1
|
Dai W, Zhao M, Chen C, Zhou C, Wang P, Yang Z, Gao S, Lu Y, Zhang J, Liu X. Nano C60 Promotes Synaptic Distribution of Phosphorylated CaMKIIα and Improves Cognitive Function in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022; 13:3534-3543. [PMID: 36441865 DOI: 10.1021/acschemneuro.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The wide disparity in outcomes of Alzheimer's disease (AD) treatment from preclinical to clinical studies suggests an urgent need for more effective therapeutic targets and approaches to treat AD. CaMKII is a potential target for AD therapy; however, conflicting reports on the relationship between CaMKII and AD suggest a lack of deeper understanding of the interaction between CaMKII and AD. In addition to the lack of effective therapeutic targets, pharmacokinetic limitations of neuroprotective drugs, such as low lipophilicity to cross blood brain barrier, need to be urgently addressed in the practice of AD therapy. In this study, we prepared a carbon-based nanoparticle, Nano C60, and demonstrated that Nano C60 treatment promoted the translocation of phosphorylated CaMKIIα from the cytoplasm to the synapse in Aβ42 oligomers-treated cells and APP/PS1 mice. As a result, Nano C60 administration significantly improved spatial learning and memory in APP/PS1 mice. Our study suggests that synaptic-activated CaMKII may be more important than total CaMKII in AD treatment and provides a new strategy for AD therapy.
Collapse
Affiliation(s)
- Wei Dai
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Mingxu Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Caiyun Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Chang Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Peng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Zhilai Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230000, China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Jiqian Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
2
|
Zhang Q, Fu Y, Xiao K, Du C, Zhang X, Chen J. Sensitive Dual-Mode Biosensors for CYFRA21-1 Assay Based on the Dual-Signaling Electrochemical Ratiometric Strategy and "On-Off-On" PEC Method. Anal Chem 2021; 93:6801-6807. [PMID: 33878864 DOI: 10.1021/acs.analchem.1c00746] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, an electrochemical (EC)-photoelectrochemical (PEC) dual-mode biosensor was constructed for cytokeratin 19 fragment 21-1 (CYFRA21-1) assay based on the dual-signaling electrochemical ratiometric strategy and "on-off-on" PEC method. The indium tin oxide (ITO) electrode was modified by 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA)@C60 and gold nanoparticles (Au NPs), and the double-stranded DNA composed of thiol/methylene blue (MB)-labeled single-stranded DNA (ssDNA) (S0-MB) and antibody/ferrocene (Fc)-labeled ssDNA (Ab1-S1-Fc) was immobilized on the Au NPs/PTCDA@C60/ITO electrode via the Au-S bond between Au NPs and thiol of S0-MB. With the help of another antibody-labeled ssDNA (Ab2-S2), the presence of CYFRA21-1 triggered a typical antigen-antibody sandwich immune reaction (Ab1, CYFRA21-1, and Ab2) and proximity hybridization between Ab1-S1-Fc and Ab2-S2. This caused the release of Ab1-S1-Fc from the modified electrode and the change of S0-MB to a hairpin structure, resulting in a decrease (an increase) of the oxidation peak current of Fc (MB) and an increase of the photocurrent due to the enhancing (inhibiting) effect of MB (Fc) on the photoelectric performance of the Au NPs/PTCDA@C60/ITO electrode. Thus, CYFRA21-1 was detected by the developed EC-PEC dual-mode sensing platform sensitively, and the linear response ranges of 0.001-40 ng/mL with a detection limit of 0.3 pg/mL for the EC technique and 0.0001-4 ng/mL with a detection limit of 0.03 pg/mL for the PEC method were obtained. Furthermore, by changing the specific antibodies of disease-related biomarkers, the developed dual-mode biosensing platform could be readily extended to detect other antigens, implying its great potential applications in biological analysis and early disease diagnosis.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Remiš T, Bělský P, Kovářík T, Kadlec J, Ghafouri Azar M, Medlín R, Vavruňková V, Deshmukh K, Sadasivuni KK. Study on Structure, Thermal Behavior and Viscoelastic Properties of Nanodiamond-Reinforced Poly (vinyl alcohol) Nanocomposites. Polymers (Basel) 2021; 13:1426. [PMID: 33925200 PMCID: PMC8124898 DOI: 10.3390/polym13091426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.
