1
|
Khongwichit S, Nualla-Ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Computational and experimental investigations of a novel aptamer targeting oxidized low-density lipoprotein. Comput Biol Med 2024; 180:108994. [PMID: 39121680 DOI: 10.1016/j.compbiomed.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Aekkaraj Nualla-Ong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Center for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Napat Prompat
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Vienna, 1090, Austria
| | - Suticha Chunta
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm 2023; 646:123448. [PMID: 37757957 DOI: 10.1016/j.ijpharm.2023.123448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets. So, incorporating aptamers into DNA nanostructures led to influential vehicles for bioimaging and biosensing as well as targeted cancer therapy. In this review, the recent developments in the application of aptamer-based DNA origami and DNA nanostructures in advanced cancer treatment have been highlighted. Some of the main methods of cancer treatment are classified as chemo-, gene-, photodynamic- and combined therapy. Finally, the opportunities and problems for targeted DNA aptamer-based nanocarriers for medicinal applications have also been discussed.
Collapse
Affiliation(s)
- Atena Jabbari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Cox CA, Ogorek AN, Habumugisha JP, Martell JD. Switchable DNA Photocatalysts for Radical Polymerization Controlled by Chemical Stimuli. J Am Chem Soc 2023; 145:1818-1825. [PMID: 36629375 DOI: 10.1021/jacs.2c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymerization catalysts that activate in response to specific chemical triggers offer spatial and temporal control over polymer synthesis, facilitating the development of responsive materials and custom polymer coatings. However, existing catalysts switch their activity through mechanisms that are not generalizable to chemically diverse stimuli. To approach the level of control exhibited in biological polymer synthesis, switchable polymerization catalysts need to be configurable for activation in response to diverse chemical stimuli. Here, we combine synthetic photocatalysts with conformation-switching DNA aptamers to create polymerization catalysts that respond to diverse chemical stimuli. We use the secondary structure of DNA to bring a photocatalyst and quencher dye into proximity, turning off photocatalysis. The DNA structure can be precisely designed to change conformation in response to a molecular trigger, moving the photocatalyst far from the quencher and activating photocatalysis. We show these photocatalysts can initiate free-radical polymerization to form bulk hydrogels in response to complementary DNA, a metal ion (Zn2+), or small molecules (glucose and hydrocortisone). We demonstrate the biocompatibility of these switchable photocatalysts by triggering their activation on the surface of yeast cells. Finally, we perform reversible-deactivation radical polymerization through photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer in a dual-stimulus manner, in which catalytic activity is regulated reversibly by photoirradiation and the conformational state of the DNA catalyst. These results demonstrate that DNA conformational changes triggered by chemically diverse stimuli can regulate the activity of radical polymerization photocatalysts. This platform offers new capabilities in spatially and temporally controlled polymer synthesis, with potential applications in diagnostics, sensing, and environmentally responsive materials.
Collapse
Affiliation(s)
- Caleb A Cox
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ashley N Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean Paul Habumugisha
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Ma Q, Zhang M, Zhang C, Teng X, Yang L, Tian Y, Wang J, Han D, Tan W. An automated DNA computing platform for rapid etiological diagnostics. SCIENCE ADVANCES 2022; 8:eade0453. [PMID: 36427311 PMCID: PMC9699674 DOI: 10.1126/sciadv.ade0453] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapid and accurate classification of the etiology for acute respiratory illness not only helps establish timely therapeutic plans but also prevents inappropriate use of antibiotics. Host gene expression patterns in peripheral blood can discriminate bacterial from viral causes of acute respiratory infection (ARI) but suffer from long turnaround time, as well as high cost resulting from the measurement methods of microarrays and next-generation sequencing. Here, we developed an automated DNA computing-based platform that can implement an in silico trained classification model at the molecular level with seven different mRNA expression patterns for accurate diagnosis of ARI etiology in 4 hours. By integrating sample loading, marker amplification, classifier implementation, and results reporting into one platform, we obtained a diagnostic accuracy of 87% in 80 clinical samples without the aid of computer and laboratory technicians. This platform creates opportunities toward an accurate, rapid, low-cost, and automated diagnosis of disease etiology in emergency departments or point-of-care clinics.
Collapse
Affiliation(s)
- Qian Ma
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Intellinosis Biotechnologies Co. Ltd., Shanghai, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Intellinosis Biotechnologies Co. Ltd., Shanghai, China
- Corresponding author. (D.H.); (W.T.); (C.Z.)
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 201306, China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Tian
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Corresponding author. (D.H.); (W.T.); (C.Z.)
