1
|
Qin J, Wu X, Krueger A, Hecht B. Light-driven plasmonic microrobot for nanoparticle manipulation. Nat Commun 2025; 16:2570. [PMID: 40089456 PMCID: PMC11910605 DOI: 10.1038/s41467-025-57871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Recently light-driven microdrones have been demonstrated, making use of plasmonic nanomotors based on directional resonant chiral light scattering. These nanomotors can be addressed individually, without requiring the tracking of a focused laser, leading to exceptional 2D maneuverability which renders microdrones a versatile robotic platform in aqueous environments. Here, we incorporate a light-operated manipulator, a plasmonic nano-tweezer, into the microdrone platform, rendering it a microrobot by enabling precise, all-optical transport and delivery of single nanoparticles suspended in solution. The plasmonic nano-tweezer consists of a resonant cross-antenna nanostructure exhibiting a central near-field hot spot, extending the ability of traditional optical tweezers based on focused laser beams to the trapping of nanoparticles. However, most of plasmonic nano-tweezers are fixed to the substrates and lack mobility. Our plasmonic microrobot utilizes circularly polarized light to control both motors and for stable trapping of a 70-nanometer fluorescent nanodiamond in the cross-antenna center. Complex sequences of microrobot operations, including trap-transport-release-trap-transport actions, demonstrate the microrobot's versatility and precision in picking up and releasing nanoparticles. Our microrobot design opens potential avenues in advancing nanotechnology and life sciences, with applications in targeted drug delivery, single-cell manipulation, and by providing an advanced quantum sensing platform, facilitating interdisciplinary research at the nanoscale.
Collapse
Affiliation(s)
- Jin Qin
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
2
|
Riccardi M, Martin OJF. Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers. Chem Rev 2023; 123:1680-1711. [PMID: 36719985 PMCID: PMC9951227 DOI: 10.1021/acs.chemrev.2c00576] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/02/2023]
Abstract
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.
Collapse
Affiliation(s)
- Marco Riccardi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| |
Collapse
|
3
|
Yang H, Mei Z, Li Z, Liu H, Deng H, Xiao G, Li J, Luo Y, Yuan L. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1769. [PMID: 35630991 PMCID: PMC9144160 DOI: 10.3390/nano12101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Optical tweezers are key tools to trap and manipulate nanoparticles in a non-invasive way, and have been widely used in the biological and medical fields. We present an integrated multifunctional 2D plasmonic optical tweezer consisting of an array of graphene discs and the substrate circuit. The substrate circuit allows us to apply a bias voltage to configure the Fermi energy of graphene discs independently. Our work is based on numerical simulation of the finite element method. Numerical results show that the optical force is generated due to the localized surface plasmonic resonance (LSPR) mode of the graphene discs with Fermi Energy Ef = 0.6 eV under incident intensity I = 1 mW/μm2, which has a very low incident intensity compared to other plasmonic tweezers systems. The optical forces on the nanoparticles can be controlled by modulating the position of LSPR excitation. Controlling the position of LSPR excitation by bias voltage gates to configure the Fermi energy of graphene disks, the nanoparticles can be dynamically transported to arbitrary positions in the 2D plane. Our work is integrated and has multiple functions, which can be applied to trap, transport, sort, and fuse nanoparticles independently. It has potential applications in many fields, such as lab-on-a-chip, nano assembly, enhanced Raman sensing, etc.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ziyang Mei
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| | - Zhenkai Li
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| | - Houquan Liu
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hongchang Deng
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
| | - Gongli Xiao
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Macau University of Science and Technology, Macau 999078, China;
| | - Yunhan Luo
- College of Science & Engineering, Jinan University, Guangzhou 510632, China;
| | - Libo Yuan
- College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (H.Y.); (Z.M.); (Z.L.); (H.L.); (H.D.); (L.Y.)
| |
Collapse
|
4
|
Wang Y, Hu H, Tang J, Meng S, Xu H, Ding T. Plasmon-Directed On-Wire Growth of Branched Silver Nanowires with Chiroptic Activity. ACS NANO 2021; 15:16404-16410. [PMID: 34558905 DOI: 10.1021/acsnano.1c05796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silver nanowires (Ag NWs) present prominent waveguiding properties of subwavelength light due to their nanoconfinement with propagating surface plasmons, which is of great importance for on-chip integration of nanophotonic devices and optical computation. Such propagating plasmons also exert plasmonic forces, which can be utilized to manipulate nanoparticles (NPs) beyond the diffraction limit. However, such controllability is spatially limited to the near fields, whereas a large portion of uncontrolled particles are randomly deposited on the chips, which could be detrimental to the integrated optical devices. Herein we shine continuous wave laser at one end of the Ag NW immersed in AgNO3 solution to launch the propagating surface plasmons. The laser irradiation also induces the photoreduction of Ag+ ions to locally generate tiny Ag NPs, which evolve into large Ag flake branches closer to the other end of the Ag NW. Such a peculiar growth is due to the synergistic effect of plasmonic forces and the thermophoretic/thermo-osmosis forces induced by temperature gradient. These branched Ag NWs with sharp angles are intrinsically chiral, which can be partially controlled by changing the irradiation location, forming plasmonic chiral enantiomers. The circular differential scattering (CDS) response of these branched Ag NWs can be as large as 40%, which can be used for chiral enantiomer sensing with spectral dissymmetric factor up to 4 nm induced by phenylalanine. This plasmon-directed on-wire growth not only offers a facile approach for generating plasmonic chiral nanostructures with remote controllability, but also provides significant insights on the synergistic effect of plasmonic forces and thermal-induced forces, which has great implications for self-assembly and integration of on-chip optics.
