon, colour routing, based on longitudinal multipolar plasmon modes supported by high-aspect-ratio single Ag nanorods. Taking advantage of the distinct far-field behaviours of the odd and even multipolar plasmon modes, we demonstrate two types of colour routing, where the incident white light can be scattered into several beams with different colours as well as different propagation directions. Because of the narrow linewidths of the longitudinal multipolar plasmon modes, there is little spectral overlap between the adjacent peaks, giving rise to outstanding colour selectivity. Our experimental results and theoretical model provide a simple yet effective picture for understanding the far-field behaviour of the longitudinal multipolar plasmon modes and the resultant colour routing phenomenon. Moreover, the outstanding colour routing capability of the high-aspect-ratio Ag nanorods enables nanoscale optical components with simple geometries for controlling the propagation of light below the diffraction limit of light.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hang Kuen Yip
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ximin Cui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center, Beijing, 100193 China
| |
Collapse
|
35
|
Panmai M, Xiang J, Sun Z, Peng Y, Liu H, Liu H, Dai Q, Tie S, Lan S. All-silicon-based nano-antennas for wavelength and polarization demultiplexing. OPTICS EXPRESS 2018; 26:12344-12362. [PMID: 29801270 DOI: 10.1364/oe.26.012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.
Collapse
|
36
|
Zhuo X, Yip HK, Ruan Q, Zhang T, Zhu X, Wang J, Lin HQ, Xu JB, Yang Z. Broadside Nanoantennas Made of Single Silver Nanorods. ACS NANO 2018; 12:1720-1731. [PMID: 29406752 DOI: 10.1021/acsnano.7b08423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Directional optical nanoantennas are often realized by nanostructured systems with ingenious or complex designs. Herein we report on the realization of directional scattering of visible light from a simple configuration made of single Ag nanorods supported on Si substrates, where the incident light can be routed toward the two flanks of each nanorod. Such an intriguing far-field scattering behavior, which has not been investigated so far, is proved to result from the near-field coupling between high-aspect-ratio Ag nanorods and high-refractive-index Si substrates. A simple and intuitive model is proposed, where the complicated plasmon resonance is found to be equivalent to several vertically aligned electric dipoles oscillating in phase, to understand the far-field properties of the system. The interference among the electric dipoles results in wavefront reshaping and sidewise light routing in a similar manner to the broadside antenna described in the traditional antenna theory, allowing for the naming of these Si-supported Ag nanorods as "broadside nanoantennas". We have carried out comprehensive experiments to understand the physical origins behind and the affecting factors on the directional scattering behavior of such broadside nanoantennas.
Collapse
Affiliation(s)
- Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Hang Kuen Yip
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Qifeng Ruan
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Tiankai Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Xingzhong Zhu
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center , Beijing 100193, China
| | - Jian-Bin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR China
| | - Zhi Yang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
37
|
Vasista AB, Tripathi RPN, Chaubey SK, Tiwari S, Kumar GVP. Doughnut-shaped emission from vertical organic nanowire coupled to thin plasmonic film. OPTICS LETTERS 2018; 43:923-926. [PMID: 29444028 DOI: 10.1364/ol.43.000923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Vertical nanowires facilitate an innovative mechanism to channel the optical field in the orthogonal direction and act as a nanoscale light source. Subwavelength, vertically oriented nanowire platforms, both of plasmonic and semiconducting variety, can facilitate interesting far-field emission profiles and potentially carry orbital angular momentum states. Motivated by these prospects, in this Letter, we show how a hybrid plasmonic-organic platform can be harnessed to engineer far-field radiation. The system that we have employed is an organic nanowire made of diaminoanthroquinone grown on a plasmonic gold film. We experimentally and numerically studied angular distribution of surface plasmon polariton mediated emission from a single, vertical organic nanowire by utilizing evanescent excitation and Fourier plane microscopy. Photoluminescence and elastic scattering from a single nanowire was analyzed individually in terms of inplane momentum states of the outcoupled photons. We found that the emission is doughnut-shaped in both photoluminescence and elastic scattering regimes. We anticipate that the discussed results can be relevant in designing efficient, polariton-mediated nanoscale photon sources that can carry orbital angular momentum states.