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Corresponding author. (D.H.); (W.T.); (C.Z.)
| |
Collapse
|
5
|
Cui M, Zhao X, Reddavide FV, Gaillez MP, Heiden S, Mannocci L, Thompson M, Zhang Y. Nonlinear manipulation and analysis of large DNA datasets. Nucleic Acids Res 2022; 50:8974-8985. [PMID: 35947747 PMCID: PMC9410889 DOI: 10.1093/nar/gkac672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing functions are essential for organisms to perceive and react to their complex environment, and for humans to analyze and rationalize them. While our brain is extraordinary at processing complex information, winner-take-all, as a type of biased competition is one of the simplest models of lateral inhibition and competition among biological neurons. It has been implemented as DNA-based neural networks, for example, to mimic pattern recognition. However, the utility of DNA-based computation in information processing for real biotechnological applications remains to be demonstrated. In this paper, a biased competition method for nonlinear manipulation and analysis of mixtures of DNA sequences was developed. Unlike conventional biological experiments, selected species were not directly subjected to analysis. Instead, parallel computation among a myriad of different DNA sequences was carried out to reduce the information entropy. The method could be used for various oligonucleotide-encoded libraries, as we have demonstrated its application in decoding and data analysis for selection experiments with DNA-encoded chemical libraries against protein targets.
Collapse
Affiliation(s)
| | | | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Yixin Zhang
- To whom correspondence should be addressed. Tel: +49 351 463 43040;
| |
Collapse
|
6
|
Cui MR, Chen Y, Zhu D, Chao J. Intelligent Programmable DNA Nanomachines for the Spatially Controllable Imaging of Intracellular MicroRNA. Anal Chem 2022; 94:10874-10884. [PMID: 35856834 DOI: 10.1021/acs.analchem.2c02299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high programmability of DNA molecules makes them particularly suitable for constructing artificial molecular machines to perform sophisticated functions by simulating complex living systems. However, intelligent DNA nanomachines which can perform precise tasks logically in complex environments still remain challenging. Herein, we develop a general strategy to design a pH-responsive programmable DNA (PRPD) nanomachine to perform multilayer DNA cascades, enabling precise sensing and calculation of intracellular biomolecules. The PRPD nanomachine is built on a four-stranded DNAzyme walker precursor with a DNA switch on the surface of an Au nanoparticle, which is capable of precisely responding to pH variations in living cells by sequence tuning. This multilayer DNA cascade networks have been applicated in spatially controlled imaging of intracellular microRNA, which efficiently avoided the DNA nanomachine activated by nonspecific extracellular molecules and achieved apparent signal amplification. Our strategy enables the sensing-computing-output functional integration of DNA nanomachines, facilitating the application of programmable and complex nanomachines in nanoengineering, chemistry, and biomedicine.
Collapse
Affiliation(s)
- Mei-Rong Cui
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Chen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin HC, Yang Y, Han D. Logical Analysis of Multiple Single-Nucleotide-Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022; 61:e202117658. [PMID: 35137499 DOI: 10.1002/anie.202117658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Analyzing complex single-nucleotide-polymorphism (SNP) combinations in the genome is important for research and clinical applications, given that different SNP combinations can generate different phenotypic consequences. Recent works have shown that DNA-based molecular computing is powerful for simultaneously sensing and analyzing complex molecular information. Here, we designed a switching circuit-based DNA computational scheme that can integrate the sensing of multiple SNPs and simultaneously perform logical analysis of the detected SNP information to directly report clinical outcomes. As a demonstration, we successfully achieved automatic and accurate identification of 21 different blood group genotypes from 83 clinical blood samples with 100 % accuracy compared to sequencing data in a more rapid manner (3 hours). Our method enables a new mode of automatic and logical sensing and analyzing subtle molecular information for clinical diagnosis, as well as guiding personalized medication.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hsiao-Chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
8
|
Yu Y, Wang A, Wang S, Sun Y, Chu L, Zhou L, Yang X, Liu X, Sha C, Sun K, Xu L. Efficacy of Temozolomide-Conjugated Gold Nanoparticle Photothermal Therapy of Drug-Resistant Glioblastoma and Its Mechanism Study. Mol Pharm 2022; 19:1219-1229. [PMID: 35262365 DOI: 10.1021/acs.molpharmaceut.2c00083] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Temozolomide (TMZ) is a standard-of-care chemotherapeutic drug for the treatment of glioblastoma (GBM), but TMZ-acquired resistance limits its therapeutic effect. In this study, TMZ-loaded gold nanoparticles (TMZ@GNPs) with anti-EphA3 modification on the surface (anti-EphA3-TMZ@GNPs) were synthesized for chemical and auxiliary plasma photothermal treatment (GNPs-PPTT), aiming to overcome the problem of glioma resistance to TMZ and improve the therapeutic effects of GBM. The prepared anti-EphA3-TMZ@GNPs were spherical with a particle size of 45.88 ± 1.9 nm, and the drug loading was 7.31 ± 0.38%. In vitro, cell-culture-based experiments showed that anti-EphA3 increased the cellular uptake of GNPs in T98G cells. Upon laser irradiation, the cytotoxicity and apoptosis rate in the anti-EphA3-TMZ@GNPs-treated group were significantly higher than those in the GNPs and nonphotothermal groups (p < 0.001). The Western blot analysis showed that the GNPs-PPTT-mediated killing of tumor cells induced apoptosis by regulating the apoptotic signaling molecules and cell cycle inhibitors; the expression of MGMT significantly decreased upon p53 induction, thereby reversing drug resistance. After photothermal treatment, the survival time of the subcutaneous GBM model of nude mice in the anti-EphA3-TMZ@GNPs group was prolonged to 46 days, 1.64-fold longer as compared to that in the TMZ group. Based on H&E and TUNEL staining, GNPs-PPTT could elevate apoptosis in T98G cells. In vivo thermal imaging results showed that GNPs could enter the brain via intranasal administration and be eliminated in 2 days, indicating that GNPs are safe for brain. In conclusion, GNPs-PPTT could effectively induce apoptosis in glioma cells and reverse TMZ resistance, thereby, indicative of a promising treatment strategy for GBM.