Collapse
Affiliation(s)
- Yunxia Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jibo Tang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuang Meng
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Aqhili A, Darbari S. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers. Sci Rep 2021; 11:20656. [PMID: 34667247 PMCID: PMC8526587 DOI: 10.1038/s41598-021-99633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In this report, we propose the closed pack array of gold discs on glass, as a dual mode plasmonic tweezers that benefits from two trapping modes. The first trapping mode is based on leaky surface plasmon mode (LSPM) on the gold discs with a longer penetration depth in the water and a longer spatial trapping range, so that target nanoparticles with a radius of 100 nm can be attracted toward the gold surface from a vertical distance of about 2 µm. This trapping mode can help to overcome the inherent short range trapping challenge in the plasmonic tweezers. The second trapping mode is based on the dimer surface plasmonic mode (DSPM) in the nano-slits between the neighboring gold discs, leading to isolated and strong trapping sites for nanoparticles smaller than 34 nm. The proposed plasmonic tweezers can be excited in both LSPM and DSPM modes by switching the incident wavelength, resulting in promising and complementary functionalities. In the proposed plasmonic tweezers, we can attract the target particles towards the gold surface by LSPM gradient force, and trap them within a wide half width half maximum (HWHM) that allows studying the interactions between the trapped particles, due to their spatial proximity. Then, by switching to the DSPM trapping mode, we can rearrange the particles in a periodic pattern of isolated and stiff traps. The proposed plasmonic structure and the presented study opens a new insight for realizing efficient, dual-mode tweezers with complementary characteristics, suitable for manipulation of nanoparticles. Our thermal simulations demonstrate that the thermal-induced forces does not interefe with the proposed plasmonic tweezing.
Collapse
Affiliation(s)
- Abolfazl Aqhili
- grid.412266.50000 0001 1781 3962Nano Plasmo-Photonics Research Group, Faculty of ECE, Tarbiat Modares University, 14115-111 Tehran, Iran
| | - Sara Darbari
- grid.412266.50000 0001 1781 3962Nano Plasmo-Photonics Research Group, Faculty of ECE, Tarbiat Modares University, 14115-111 Tehran, Iran
| |
Collapse
|
6
|
Samadi M, Darbari S, Moravvej-Farshi MK. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study. OPTICS EXPRESS 2021; 29:29056-29067. [PMID: 34615023 DOI: 10.1364/oe.433519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Taking advantage of highly confined evanescent fields to overcome the free-space diffraction limit, we show plasmonic tweezers enable efficient trapping and manipulation of nanometric particles by low optical powers. In typical plasmonic tweezers, trapping/releasing particles is carried out by turning the laser power on and off, which cannot be achieved quickly and repeatedly during the experiment. We introduce hybrid gold-graphene plasmonic tweezers in which the trap stiffness is varied electrostatically by applying suitable voltages to a graphene layer. We show how the graphene layer absorbs the plasmonic field around the gold nanostructures in particular chemical potentials, allowing us to modulate the plasmonic force components and the trapping potential. We show graphene monolayer (bilayer) with excellent thermal properties enables more efficient heat transfer throughout the plasmonic tweezers, reducing the magnitude of thermophoretic force by about 23 (36) times. This thermophoresis suppression eliminates the risk of photothermal damage to the target sample. Our proposed plasmonic tweezers open up possibilities to develop tunable plasmonic tweezers with high-speed and versatile force-switching functionality and more efficient thermal performance.
Collapse
|
7
|
Höller C, Schnoering G, Eghlidi H, Suomalainen M, Greber UF, Poulikakos D. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. SCIENCE ADVANCES 2021; 7:eabd8758. [PMID: 34215575 PMCID: PMC11057703 DOI: 10.1126/sciadv.abd8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Understanding and controlling the individual behavior of nanoscopic matter in liquids, the environment in which many such entities are functioning, is both inherently challenging and important to many natural and man-made applications. Here, we transport individual nano-objects, from an assembly in a biological ionic solution, through a nanochannel network and confine them in electrokinetic nanovalves, created by the collaborative effect of an applied ac electric field and a rationally engineered nanotopography, locally amplifying this field. The motion of so-confined fluorescent nano-objects is tracked, and its kinetics provides important information, enabling the determination of their particle diffusion coefficient, hydrodynamic radius, and electrical conductivity, which are elucidated for artificial polystyrene nanospheres and subsequently for sub-100-nm conjugated polymer nanoparticles and adenoviruses. The on-chip, individual nano-object resolution method presented here is a powerful approach to aid research and development in broad application areas such as medicine, chemistry, and biology.