Collapse
|
38
|
Gurunarayanan SP, Verellen N, Zharinov VS, James Shirley F, Moshchalkov VV, Heyns M, Van de Vondel J, Radu IP, Van Dorpe P. Electrically Driven Unidirectional Optical Nanoantennas. NANO LETTERS 2017; 17:7433-7439. [PMID: 29068692 DOI: 10.1021/acs.nanolett.7b03312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Directional antennas revolutionized modern day telecommunication by enabling precise beaming of radio and microwave signals with minimal loss of energy. Similarly, directional optical nanoantennas are expected to pave the way toward on-chip wireless communication and information processing. Currently, on-chip integration of such antennas is hampered by their multielement design or the requirement of complicated excitation schemes. Here, we experimentally demonstrate electrical driving of in-plane tunneling nanoantennas to achieve broadband unidirectional emission of light. Far-field interference, as a result of the spectral overlap between the dipolar emission of the tunnel junction and the fundamental quadrupole-like resonance of the nanoantenna, gives rise to a directional radiation pattern. By tuning this overlap using the applied voltage, we record directivities as high as 5 dB. In addition to electrical tunability, we also demonstrate passive tunability of the directivity using the antenna geometry. These fully configurable electrically driven nanoantennas provide a simple way to direct optical energy on-chip using an extremely small device footprint.
Collapse
Affiliation(s)
- Surya Prakash Gurunarayanan
- Department of Materials Engineering, KU Leuven , B-3001 Leuven, Belgium
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
| | - Niels Verellen
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Vyacheslav S Zharinov
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Finub James Shirley
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Victor V Moshchalkov
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Marc Heyns
- Department of Materials Engineering, KU Leuven , B-3001 Leuven, Belgium
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
| | - Joris Van de Vondel
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Pol Van Dorpe
- IMEC , Kapeldreef 75, B-3001 Leuven, Belgium
- INPAC-Institute for Nanoscale Physics and Chemistry, Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200D, B-3001 Leuven, Belgium
| |
Collapse
|
39
|
Sun YZ, Feng LS, Bachelot R, Blaize S, Ding W. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas. OPTICS EXPRESS 2017; 25:17417-17430. [PMID: 28789234 DOI: 10.1364/oe.25.017417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.
Collapse
|
40
|
Guo R, Decker M, Setzpfandt F, Gai X, Choi DY, Kiselev R, Chipouline A, Staude I, Pertsch T, Neshev DN, Kivshar YS. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. SCIENCE ADVANCES 2017; 3:e1700007. [PMID: 28776027 PMCID: PMC5517110 DOI: 10.1126/sciadv.1700007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/15/2017] [Indexed: 05/24/2023]
Abstract
Optical nanoantennas provide a promising pathway toward advanced manipulation of light waves, such as directional scattering, polarization conversion, and fluorescence enhancement. Although these functionalities were mainly studied for nanoantennas in free space or on homogeneous substrates, their integration with optical waveguides offers an important "wired" connection to other functional optical components. Taking advantage of the nanoantenna's versatility and unrivaled compactness, their imprinting onto optical waveguides would enable a marked enhancement of design freedom and integration density for optical on-chip devices. Several examples of this concept have been demonstrated recently. However, the important question of whether nanoantennas can fulfill functionalities for high-bit rate signal transmission without degradation, which is the core purpose of many integrated optical applications, has not yet been experimentally investigated. We introduce and investigate directional, polarization-selective, and mode-selective on-chip nanoantennas integrated with a silicon rib waveguide. We demonstrate that these nanoantennas can separate optical signals with different polarizations by coupling the different polarizations of light vertically to different waveguide modes propagating into opposite directions. As the central result of this work, we show the suitability of this concept for the control of optical signals with ASK (amplitude-shift keying) NRZ (nonreturn to zero) modulation [10 Gigabit/s (Gb/s)] without significant bit error rate impairments. Our results demonstrate that waveguide-integrated nanoantennas have the potential to be used as ultra-compact polarization-demultiplexing on-chip devices for high-bit rate telecommunication applications.