Collapse
Affiliation(s)
- Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Siqi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yuchen Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Liuxiang Chu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiaoyue Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xincui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Chunjie Sha
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Lixiao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
9
|
Aye SL, Sato Y. Therapeutic Applications of Programmable DNA Nanostructures. MICROMACHINES 2022; 13:315. [PMID: 35208439 PMCID: PMC8876680 DOI: 10.3390/mi13020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology, a frontier in biomedical engineering, is an emerging field that has enabled the engineering of molecular-scale DNA materials with applications in biomedicine such as bioimaging, biodetection, and drug delivery over the past decades. The programmability of DNA nanostructures allows the precise engineering of DNA nanocarriers with controllable shapes, sizes, surface chemistries, and functions to deliver therapeutic and functional payloads to target cells with higher efficiency and enhanced specificity. Programmability and control over design also allow the creation of dynamic devices, such as DNA nanorobots, that can react to external stimuli and execute programmed tasks. This review focuses on the current findings and progress in the field, mainly on the employment of DNA nanostructures such as DNA origami nanorobots, DNA nanotubes, DNA tetrahedra, DNA boxes, and DNA nanoflowers in the biomedical field for therapeutic purposes. We will also discuss the fate of DNA nanostructures in living cells, the major obstacles to overcome, that is, the stability of DNA nanostructures in biomedical applications, and the opportunities for DNA nanostructure-based drug delivery in the future.
Collapse
Affiliation(s)
| | - Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan;
| |
Collapse
|
10
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin H, Yang Y, Han D. Logical Analysis of Multiple Single‐Nucleotide‐Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaoyan Teng
- Department of Laboratory Medicine Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 201306 China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
11
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
13
|
Abstract
Measurement of biological systems containing biomolecules and bioparticles is a key task in the fields of analytical chemistry, biology, and medicine. Driven by the complex nature of biological systems and unprecedented amounts of measurement data, artificial intelligence (AI) in measurement science has rapidly advanced from the use of silicon-based machine learning (ML) for data mining to the development of molecular computing with improved sensitivity and accuracy. This review presents an overview of fundamental ML methodologies and discusses their applications in disease diagnostics, biomarker discovery, and imaging analysis. We next provide the working principles of molecular computing using logic gates and arithmetical devices, which can be employed for in situ detection, computation, and signal transduction for biological systems. This review concludes by summarizing the strengths and limitations of AI-involved biological measurement in fundamental and applied research.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
|
15
|
Wu W, Wang W, Qi L, Wang Q, Yu L, Lin JM, Hu Q. Screening of Xanthine Oxidase Inhibitors by Liquid Crystal-Based Assay Assisted with Enzyme Catalysis-Induced Aptamer Release. Anal Chem 2021; 93:6151-6157. [PMID: 33826305 DOI: 10.1021/acs.analchem.0c05456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule drugs play an important role in the treatment of various diseases. The screening of enzyme inhibitors is one of the most important means in developing therapeutic drugs. Herein, we demonstrate a liquid crystal (LC)-based screening assay assisted with enzyme catalysis-induced aptamer release for screening xanthine oxidase (XOD) inhibitors. The oxidation of xanthine by XOD prevents the specific binding of xanthine and its aptamer, which induces a bright image of LCs. However, when XOD is inhibited, xanthine specifically binds to the aptamer. Correspondingly, LCs display a dark image. Three compounds are identified as potent XOD inhibitors by screening a small library of triazole derivatives using this method. Molecular docking verifies the occupation of the active site by the inhibitor, which also exhibits excellent biocompatibility to HEK293 cells and HeLa cells. This strategy takes advantages of the unique aptamer-target binding, specific enzymatic reaction, and simple LC-based screening assay, which allows high-throughput and label-free screening of inhibitors with high sensitivity and remarkable accuracy. Overall, this study provides a competent and promising approach to facilitate the screening of enzyme inhibitors using the LC-based assay assisted with the enzyme catalysis-induced aptamer release.