Collapse
Affiliation(s)
- Christian Höller
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Gabriel Schnoering
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Hadi Eghlidi
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| | - Maarit Suomalainen
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland.
| |
Collapse
|
8
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Barella M, Violi IL, Gargiulo J, Martinez LP, Goschin F, Guglielmotti V, Pallarola D, Schlücker S, Pilo-Pais M, Acuna GP, Maier SA, Cortés E, Stefani FD. In Situ Photothermal Response of Single Gold Nanoparticles through Hyperspectral Imaging Anti-Stokes Thermometry. ACS NANO 2021; 15:2458-2467. [PMID: 32941001 DOI: 10.1021/acsnano.0c06185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.
Collapse
Affiliation(s)
- Mariano Barella
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, 1425, CABA Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, 1425, CABA Argentina
- Instituto de Nanosistemas, UNSAM-CONICET, Avenida 25 de Mayo 1021, San Martín, 1650, Argentina
| | - Julian Gargiulo
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799, München, Germany
| | - Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, 1425, CABA Argentina
| | - Florian Goschin
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799, München, Germany
| | - Victoria Guglielmotti
- Instituto de Nanosistemas, UNSAM-CONICET, Avenida 25 de Mayo 1021, San Martín, 1650, Argentina
| | - Diego Pallarola
- Instituto de Nanosistemas, UNSAM-CONICET, Avenida 25 de Mayo 1021, San Martín, 1650, Argentina
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg-Essen 45141, Germany
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799, München, Germany
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80799, München, Germany
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, 1425, CABA Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2620, 1428, CABA Argentina
| |
Collapse
|
10
|
Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ. Microfluidic Isolation and Enrichment of Nanoparticles. ACS NANO 2020; 14:16220-16240. [PMID: 33252215 PMCID: PMC8164652 DOI: 10.1021/acsnano.0c06336] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the past decades, nanoparticles have increased in implementation to a variety of applications ranging from high-efficiency electronics to targeted drug delivery. Recently, microfluidic techniques have become an important tool to isolate and enrich populations of nanoparticles with uniform properties (e.g., size, shape, charge) due to their precision, versatility, and scalability. However, due to the large number of microfluidic techniques available, it can be challenging to identify the most suitable approach for isolating or enriching a nanoparticle of interest. In this review article, we survey microfluidic methods for nanoparticle isolation and enrichment based on their underlying mechanisms, including acoustofluidics, dielectrophoresis, filtration, deterministic lateral displacement, inertial microfluidics, optofluidics, electrophoresis, and affinity-based methods. We discuss the principles, applications, advantages, and limitations of each method. We also provide comparisons with bulk methods, perspectives for future developments and commercialization, and next-generation applications in chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Ghosh S, Ghosh A. Next-Generation Optical Nanotweezers for Dynamic Manipulation: From Surface to Bulk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5691-5708. [PMID: 32383606 DOI: 10.1021/acs.langmuir.0c00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical traps based on strongly confined electromagnetic fields at metal-dielectric interfaces are far more efficient than conventional optical tweezers. Specifically, these near-field nanotweezers allow the trapping of smaller particles at lower optical intensities, which can impact diverse research fields ranging from soft condensed matter physics to materials science and biology. A major thrust in the past decade has been focused on extending the capabilities of plasmonically enhanced nanotweezers beyond diffusion-limited trapping on surfaces such as to achieve dynamic control in the bulk of fluidic environments. Here, we review the recent efforts in optical nanotweezers, especially those involving hybrid forcing schemes, covering both surface and bulk-based techniques. We summarize the important capabilities demonstrated with this promising approach, with niche applications in reconfigurable nanopatterning and on-chip assembly as well as in sorting and separating colloidal nanoparticles.
Collapse
|
12
|
Yin S, He F, Green N, Fang X. Nanoparticle trapping and routing on plasmonic nanorails in a microfluidic channel. OPTICS EXPRESS 2020; 28:1357-1368. [PMID: 32121848 DOI: 10.1364/oe.384748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructures hold great promise for enabling advanced optical manipulation of nanoparticles in microfluidic channels, resulting from the generation of strong and controllable light focal points at the nanoscale. A primary remaining challenge in the current integration of plasmonics and microfluidics is to transport trapped nanoparticles along designated routes. Here we demonstrate through numerical simulation a plasmonic nanoparticle router that can trap and route a nanoparticle in a microfluidic channel with a continuous fluidic flow. The nanoparticle router contains a series of gold nanostrips on top of a continuous gold film. The nanostrips support both localised and propagating surface plasmons under light illumination, which underpin the trapping and routing functionalities. The nanoparticle guiding at a Y-branch junction is enabled by a small change of 50 nm in the wavelength of incident light.