Collapse
Affiliation(s)
- Rui Guo
- Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuel Decker
- Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Frank Setzpfandt
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07745 Jena, Germany
| | - Xin Gai
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Duk-Yong Choi
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Roman Kiselev
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Arkadi Chipouline
- Technische Universität Darmstadt, Merckstraße 25, Darmstadt, Germany
| | - Isabelle Staude
- Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07745 Jena, Germany
| | - Thomas Pertsch
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07745 Jena, Germany
| | - Dragomir N. Neshev
- Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuri S. Kivshar
- Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
41
|
Tanaka YY, Shimura T. Tridirectional Polarization Routing of Light by a Single Triangular Plasmonic Nanoparticle. NANO LETTERS 2017; 17:3165-3170. [PMID: 28388075 DOI: 10.1021/acs.nanolett.7b00672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Achieving high directionality of scattered light in combination with high flexibility of the direction using plasmonic nanoparticles is desirable for future optical nanocircuits and on-chip optical links. The plasmonic characteristics of nanoparticles strongly depend on their geometry. Here, we studied directional light scattering by a single-element triangular plasmonic nanoparticle. Our experimental and simulation results demonstrated that the triangular nanoparticle spatially sorted the incoming photons into three different scattering directions according to their polarization direction, including circular polarization, despite its compact overall volume of ∼λ3/300. The broken mirror symmetry and rotational symmetry of the triangular nanoparticle enabled such passive tridirectional polarization routing through the constructive and destructive interference of different plasmon modes. Our findings should markedly broaden the versatility of triangular plasmonic nanodevices, extending their possible practical applications in photon couplers and sorters and chemo-/biosensors.
Collapse
Affiliation(s)
- Yoshito Y Tanaka
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsutomu Shimura
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
42
|
Zhang X, Xiao JJ, Zhang Q, Qin F, Cai X, Ye F. Dual-Band Unidirectional Emission in a Multilayered Metal-Dielectric Nanoantenna. ACS OMEGA 2017; 2:774-783. [PMID: 31457470 PMCID: PMC6641122 DOI: 10.1021/acsomega.7b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 06/08/2023]
Abstract
Controlling the emission efficiency, direction, and polarization of optical sources with nanoantennas is of crucial importance in many nanophotonic applications. In this article, we design a subwavelength multilayer metal-dielectric nanoantenna consisting of three identical gold strips that are separated by two dielectric spacers. It is shown that a local dipole source can efficiently excite several hybridized plasmonic modes in the nanoantenna, including one electric dipole (ED) and two magnetic dipole (MD) resonances. The coherent interplay between the ED and MDs leads to unidirectional emissions in opposite directions at different wavelengths. The relative phase difference between these resonant modes determines the exact emission direction. Additionally, with a proper spacer thickness and filling medium, it is possible to control the spectral positions of the forward and backward unidirectional emissions and to exchange the wavelengths for two unidirectional emissions. An analytical dipole model is established, which yields comparable results to those from the full-wave simulation. Furthermore, we show that the wavelength of the peak forward-to-backward unidirectionality is essentially determined by the MD and is approximately predictable by the plasmonic wave dispersion in the corresponding two-dimensional multilayer structure. Our results may be useful to design dual-band unidirectional optical nanoantennas.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College
of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Jun-Jun Xiao
- College
of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Qiang Zhang
- College
of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Feifei Qin
- College
of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Xingmin Cai
- Institute
of Thin Film Physics and Applications and College of Physics and Energy,
Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Fan Ye
- Institute
of Thin Film Physics and Applications and College of Physics and Energy,
Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
43
|
Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization. Sci Rep 2017; 7:40906. [PMID: 28102320 PMCID: PMC5244386 DOI: 10.1038/srep40906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
Polarization control using single plasmonic nanoantennas is of interest for subwavelength optical components in nano-optical circuits and metasurfaces. Here, we investigate the role of two mechanisms for polarization conversion by plasmonic antennas: Structural asymmetry and plasmon hybridization through strong coupling. As a model system we investigate L-shaped antennas consisting of two orthogonal nanorods which lengths and coupling strength can be independently controlled. An analytical model based on field susceptibilities is developed to extract key parameters and to address the influence of antenna morphology and excitation wavelength on polarization conversion efficiency and scattering intensities. Optical spectroscopy experiments performed on individual antennas, further supported by electrodynamical simulations based on the Green Dyadic Method, confirm the trends extracted from the analytical model. Mode hybridization and structural asymmetry allow address-ing different input polarizations and wavelengths, providing additional degrees of freedom for agile polarization conversion in nanophotonic devices.