Collapse
Affiliation(s)
- Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiguo Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
16
|
Li J, Xun K, Zheng L, Peng X, Qiu L, Tan W. DNA-Based Dynamic Mimicry of Membrane Proteins for Programming Adaptive Cellular Interactions. J Am Chem Soc 2021; 143:4585-4592. [DOI: 10.1021/jacs.0c11245] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Kanyu Xun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liyan Zheng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Zhang J, Qiu Z, Fan J, He F, Kang W, Yang S, Wang H, Huang J, Nie Z. Scan and Unlock: A Programmable DNA Molecular Automaton for Cell‐Selective Activation of Ligand‐Based Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Zongyang Qiu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Jing Huang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| |
Collapse
|
18
|
Zhang J, Qiu Z, Fan J, He F, Kang W, Yang S, Wang H, Huang J, Nie Z. Scan and Unlock: A Programmable DNA Molecular Automaton for Cell‐Selective Activation of Ligand‐Based Signaling. Angew Chem Int Ed Engl 2021; 60:6733-6743. [DOI: 10.1002/anie.202015129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Jinghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Zongyang Qiu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Jing Huang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| |
Collapse
|
19
|
Zhang Y, Zhou H, Zhang Z, Zhu Y, Wang T, Yu L, Song H. Redox/NIR dual-responsive PEG-betulinic acid/pluronic-cypate prodrug micelles for chemophotothermal therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|
21
|
Wu Y, Liu M, Pei W, Zhao Y, Wang D, Liu T, Sun B, Wang Q, Han J. Thermodynamics, in vitro release and cytotoxity studies on doxorubicin–toluidine blue O combination drugs co-loaded in aptamer-tethered DNA nanostructures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
23
|
Yang L, Zhao Y, Xu X, Xu K, Zhang M, Huang K, Kang H, Lin H, Yang Y, Han D. An Intelligent DNA Nanorobot for Autonomous Anticoagulation. Angew Chem Int Ed Engl 2020; 59:17697-17704. [DOI: 10.1002/anie.202007962] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Yumeng Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kangli Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huaizhi Kang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
24
|
Yang L, Zhao Y, Xu X, Xu K, Zhang M, Huang K, Kang H, Lin H, Yang Y, Han D. An Intelligent DNA Nanorobot for Autonomous Anticoagulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Yumeng Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kangli Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Kui Huang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huaizhi Kang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen Fujian 361005 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
25
|
Zhang C, Zhao Y, Xu X, Xu R, Li H, Teng X, Du Y, Miao Y, Lin HC, Han D. Cancer diagnosis with DNA molecular computation. NATURE NANOTECHNOLOGY 2020; 15:709-715. [PMID: 32451504 DOI: 10.1038/s41565-020-0699-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Early and precise cancer diagnosis substantially improves patient survival. Recent work has revealed that the levels of multiple microRNAs in serum are informative as biomarkers for the diagnosis of cancers. Here, we designed a DNA molecular computation platform for the analysis of miRNA profiles in clinical serum samples. A computational classifier is first trained in silico using miRNA profiles from The Cancer Genome Atlas. This is followed by a computationally powerful but simple molecular implementation scheme using DNA, as well as an effective in situ amplification and transformation method for miRNA enrichment in serum without perturbing the original variety and quantity information. We successfully achieved rapid and accurate cancer diagnosis using clinical serum samples from 22 healthy people (8) and people with lung cancer (14) with an accuracy of 86.4%. We envision that this DNA computational platform will inspire more clinical applications towards inexpensive, non-invasive and rapid disease screening, classification and progress monitoring.