Collapse
|
13
|
Abbasi MM, Darbari S, Moravvej-Farshi MK. Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation. OPTICS EXPRESS 2019; 27:26648-26660. [PMID: 31674541 DOI: 10.1364/oe.27.026648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Using a plasmonic graphene ring resonator of resonant frequency 10.38 THz coupled to a plasmonic graphene waveguide, we design a lab-on-a-chip optophoresis system that can function as an efficient plasmonic force switch. Finite difference time domain numerical simulations reveal that an appropriate choice of chemical potentials of the waveguide and ring resonator keeps the proposed structure in on-resonance condition, enabling the system to selectively trap a nanoparticle. Moreover, a change of 250 meV in the ring chemical potential (i.e., equivalent to 2.029 V change in the corresponding applied bias) switches the structure to a nearly perfect off-resonance condition, releasing the trapped particle. The equivalent plasmonic switch ON/OFF ratio at the waveguide output is -15.519 dB. The designed system has the capability of trapping, sorting, controlling, and separating PS nanoparticles of diameters ≥30 nm with a THz source intensity of 14.78 mW/µm2 and ≥22 nm with 29.33 mW/µm2.
Collapse
|
14
|
Samadi M, Vasini S, Darbari S, Khorshad AA, Reihani SNS, Moravvej-Farshi MK. Hexagonal arrays of gold triangles as plasmonic tweezers. OPTICS EXPRESS 2019; 27:14754-14766. [PMID: 31163919 DOI: 10.1364/oe.27.014754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
We present theoretical and experimental studies of the plasmonic properties of hexagonal arrays of gold triangles, fabricated by angle-resolved nanosphere lithography method. Our numerical and experimental results both show that a change in the angle of gold deposition affects the size and the distance between the triangles, leading to a controlled shift in their absorption and scattering spectra. We calculate the force exerted on the polystyrene particles of 650 nm radii numerically while passing above the hexagonal arrays. Simulation results show that the presented hexagonal arrays of gold triangles can operate as efficient plasmonic tweezers with a controllable operating wavelength and high trap strength, owing to the additive interaction of the neighboring triangles. Moreover, we apply the realized plasmonic nanostructures in a conventional optical tweezers configuration and show that the optical tweezers stiffness can be effectively modulated by the plasmonic forces, at the IR wavelength of 1064 nm.
Collapse
|
15
|
Lattuada E, Buzzaccaro S, Piazza R. Thermophoresis in self-associating systems: probing poloxamer micellization by opto-thermal excitation. SOFT MATTER 2019; 15:2140-2151. [PMID: 30667449 DOI: 10.1039/c8sm02386g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to its exquisite sensitivity to interfacial properties, thermophoresis, i.e., particle motion driven by thermal gradients, can provide novel, exclusive, and often surprising information on the structural properties of colloidal or macromolecular fluids and on particle/solvent interactions at the nanoscale. Here, by using an all-optical thermal excitation technique, thermal lensing, we show that thermophoresis can be profitably exploited to investigate the self-association of an amphiphilic block copolymer, poloxamer P407, which takes place above a concentration-dependent critical micellization temperature (cmt). In particular we show that, around and above the cmt, the direction of the poloxamer thermophoretic motion displays a remarkable double sign inversion, which is fully correlated with a peak in the thermal expansivity of the solution marking the progressive dehydration of the propylene oxide groups of P407 and their incorporation into the micellar core. This rather puzzling behaviour of the thermophoretic mobility and of the Soret coefficient in the P407 micellization region can tentatively be explained by properly taking into account the temperature-dependent balance between micellized and nonassociated poloxamer chains.
Collapse
Affiliation(s)
- Enrico Lattuada
- CMIC, Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, 20133 Milano, Italy.
| | | | | |
Collapse
|
16
|
Pin C, Otsuka R, Fujiwara H, Sasaki K. Optical transport of fluorescent diamond particles inside a tapered capillary. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921516002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical forces provide an efficient way to sort particles and biological materials according to their optical properties. However, both enhanced optical forces and a large interaction volume are needed in order to optically sort a large number of nanoparticles. We investigate the use of a tapered glass capillary as an optofluidic platform for optical manipulation and optical sorting applications. Tapered capillaries with micrometre and sub-micrometre sizes are fabricated. After filling the tapered capillary with a colloidal solution of red fluorescent diamond particles, a green laser light is coupled into the capillary. The tapered capillary acts both as a microfluidic channel and as an optical waveguide, making it possible for the light to interact with the particles inside the sample solution. Using an incident laser power of few tens of milliwatts, we achieve optical transportation of the brightest particles inside the tapered part of the capillary. Particle velocities as high as few tens of micrometres per second are measured.