Collapse
|
44
|
Wang J, Zhao J, Wang Y, Wang W, Gao Y, Xu R, Zhao W. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing. MICROMACHINES 2016; 7:mi7110198. [PMID: 30404370 PMCID: PMC6190122 DOI: 10.3390/mi7110198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
Fast on-site monitoring of foreign microalgae species carried by ship ballast water has drawn more and more attention. In this paper, we presented a new method and a compact device of classification of microalgae cells by simultaneous detection of three kinds of signals of single microalgae cells in a disposable microfluidic chip. The microfluidic classification device has advantages of fast detection, low cost, and portability. The species of a single microalgae cell can be identified by simultaneous detection of three signals of chlorophyll fluorescence (CF), side light scattering (SLS), and resistance pulse sensing (RPS) of the microalgae cell. These three signals represent the different characteristics of a microalgae cell. A compact device was designed to detect these three signals of a microalgae cell simultaneously. In order to demonstrate the performance of the developed system, the comparison experiments of the mixed samples of three different species of microalgae cells between the developed system and a commercial flow cytometer were conducted. The results show that three kinds of microalgae cells can be distinguished clearly by our developed system and the commercial flow cytometer and both results have good agreement.
Collapse
Affiliation(s)
- Junsheng Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China.
| | - Jinsong Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yanjuan Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wei Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yushu Gao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Runze Xu
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wenshuang Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
45
|
Liu W, Lei B, Shi J, Hu H. Unidirectional superscattering by multilayered cavities of effective radial anisotropy. Sci Rep 2016; 6:34775. [PMID: 27708398 PMCID: PMC5052521 DOI: 10.1038/srep34775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/16/2016] [Indexed: 11/20/2022] Open
Abstract
We achieve unidirectional forward superscattering by multilayered spherical cavities which are effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies the Kerker's condition of simultaneous backward scattering suppression and forward scattering enhancement. We show that such scattering pattern shaping can be obtained in both all-dielectric and plasmonic multilayered cavities at different spectral positions, and believe that the mechanism we have revealed provides extra freedom for scattering shaping, which may play a significant role in many scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic two dimensional materials.
Collapse
Affiliation(s)
- Wei Liu
- College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Bing Lei
- College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Jianhua Shi
- College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Haojun Hu
- College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
46
|
Xi Z, Wei L, Adam AJL, Urbach HP, Du L. Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing. PHYSICAL REVIEW LETTERS 2016; 117:113903. [PMID: 27661688 DOI: 10.1103/physrevlett.117.113903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 06/06/2023]
Abstract
Identifying subwavelength objects and displacements is of crucial importance in optical nanometrology. We show in this Letter that nanoantennas with subwavelength structures can be excited precisely by incident beams with singularity. This accurate feeding beyond the diffraction limit can lead to dynamic control of the unidirectional scattering in the far field. The combination of the field discontinuity of the incoming singular beam with the rapid phase variation near the antenna leads to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. This Letter introduces a far-field deep subwavelength position detection method based on the interaction of singular optics with nanoantennas.
Collapse
Affiliation(s)
- Zheng Xi
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
| | - Lei Wei
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
| | - A J L Adam
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
| | - H P Urbach
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
| | - Luping Du
- Nanophotonics Research Center, Shenzhen University, Nanshan District, Shenzhen, China
| |
Collapse
|
47
|
Liu P, Yan J, Ma C, Lin Z, Yang G. Midrefractive Dielectric Modulator for Broadband Unidirectional Scattering and Effective Radiative Tailoring in the Visible Region. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22468-22476. [PMID: 27502321 DOI: 10.1021/acsami.6b05123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoantennas have found many applications in ultrasmall sensors, single-molecule detection, and all-optical communication. Conventional nanoantennas are based on noble-metal plasmonic structures, but suffer from large ohmic loss and only possess dipolar plasmon modes. This has driven an intense search for all-dielectric materials beyond noble metals. Here, we propose midrefractive nanospheres as a novel all-dielectric material to realize broadband unidirectional radiation and effective radiative tailoring in the visible region. Midrefractive all-dielectric materials such as boron nanospheres possess broad and overlapping electric and magnetic dipole modes. The internal interaction between these two modes can route the radiation almost on the one side covering the whole visible range. Unlike the elaborate design in plasmonic nanostructures to obtain strong coupled broad and narrow modes, the bright mode in boron nanospheres is intrinsic, independent, and easily coupled with adjacent narrow modes. So the strong interaction in boron-based heterodimer is able to realize an independent and precise tailoring of the radiant and subradiant states by simply changing the particle sizes, respectively. Our findings imply midrefractivity materials like boron are excellent building blocks to support electromagnetic coupling operation in nanoscale devices, which will lead to a variety of emerging applications such as nanoantennas with directing exciton emission, ultrasensitive nanosensors, or even potential new construction of photonic metamaterials.