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumeng Zhao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemei Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haowen Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hsiao-Chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci 2020; 21:ijms21072480. [PMID: 32260051 PMCID: PMC7178173 DOI: 10.3390/ijms21072480] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely studied and applied in the field of tumor diagnosis and treatment because of their special fundamental properties. In order to make AuNPs more suitable for tumor diagnosis and treatment, their natural properties and the interrelationships between these properties should be systematically and profoundly understood. The natural properties of AuNPs were discussed from two aspects: physical and chemical. Among the physical properties of AuNPs, localized surface plasmon resonance (LSPR), radioactivity and high X-ray absorption coefficient are widely used in the diagnosis and treatment of tumors. As an advantage over many other nanoparticles in chemicals, AuNPs can form stable chemical bonds with S-and N-containing groups. This allows AuNPs to attach to a wide variety of organic ligands or polymers with a specific function. These surface modifications endow AuNPs with outstanding biocompatibility, targeting and drug delivery capabilities. In this review, we systematically summarized the physicochemical properties of AuNPs and their intrinsic relationships. Then the latest research advancements and the developments of basic research and clinical trials using these properties are summarized. Further, the difficulties to be overcome and possible solutions in the process from basic laboratory research to clinical application are discussed. Finally, the possibility of applying the results to clinical trials was estimated. We hope to provide a reference for peer researchers to better utilize the excellent physicochemical properties of gold nanoparticles in oncotherapy.
Collapse
|
27
|
Zhao Q, Li X, Lu J, Liu Y, Sha L, Di D, Wang S. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Sheng A, Su L, Wang J, Xue T, Wang P, Zhang J. Hydrazone chemistry mediated toehold strand displacement cascade and its application for 5-hydroxymethylfurfural analysis. Anal Chim Acta 2020; 1104:110-116. [DOI: 10.1016/j.aca.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 11/28/2022]
|
29
|
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng HM, Ke G, Zhang XB. “Apollo Program” in Nanoscale: Landing and Exploring Cell-Surface with DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2020; 3:2723-2742. [DOI: 10.1021/acsabm.9b01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
30
|
|
31
|
|
32
|
Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Logic-Gate-Actuated DNA-Controlled Receptor Assembly for the Programmable Modulation of Cellular Signal Transduction. Angew Chem Int Ed Engl 2019; 58:18186-18190. [PMID: 31595614 DOI: 10.1002/anie.201908971] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023]
Abstract
Programming cells to sense multiple inputs and activate cellular signal transduction cascades is of great interest. Although this goal has been achieved through the engineering of genetic circuits using synthetic biology tools, a nongenetic and generic approach remains highly demanded. Herein, we present an aptamer-controlled logic receptor assembly for modulating cellular signal transduction. Aptamers were engineered as "robotic arms" to capture target receptors (c-Met and CD71) and a DNA logic assembly functioned as a computer processor to handle multiple inputs. As a result, the DNA assembly brings c-Met and CD71 into close proximity, thus interfering with the ligand-receptor interactions of c-Met and inhibiting its functions. Using this principle, a set of logic gates was created that respond to DNA strands or light irradiation, modulating the c-Met/HGF signal pathways. This simple modular design provides a robust chemical tool for modulating cellular signal transduction.
Collapse
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
33
|
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J Control Release 2019; 315:166-185. [PMID: 31669209 DOI: 10.1016/j.jconrel.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
DNA composite materials are at the forefront, especially for biomedical science, as they can increase the efficacy and safety of current therapies and drug delivery systems. The specificity and predictability of the Watson-Crick base pairing make DNA an excellent building material for the production of programmable and multifunctional objects. In addition, the principle of nucleic acid hybridization can be applied to realize mobile nanostructures, such as those reflected in DNA walkers that sort and collect cargo on DNA tracks, DNA robots performing tasks within living cells and/or DNA tweezers as ultra-sensitive biosensors. In this review, we present the diversity of dynamic DNA nanostructures functionalized with different biomolecules/functional units, imaging smart biomaterials capable of sensing, interacting, delivery and performing complex tasks within living cells/organisms.