Collapse
|
17
|
Brasiliense V, Berto P, Aubertin P, Maisonhaute E, Combellas C, Tessier G, Courty A, Kanoufi F. Light Driven Design of Dynamical Thermosensitive Plasmonic Superstructures: A Bottom-Up Approach Using Silver Supercrystals. ACS NANO 2018; 12:10833-10842. [PMID: 30346722 DOI: 10.1021/acsnano.8b03140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When narrowly distributed silver nanoparticles (NPs) are functionalized by dodecanethiol, they acquire the ability to self-organize in organic solvents into 3D supercrystals (SCs). The NP surface chemistry is shown to introduce a light-driven thermomigration effect, thermophoresis. Using a laser beam to heat the NPs and generate steep thermal gradients, the migration effect is triggered dynamically, leading to tailored structures with high density of plasmonic hot spots. This work describes how to manipulate the hot spots and monitor the effect by holography, thus providing a complete characterization of the migration process on a single object basis. Extensive single object tracking strategies are employed to measure the SCs trajectories, evaluate their size, drift velocity magnitude and direction, allowing the identification of the physical chemical origins of the migration. The phenomenon is shown to happen as a result of the combination of thermophoresis (at short length scales) and convection (long-range), and does not require a metallic substrate. This constitutes a fully optical method to dynamically generate plasmonic platforms in situ and on demand, without requiring substrate nanostructuration and with minimal interference on the chemistry of the system. The importance of the proof-of-concept herein described stems from the numerous potential applications, spanning over a variety of fields such as microfluidics and biosensing.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| | - Pascal Berto
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250, 45 rue des Saints-Pères , F-75006 Paris , France
| | - Pierre Aubertin
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, CNRS-UMR 8235, 4 place Jussieu , F-75005 Paris France
| | - Emmanuel Maisonhaute
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, CNRS-UMR 8235, 4 place Jussieu , F-75005 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| | - Gilles Tessier
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250, 45 rue des Saints-Pères , F-75006 Paris , France
- Sorbonne Université, CNRS, Institut de la Vision, 11 Rue Moreau , F-75011 Paris France
| | - Alexa Courty
- Sorbonne Université Laboratoire MONARIS, CNRS-UMR 8233, 4 place Jussieu , F-75005 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| |
Collapse
|
18
|
Nan F, Yan Z. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation. NANO LETTERS 2018; 18:7400-7406. [PMID: 30351963 DOI: 10.1021/acs.nanolett.8b03844] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical forces have enabled various nanomanipulation in microfluidics such as optical trapping, sorting, and transporting of nanoparticles (NPs), but the manipulation is usually specific with a certain optical field. Tightly focused Gaussian beams can trap NPs but not sort them; moderately focused Gaussian beams allow sorting microparticles in a flow but not NPs; quasi-Bessel beams can sort NPs in a flow but cannot control their positions due to low trapping stiffness. All these methods rely on the axial variation of laser intensity. Here we show that multifunctional and tunable optofluidic potential wells can be created for nanomanipulation by synchronizing optical phase gradient force with fluid drag force. We demonstrate controlled trapping and transporting of 150 nm Ag NPs over 10 μm and sorting of 80 and 100 nm Au NPs using optical line traps with tunable phase gradients in experiments. Our simulations further predict that simultaneous sorting and trapping of sub-50 nm Au NPs can be achieved with a sorting resolution of 1 nm using optimized optical fields. Our method provides great freedom and flexibility for nanomanipulation in optofluidics with potential applications in nanophotonics and biomedicine.
Collapse
Affiliation(s)
- Fan Nan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Zijie Yan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
19
|
Nan F, Yan Z. Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces. NANO LETTERS 2018; 18:4500-4505. [PMID: 29939760 DOI: 10.1021/acs.nanolett.8b01672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precise sorting of colloidal nanoparticles is a challenging yet necessary task for size-specific applications of nanoparticles in nanophotonics and biochemistry. Here we present a new strategy for all-optical sorting of metal nanoparticles with dynamic and tunable optical driven forces generated by phase gradients of light. Size-dependent optical forces arising from the phase gradients of optical line traps can drive nanoparticles of different sizes with different velocities in solution, leading to their separation along the line traps. By using a sequential combination of optical lines to create differential trapping potentials, we realize precise sorting of silver and gold nanoparticles in the diameter range of 70-150 nm with a resolution down to 10 nm. Separation of the nanoparticles agrees with the analysis of optical forces acting on them and with simulations of their kinetic motions. The results provide new insights into all-optical nanoparticle manipulation and separation and reveal that there is still room to sort smaller nanoparticle with nanometer precision using dynamic phase-gradient forces.