Collapse
Affiliation(s)
- Pu Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, P. R. China
| | - Jiahao Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, P. R. China
| | - Curong Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, P. R. China
| | - Zhaoyong Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University , Guangzhou, 510275 Guangdong, P. R. China
| |
Collapse
|
48
|
Abass A, Gutsche P, Maes B, Rockstuhl C, Martins ER. Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas. OPTICS EXPRESS 2016; 24:19638-19650. [PMID: 27557242 DOI: 10.1364/oe.24.019638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Strong and directionally specific forward scattering from optical nanoantennas is of utmost importance for various applications in the broader context of photovoltaics and integrated light sources. Here, we outline a simple yet powerful design principle to perceive a nanoantenna that provides directional scattering into a higher index substrate based on the interference of multiple electric dipoles. A structural implementation of the electric dipole distribution is possible using plasmonic nanoparticles with a fairly simple geometry, i.e. two coupled rectangular nanoparticles, forming a dimer, on top of a substrate. The key to achieve directionality is to choose a sufficiently large size for the nanoparticles. This promotes the excitation of vertical electric dipole moments due to the bi-anisotropy of the nanoantenna. In turn, asymmetric scattering is obtained by ensuring the appropriate phase relation between the vertical electric dipole moments. The scattering strength and angular spread for an optimized nanoantenna can be shown to be broadband and robust against changes in the incidence angle. The scattering directionality is maintained even for an array configuration of the dimer. It only requires the preferred scattering direction of the isolated nanoantenna not to be prohibited by interference.
Collapse
|
49
|
Li J, Verellen N, Vercruysse D, Bearda T, Lagae L, Van Dorpe P. All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light. NANO LETTERS 2016; 16:4396-403. [PMID: 27244478 DOI: 10.1021/acs.nanolett.6b01519] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An optical antenna forms the subwavelength bridge between free space optical radiation and localized electromagnetic energy. Its localized electromagnetic modes strongly depend on its geometry and material composition. Here, we present the design and experimental realization of a novel V-shaped all-dielectric antenna based on high-index amorphous silicon with a strong magnetic dipole resonance in the visible range. As a result, it exhibits extraordinary bidirectional scattering into diametrically opposite directions. The scattering direction is effectively controlled by the incident wavelength, rendering the antenna a passive bidirectional wavelength router. A detailed multipole decomposition analysis reveals that the excitation and abrupt phase change of an out-of-plane polarized magnetic dipole and an in-plane electric quadrupole are essential for the directivity switching. Previously, noble metals have been extensively exploited for plasmonic directional nanoantenna design. However, these inevitably suffer from high intrinsic ohmic losses and a relatively weak magnetic response to the incident light. Compared to a similar gold plasmonic nanoantenna design, we show that the silicon-based antennas demonstrate stronger magnetic scattering with minimal absorption losses. Our results indicate that all-dielectric antennas will open exciting possibilities for efficient manipulation of light-matter interactions.
Collapse
Affiliation(s)
- Jiaqi Li
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Niels Verellen
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | | | | | - Liesbet Lagae
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Pol Van Dorpe
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven , Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
50
|
Espinosa-Soria A, Griol A, Martínez A. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. OPTICS EXPRESS 2016; 24:9592-9601. [PMID: 27137572 DOI: 10.1364/oe.24.009592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we report numerical simulations and experiments of the optical response of a gold nanostrip embedded in a silicon strip waveguide gap at telecom wavelengths. We show that the spectral features observed in transmission and reflection when the metallic nanostructure is inserted in the gap are extremely different than those observed in free-space excitation. First, we find that interference between the guided field and the electric dipolar resonance of the metallic nanostructure results in high-contrast (> 10) spectral features showing an asymmetric Fano spectral profile. Secondly, we reveal a crossing in the transmission and reflection responses close to the nanostructure resonance wavelength as a key feature of our system. This approach, which can be realized using standard semiconductor nanofabrication tools, could lead to a full exploitation of the extreme properties of subwavelength metallic nanostructures in an on-chip configuration, with special relevance in fields such as biosensing or optical switching.
Collapse
|