Collapse
Affiliation(s)
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thorsten L Schmidt
- Physics Department, 103 Smith Hall, Kent State University, Kent, OH, 44240, USA
| | - Hasan Majdi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
34
|
Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Logic‐Gate‐Actuated DNA‐Controlled Receptor Assembly for the Programmable Modulation of Cellular Signal Transduction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- College of Biological Science and EngineeringFuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
35
|
Liu W, Zhang K, Zhuang L, Liu J, Zeng W, Shi J, Zhang Z. Aptamer/photosensitizer hybridized mesoporous MnO 2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2019; 184:110536. [PMID: 31639567 DOI: 10.1016/j.colsurfb.2019.110536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Herein, we report a turn-on strategy for selectively killing the tumor cell via combining the singlet-oxygen quenching MnO2 and tumor cell-targeting aptamer. The photosensitizers were in the quenching state when loaded in the mesoporous MnO2 (mMnO2) nanoparticles and sealed by the aptamer on the particle surface. The aptamer can selectively recognize the specific membrane protein on the tumor cell and release the photosensitizers, activating the photosensitizer and killing the tumor cells. The specific binding-induced "off-on" switching of singlet oxygen generation reduced the damage to the nearby healthy cells to a large extent. The high loading ability for photosensitizer and the GSH consumption property of mMnO2 endow the system with high local concentration of singlet-oxygen for killing the target tumor cell. The high selectivity and efficiency of the constructed singlet oxygen regulating system will pave a new way for utilizing PDT in cancer precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Luyang Zhuang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Wu Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China.
| |
Collapse
|
36
|
Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. Construction of a Multiple-Aptamer-Based DNA Logic Device on Live Cell Membranes via Associative Toehold Activation for Accurate Cancer Cell Identification. J Am Chem Soc 2019; 141:12738-12743. [PMID: 31328519 DOI: 10.1021/jacs.9b05470] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability to accurately identify and isolate cells is the cornerstone of precise disease diagnosis and therapies. A single-step cell identification method based on logic analysis of multiple surface markers will have unique advantages because of its accuracy and efficacy. Herein, using multiple DNA aptamers for cancer biomarker recognition and associative toehold activation for signal integration and amplification as two molecular keys, we have successfully operated a cell-surface device that can perform AND Boolean logic analysis of multiple biomarkers and precisely label the target cell subtype in large populations of similar cells via the presence or absence of different biomarkers. Our approach can achieve single-step cancer cell identification and isolation with excellent sensitivity and accuracy and thus will have broad applications in biological science, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Xu Chang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Chao Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Cheng Lv
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Yang Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Yumeng Zhao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Linlin Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , 410082 , China.,Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
37
|
Wang S, Lu S, Zhao J, Yang X. A Ratiometric Fluorescent DNA Radar Based on Contrary Response of DNA/Silver Nanoclusters and G-Quadruplex/Crystal Violet. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25066-25073. [PMID: 31273994 DOI: 10.1021/acsami.9b08215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
G-quadruplex (G4) exhibits infinite application foreground due to its special properties and critical roles in biological regulation. A DNA radar was first built by assigning the silver nanocluster (AgNC) as the radar transmitter, the middle single strand DNA-bridge connected on the AgNCs as the electromagnetic wave, and the G4/crystal violet complex as the radar antenna. The radar antenna could receive the signal of the target DNA that met the electromagnetic wave and give a location via light-up fluorescence. Here, G4 is chosen as the suitable template to connect potential nanomaterial AgNCs with the G4 binder (crystal violet, CV) since the rich guanine in G4 could not only enhance the fluorescence of AgNCs but also form quartets offering powerful binding sites for the G4 binder. Meanwhile, the hybridization behavior of the middle single strand-bridge produced contrary effects decreasing the fluorescence of AgNCs and increasing the fluorescence of G4/CV, which vests a ratiometric feature in such DNA radar. Additionally, this DNA radar model could realize a cascade of logic circuits, the construction of a 1-to-2 decoder, and the ratiometric detection of target DNA. This system could also be employed for DNA detection in a biological matrix, which could be potentially usable as a unique means for monitoring the pathological process of disease, and lays the foundation for the future treatment of diseases.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
- University of Science and Technology of China , Hefei , Anhui 230026 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| |
Collapse
|
38
|
Li F, Xiao M, Pei H. DNA‐Based Chemical Reaction Networks. Chembiochem 2019; 20:1105-1114. [DOI: 10.1002/cbic.201800721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Fan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen University Nanhai Avenue 3688 518060 Shenzhen Guangzhou P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| |
Collapse
|
39
|
Wang Y, Dong Z, Hu H, Yang Q, Hou X, Wu P. DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring. Anal Bioanal Chem 2019; 411:4415-4423. [PMID: 30734855 DOI: 10.1007/s00216-019-01605-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Recently, photosensitized oxidation has been explored in many fields of research and applications, such as photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT). Although the photosensitized generation of ROS features emerging applications, controllable management of the photosensitization process is still sometimes problematic. DNA has long been considered the carrier for genetic information. With the in-depth study of the chemical properties of DNA, the molecular function of DNA is gradually witnessed by the scientific community. Undoubtedly, the selective recognition nature of DNA endows them excellent candidate modulators for photosensitized oxidation. According to current research, reports on DNA regulation of photosensitized oxidation can be roughly divided into two categories in principle: P-Q quenching pair-switched photosensitization and host-guest interaction-switched photosensitization. In this review, the development status of these two analytical methods will be summarized, and the future development direction of DNA-modulated photosensitization in biosensing and environmental monitoring will also be prospected.