Collapse
Affiliation(s)
- Fan Nan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | - Zijie Yan
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
20
|
Paiè P, Zandrini T, Vázquez RM, Osellame R, Bragheri F. Particle Manipulation by Optical Forces in Microfluidic Devices. MICROMACHINES 2018; 9:E200. [PMID: 30424133 PMCID: PMC6187572 DOI: 10.3390/mi9050200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Since the pioneering work of Ashkin and coworkers, back in 1970, optical manipulation gained an increasing interest among the scientific community. Indeed, the advantages and the possibilities of this technique are unsubtle, allowing for the manipulation of small particles with a broad spectrum of dimensions (nanometers to micrometers size), with no physical contact and without affecting the sample viability. Thus, optical manipulation rapidly found a large set of applications in different fields, such as cell biology, biophysics, and genetics. Moreover, large benefits followed the combination of optical manipulation and microfluidic channels, adding to optical manipulation the advantages of microfluidics, such as a continuous sample replacement and therefore high throughput and automatic sample processing. In this work, we will discuss the state of the art of these optofluidic devices, where optical manipulation is used in combination with microfluidic devices. We will distinguish on the optical method implemented and three main categories will be presented and explored: (i) a single highly focused beam used to manipulate the sample, (ii) one or more diverging beams imping on the sample, or (iii) evanescent wave based manipulation.
Collapse
Affiliation(s)
- Petra Paiè
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Rebeca Martínez Vázquez
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
21
|
Ghosh S, Ghosh A. Mobile nanotweezers for active colloidal manipulation. Sci Robot 2018; 3:3/14/eaaq0076. [DOI: 10.1126/scirobotics.aaq0076] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
|
22
|
Shi Y, Xiong S, Chin LK, Zhang J, Ser W, Wu J, Chen T, Yang Z, Hao Y, Liedberg B, Yap PH, Tsai DP, Qiu CW, Liu AQ. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. SCIENCE ADVANCES 2018; 4:eaao0773. [PMID: 29326979 PMCID: PMC5756665 DOI: 10.1126/sciadv.aao0773] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/30/2017] [Indexed: 05/18/2023]
Abstract
The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10-8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10-10 to 10-8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Sha Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| | - Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jingbo Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wee Ser
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiuhui Wu
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Tianning Chen
- School of Mechanical Engineering, Xi’an Jiao Tong University, Xi’an 710049, China
| | - Zhenchuan Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Yilong Hao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Din Ping Tsai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, China
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Institute of Microelectronics, Peking University, Beijing 100871, China
- Corresponding author. (S.X.); (C.-W.Q.); (A.Q.L.)
| |
Collapse
|
23
|
Samadi M, Darbari S, Moravvej-Farshi MK. Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes. Sci Rep 2017; 7:14533. [PMID: 29109398 PMCID: PMC5674073 DOI: 10.1038/s41598-017-14912-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
We are proposing tunable plasmonic tweezers, consisting two parallel graphene stripes, which can be utilized to effectively trap and sort nanoparticles. We show that by electrostatically tuning the chemical potential of a graphene stripe by about 100 meV (equivalent to ΔVG ≈ 4.4 V), the plasmonic force can be switched efficiently, without a need to switch the laser intensity. This enables high speed and low power switching with a large number of switching cycles. By applying two independent and appropriate gate bias voltages to the stripes, the direction of the plasmonic force can be reversed, which leads to separation of nanoparticles that satisfy the trapping conditions. Numerical simulations show that the potential depths obtained for polystyrene nanoparticles of refractive index n = 1.5717 and radii r ≥ 50 nm is deeper than −10 kBT , confirming the ability of the proposed system to effectively separate such nanoparticles. This capability holds for smaller nanoparticles with larger refractive indices. Finally, performing thermal simulations, we have demonstrated that the heat induced by the illumination increases the fluid temperature by at most 9 °C, having negligible effect on the trapping mechanism. The proposed system opens up new possibilities in developing tunable on-chip manipulation devices, suitable for biological applications.
Collapse
Affiliation(s)
- Mohsen Samadi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran
| | - Sara Darbari
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran.
| | - Mohammad Kazem Moravvej-Farshi
- Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P. O. Box 14115-194, Tehran, 1411713116, Iran.
| |
Collapse
|
24
|
Sukhov S, Dogariu A. Non-conservative optical forces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:112001. [PMID: 28762956 DOI: 10.1088/1361-6633/aa834e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Undoubtedly, laser tweezers are the most recognized application of optically induced mechanical action. Their operation is usually described in terms of conservative forces originating from intensity gradients. However, the fundamental optical action on matter is non-conservative. We will review different manifestations of non-conservative optical forces (NCF) and discuss their dependence on the specific spatial properties of optical fields that generate them. New developments relevant to the NCF such as tractor beams and transversal forces are also discussed.
Collapse
Affiliation(s)
- Sergey Sukhov
- CREOL, The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States of America
| | | |
Collapse
|
25
|
Gargiulo J, Brick T, Violi IL, Herrera FC, Shibanuma T, Albella P, Requejo FG, Cortés E, Maier SA, Stefani FD. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. NANO LETTERS 2017; 17:5747-5755. [PMID: 28806511 DOI: 10.1021/acs.nanolett.7b02713] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au-Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs.