Collapse
Affiliation(s)
- Yanying Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhen Dong
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Qing Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China. .,State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
40
|
Xiong M, Rong Q, Kong G, Yang C, Zhao Y, Qu FL, Zhang XB, Tan W. Hybridization chain reaction-based nanoprobe for cancer cell recognition and amplified photodynamic therapy. Chem Commun (Camb) 2019; 55:3065-3068. [DOI: 10.1039/c8cc10074h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a hybridization chain reaction-based nanoprobe for selective and sensitive cancer cell recognition and amplified photodynamic therapy.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Qiming Rong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Yan Zhao
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Feng-Li Qu
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| |
Collapse
|
41
|
Callaghan S, Senge MO. The good, the bad, and the ugly - controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 2018; 17:1490-1514. [PMID: 29569665 DOI: 10.1039/c8pp00008e] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet oxygen, although integral to photodynamic therapy, is notoriously uncontrollable, suffers from poor selectivity and has fast decomposition rates in biological media. Across the scientific community, there is a conscious effort to refine singlet oxygen interactions and initiate selective and controlled release to produce a consistent and reproducible therapeutic effect in target tissue. This perspective aims to provide an insight into the contemporary design principles behind photosensitizers and drug delivery systems that depend on a singlet oxygen response or controlled release. The discussion will be accompanied by in vitro and in vivo examples, in an attempt to highlight advancements in the field and future prospects for the more widespread application of photodynamic therapy.
Collapse
Affiliation(s)
- Susan Callaghan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
42
|
Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev 2018; 134:65-78. [PMID: 30125604 PMCID: PMC6239901 DOI: 10.1016/j.addr.2018.08.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to specifically bind with target molecules. Aptamers can be relatively easily screened, reproducibly manufactured, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Meng HM, Hu XX, Kong GZ, Yang C, Fu T, Li ZH, Zhang XB. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Am J Cancer Res 2018; 8:4332-4344. [PMID: 30214624 PMCID: PMC6134922 DOI: 10.7150/thno.26768] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
Photodynamic therapy (PDT) has been applied in clinical cancer treatment. Here we report an aptamer-functionalized nanoscale metal-organic framework for targeted PDT. Our nanosystem can be easily prepared and successfully used for targeted PDT with a significantly enhanced therapeutic efficacy in vitro and in vivo. Methods: By combining the strong binding ability between phosphate-terminated aptamers and Zr-based nanoscale metal-organic frameworks (Zr-NMOFs) and the intercalation of photosensitizer TMPyP4 within the G-quadruplex DNA structure, TMPyP4-G4-aptamer-NMOFs were prepared. The characteristics and photodynamic performance of TMPyP4-G4-aptamer-NMOFs were examined after preparation. Then, we studied their stability, specific recognition ability, and phototoxicity in vitro. For in vivo experiments, the nanosystem was intratumorally injected into a HeLa subcutaneous xenograft tumor mouse model. After irradiation on day 0, mice were further injected with the nanosystem on day 5 and were again subjected to laser irradiation for 30 min. Tumor volumes and body weights of all mice were measured by caliper every 2 days after the treatment. Results: The nanosystem induced 90% cell death of targeted cells. In contrast, the control cells maintained about 40% cell viability at the same concentration of nanosystem. For the in vivo experiments, the nanosystem-treated group maintained more than 76% inhibition within the entire experimental period. Conclusion: We have demonstrated that our smart TMPyP4-G4-sgc8-NMOFs nanosystem can be used for targeted cancer therapy with high efficiency.