Collapse
Affiliation(s)
- Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Thomas Brick
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Facundo C Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Toshihiko Shibanuma
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Pablo Albella
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
- University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria , 35017, Las Palmas de Gran Canaria, Spain
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
26
|
Shi YZ, Xiong S, Chin LK, Yang Y, Zhang JB, Ser W, Wu JH, Chen TN, Yang ZC, Hao YL, Liedberg B, Yap PH, Zhang Y, Liu AQ. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. LAB ON A CHIP 2017. [PMID: 28634603 DOI: 10.1039/c7lc00484b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
An optofluidic chip is demonstrated in experiments for high-resolution and multi-range particle separation through the optically-induced microscopic vibration effect, where nanoparticles are trapped in loosely overdamped optical potential wells created with combined optical and fluidic constraints. It is the first demonstration of separating single nanoparticles with diameters ranging from 60 to 100 nm with a resolution of 10 nm. Nanoparticles vibrate with an amplitude of 3-7 μm in the loosely overdamped potential wells in the microchannel. The proposed optofluidic device is capable of high-resolution particle separation at both nanoscale and microscale without reconfiguring the device. The separation of bacteria from other larger cells is accomplished using the same chip and operation conditions. The unique trapping mechanism and the superb performance in high-resolution and multi-range particle separation of the proposed optofluidic chip promise great potential for a diverse range of biomedical applications.
Collapse
Affiliation(s)
- Y Z Shi
- School of Mechanical Engineering, Xi'an Jiao Tong University, Xian 710049, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Smith CLC, Thilsted AH, Pedersen JN, Youngman TH, Dyrnum JC, Michaelsen NA, Marie R, Kristensen A. Photothermal Transport of DNA in Entropy-Landscape Plasmonic Waveguides. ACS NANO 2017; 11:4553-4563. [PMID: 28453288 DOI: 10.1021/acsnano.6b08563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to handle single, free molecules in lab-on-a-chip systems is key to the development of advanced biotechnologies. Entropic confinement offers passive control of polymers in nanofluidic systems by locally asserting a molecule's number of available conformation states through structured landscapes. Separately, a range of plasmonic configurations have demonstrated active manipulation of nano-objects by harnessing concentrated electric fields. The integration of these two independent techniques promises a range of sophisticated and complementary functions to handle, for example, DNA, but numerous difficulties, in particular, conflicting requirements of channel size, have prevented progress. Here, we show that metallic V-groove waveguides, embedded in fluidic nanoslits, form entropic potentials that trap and guide DNA molecules over well-defined routes while simultaneously promoting photothermal transport of DNA through the losses of plasmonic modes. The propulsive forces, assisted by in-coupling to propagating channel plasmon polaritons, extend along the V-grooves with a directed motion up to ≈0.5 μm·mW-1 away from the input beam and λ-DNA velocities reaching ≈0.2 μm·s-1·mW-1. The entropic trapping enables the V-grooves to be flexibly loaded and unloaded with DNA by variation of transverse fluid flow, a process that is selective to biopolymers versus fixed-shape objects and also allows the technique to address the challenges of nanoscale interaction volumes. Our self-aligning, light-driven actuator provides a convenient platform to filter, route, and manipulate individual molecules and may be realized wholly by wafer-scale fabrication suitable for parallelized investigation.
Collapse
Affiliation(s)
- Cameron L C Smith
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Anil H Thilsted
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Jonas N Pedersen
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Tomas H Youngman
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Julia C Dyrnum
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Nicolai A Michaelsen
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | - Anders Kristensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Yu X, Ye Q, Chen H, Liu S, Lin Z. Simple algorithm for partial wave expansion of plasmonic and evanescent fields. OPTICS EXPRESS 2017; 25:4201-4215. [PMID: 28241625 DOI: 10.1364/oe.25.004201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based on an expansion formula for unit dyadic in terms of the vector spherical wave functions, we derive explicit partial wave coefficients for a complex wave vector field that is characterized by a single wave vector with three Cartesian components being arbitrarily constant complex except subject to lossless background constraint and thus includes evanescent waves and simple plasmonic fields as its two special cases. A recurrence method is then proposed to evaluate the partial wave expansion coefficients numerically up to arbitrary order of expansion, offering an efficient tool for the scattering of generic electromagnetic fields that can be modelled by a superposition of the complex wave vector fields such as the evanescent and plasmonic waves. Our approach is validated by analytically working out the integration in the conventional, more cumbersome, projection approach. Comparison of optical forces on a particle in evanescent and plasmonic fields with previous results shows perfect agreement, thereby further corroborating our approach. As examples of its application, we calculate optical force and torque exerting on particles residing in a plasmonic field, with large particle size where the conventional projection method based on the direct numerical integration is unadapted due to the difficulty in convergence. It is found that the direction of optical torque stays parallel to the direction of spin of optical field for some field polarizations and changes for some other polarizations, as the particle radius R varies.
Collapse
|
29
|
Bregulla AP, Würger A, Günther K, Mertig M, Cichos F. Thermo-Osmotic Flow in Thin Films. PHYSICAL REVIEW LETTERS 2016; 116:188303. [PMID: 27203347 DOI: 10.1103/physrevlett.116.188303] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 05/07/2023]
Abstract
We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.
Collapse
Affiliation(s)
- Andreas P Bregulla
- Molecular Nanophotonics Group, Institute of Experimental Physics I, University of Leipzig, 04103 Leipzig, Germany
| | - Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux & CNRS, 33405 Talence, France
| | - Katrin Günther
- BioNanotechnology and Structure Formation Group, Department of Chemistry and Food Chemistry, Chair of Physical Chemistry, Measurement and Sensor Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- BioNanotechnology and Structure Formation Group, Department of Chemistry and Food Chemistry, Chair of Physical Chemistry, Measurement and Sensor Technology, Technische Universität Dresden, 01062 Dresden, Germany
- Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg, 04736 Waldheim, Germany
| | - Frank Cichos
- Molecular Nanophotonics Group, Institute of Experimental Physics I, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Würger A. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids. PHYSICAL REVIEW LETTERS 2016; 116:138302. [PMID: 27082005 DOI: 10.1103/physrevlett.116.138302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 06/05/2023]
Abstract
We study hydrodynamic slowing down of a particle moving in a temperature gradient perpendicular to a wall. At distances much smaller than the particle radius, h≪a, the lubrication approximation leads to the reduced velocity u/u_{0}=3(h/a)[ln(a/h)-9/4], where u_{0} is the velocity in the bulk. With Brenner's result for confined diffusion, we find that the trapping efficiency, or effective Soret coefficient, increases logarithmically as the particle gets very close to the wall. Our results provide a quantitative explanation for the recently observed enhancement of thermophoretic trapping at short distances. Our discussion of parallel and perpendicular thermophoresis in a capillary reveals a good agreement with experiments on charged polystyrene particles, and sheds some light on a controversy concerning the size dependence and the nonequilibrium nature of the Soret effect.
Collapse
Affiliation(s)
- Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux & CNRS, 33405 Talence, France
| |
Collapse
|
31
|
Cheng C, Xu X, Lei H, Li B. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Sci Rep 2016; 6:20433. [PMID: 26843143 PMCID: PMC4740807 DOI: 10.1038/srep20433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
The integration of surface plasmon with waveguide is a strategy for lab-on-a-chip compatible optical trapping. Here, we report a method for trapping of nanoparticles using a silver nanowire (AgNW) embedded poly(methyl methacrylate) (PMMA) nanofiber with the assistance of surface plasmon polaritons (SPPs). The nanoparticles (polystyrene, 700 nm diameter) are transported along the nanofiber and ultimately trapped at the AgNW embedded region because of the enhanced optical gradient force towards the nanofiber exerted on the nanoparticles and optical potential well generated by the excitation of SPPs. The low optical power requirement and the easy fabrication of the AgNW-embedded nanofiber with broad range of wavelength for SPPs are advantageous to the applications in optofluidics and plasmofluidics.
Collapse
Affiliation(s)
- Chang Cheng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaohao Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baojun Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
32
|
Ryan J, Zheng Y, Hansen P, Hesselink L. Fabrication and Operation of a Nano-Optical Conveyor Belt. J Vis Exp 2015:e52842. [PMID: 26381708 DOI: 10.3791/52842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.
Collapse
Affiliation(s)
- Jason Ryan
- Electrical Engineering, Stanford University;
| | | | | | | |
Collapse
|
33
|
Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat Commun 2014; 5:4357. [DOI: 10.1038/ncomms5357] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
|
34
|
Tsai WY, Huang JS, Huang CB. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. NANO LETTERS 2014; 14:547-52. [PMID: 24392638 DOI: 10.1021/nl403608a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate selective trapping or rotation of optically isotropic dielectric microparticles by plasmonic near field in a single gold plasmonic Archimedes spiral. Depending on the handedness of circularly polarized excitation, plasmonic near fields can be selectively engineered into either a focusing spot for particle trapping or a plasmonic vortex for particle rotation. Our design provides a simple solution for subwavelength optical manipulation and may find applications in micromechanical and microfluidic systems.
Collapse
Affiliation(s)
- Wei-Yi Tsai
- Institute of Photonics Technologies, ‡Department of Chemistry, §Center for Nanotechnology, Materials Sciences, and Microsystems, and ∥Frontier Research Center on Fundamental and Applied Science of Matters, National Tsing Hua University , Hsinchu 30013, Taiwan
| | | | | |
Collapse
|