Collapse
|
44
|
Xiong Y, Cheng Y, Wang L, Li Y. An ''off-on'' phosphorescent aptasensor switch for the detection of ATP. Talanta 2018; 190:226-234. [PMID: 30172503 DOI: 10.1016/j.talanta.2018.07.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
An "off-on" phosphorescent aptasensor based on the 3-mercaptopropionic acid (MPA) capped Mn-doped ZnS quantum dots (MPA-Mn:ZnS QDs)/aptamer hybrid system was developed to detect adenosine triphosphate (ATP) in biological fluids. The phosphorescence of MPA-Mn:ZnS QDs was obviously quenched when ATP aptamer was added due to the aggregation induced effect. ATP aptamer, adsorbed on the surface of the phosphorescent MPA-Mn:ZnS QDs, has a high affinity for ATP. And then, with the addition of ATP, phosphorescence was gradually recovered because of the stronger special binding interaction between ATP and ATP aptamer than that between QDs and ATP aptamer. In this case, a high sensitivity and selectivity of phosphorescent aptasensor for the detection of ATP has constructed with a low detection limit of 0.9 nM and a wide linear range from 2 nM to 9 µM. What's more, the phosphorescent aptasensor does not require complex pretreatments and can effectively eliminate the interference from auto fluorescence and scattering light.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yue Cheng
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
45
|
Hou W, Liu Y, Jiang Y, Wu Y, Cui C, Wang Y, Zhang L, Teng IT, Tan W. Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. NANOSCALE 2018; 10:10986-10990. [PMID: 29856447 PMCID: PMC6472954 DOI: 10.1039/c8nr01096j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We designed an aptamer-based multifunctional ligand which, upon conjugation to the surface of upconversion nanoparticles (UCNPs), could realize phase transfer, covalent photosensitizer (PS) loading, and cancer cell targeting in one simple step. The as-built PDT nanodrug is selectively internalized into cancer cells and it exhibits highly efficient and selective cytotoxicity.
Collapse
Affiliation(s)
- Weijia Hou
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fu T, Lyu Y, Liu H, Peng R, Zhang X, Ye M, Tan W. DNA-Based Dynamic Reaction Networks. Trends Biochem Sci 2018; 43:547-560. [PMID: 29793809 DOI: 10.1016/j.tibs.2018.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023]
Abstract
Deriving from logical and mechanical interactions between DNA strands and complexes, DNA-based artificial reaction networks (RNs) are attractive for their high programmability, as well as cascading and fan-out ability, which are similar to the basic principles of electronic logic gates. Arising from the dream of creating novel computing mechanisms, researchers have placed high hopes on the development of DNA-based dynamic RNs and have strived to establish the basic theories and operative strategies of these networks. This review starts by looking back on the evolution of DNA dynamic RNs; in particular' the most significant applications in biochemistry occurring in recent years. Finally, we discuss the perspectives of DNA dynamic RNs and give a possible direction for the development of DNA circuits.
Collapse
Affiliation(s)
- Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Joint first authors
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China; Joint first authors
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Joint first authors.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
47
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
49
|
Wang S, Sun J, Zhao J, Lu S, Yang X. Photo-Induced Electron Transfer-Based Versatile Platform with G-Quadruplex/Hemin Complex as Quencher for Construction of DNA Logic Circuits. Anal Chem 2018; 90:3437-3442. [PMID: 29425022 DOI: 10.1021/acs.analchem.7b05145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G-quadruplex has been developed as an innovator for analytical chemistry and biomedicine due to its vibrant binding activity, structural polymorphism, and critical roles in biological regulation. Herein, a simple but versatile platform was obtained by integrating split G-quadruplex and fluorophore into a molecular beacon, where the photoinduced electron transfer could occur when the fluorophore approached the preformed G-quadruplex/hemin complexes. Such design subtly combined the G4 disruption-induced fluorescent turn-on strategy and the photoinduced electron transfer property into one platform for constructing the logic circuits. On the basis of such a universal platform, a series of binary logic gates (OR, INHIBIT, AND, and XOR), a combinatorial gate (INHIBIT-OR), and even a complex logic operation for discrimination of multiples of three from natural numbers less than ten have been successfully achieved only by employing such platform as work unit and single-strand DNAs as inputs. The set-reset function of this platform could be realized by alternatively introducing blocking and releasing strands. In addition, this platform could operate in a biological matrix stably and precisely. Therefore, such a universal platform lays the foundation for complicating the logic systems, realizing the biocomputing and also points out a new direction for target detection.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
| |
Collapse
|
50
|
Yang Y, Lin Y, Di D, Zhang X, Wang D, Zhao Q, Wang S. Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy. J Colloid Interface Sci 2017; 508:323-331. [DOI: 10.1016/j.jcis.2017.08.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
|