Collapse
Affiliation(s)
- Tomáš Remiš
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Petr Bělský
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Tomáš Kovářík
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Jaroslav Kadlec
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Mina Ghafouri Azar
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Rostislav Medlín
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Veronika Vavruňková
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | - Kalim Deshmukh
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic; (P.B.); (T.K.); (J.K.); (M.G.A.); (R.M.); (V.V.); (K.D.)
| | | |
Collapse
|
4
|
Wang Y, Li H, Cheng L, Zhou J, Fu L. Unveiling specific nanoparticle-protein interactions via evaporated drops: From molecular recognition to allergen identification. Colloids Surf B Biointerfaces 2021; 201:111634. [PMID: 33657516 DOI: 10.1016/j.colsurfb.2021.111634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
Unveiling specific interactions between nanoparticles (NPs) and proteins could benefit a better control of NPs' performance in recognition-based detection, imaging and drug delivery. Herein, we investigated the specific recognition between an aptamer modified gold nanoparticle (Apt-AuNP) and its target protein arginine kinase (AK) through a coffee-ring effect (CRE)-based approach. The evaporated droplets of the Apt-AuNP with AK featured a ring-disk-ring transition with elevated AK concentration and a disk pattern was found when the Apt was saturated by AK. Moreover, the AK concentration versus ring thickness curve below the saturation point was proved to fit in an exponential function, indicating the strong association between the Apt-AuNP and AK. In contrast, the ring thickness above the saturation point fitted in a Gompertz growth model that was similar with the Apt-AuNPs incubated with the nonspecific protein (bovine serum albumin, BSA), suggesting that AK was nonspecifically adsorbed onto the AuNPs. The impact of the specific NP-protein interaction on the translation of CRE into macroscopic patterns was further utilized to identify target food allergen AK by the Apt-AuNPs over nontarget allergens (tropomyosin, ovalbumin and β-lactoglobulin). This work provided new insight into the general NP-protein association process and demonstrated the feasibility of employing CRE as an effective tool to profile the specific interactions between NPs and proteins.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, PR China
| | - Linlin Cheng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, PR China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, PR China.
| |
Collapse
|
5
|
Zhang J, Zhu S, Jin P, Huang Y, Dai Q, Zhu Q, Wei P, Yang Z, Zhang L, Liu H, Xu G, Chen L, Gu E, Zhang Y, Wen L, Liu X. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics 2020; 10:11908-11920. [PMID: 33204319 PMCID: PMC7667672 DOI: 10.7150/thno.50616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Graphene oxide (GO) based nanomaterials have shown potential for the diagnosis and treatment of amyloid-β (Aβ)-related diseases, mainly on Alzheimer's disease (AD). However, these nanomaterials have limitations. How GO is beneficial to eliminate Aβ burden, and its physiological function in Aβ-related diseases, still needs to be investigated. Moreover, postoperative cognitive dysfunction (POCD) is an Aβ-related common central nervous system complication, however, nanomedicine treatment is lacking. Methods: To evaluate the effects of GO on Aβ levels, HEK293T-APP-GFP and SHSY5Y-APP-GFP cells are established. Intramedullary fixation surgery for tibial fractures under inhalation anesthesia is used to induce dysfunction of fear memory in mice. The fear memory of mice is assessed by fear conditioning test. Results: GO treatment maximally alleviated Aβ levels by simultaneously reducing Aβ generation and enhancing its degradation through inhibiting β-cleavage of amyloid precursor protein (APP) and improving endosomal Aβ delivery to lysosomes, respectively. In postoperative mice, the hippocampal Aβ levels were significantly increased and hippocampal-dependent fear memory was impaired. However, GO administration significantly reduced hippocampal Aβ levels and improved the cognitive function of the postoperative mice. Conclusion: GO improves fear memory of postoperative mice by maximally alleviating Aβ accumulation, providing new evidence for the application of GO-based nanomedicines in Aβ-related diseases.
Collapse
|
6
|
Gliga AR, De Loma J, Di Bucchianico S, Skoglund S, Keshavan S, Odnevall Wallinder I, Karlsson HL, Fadeel B. Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. NANOSCALE ADVANCES 2020; 2:648-658. [PMID: 36133225 PMCID: PMC9417054 DOI: 10.1039/c9na00721k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/08/2020] [Indexed: 05/21/2023]
Abstract
Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Jessica De Loma
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sebastiano Di Bucchianico
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sara Skoglund
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Inger Odnevall Wallinder
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
7
|
Ouyang X, Wang SY, Liu T, Ren YA, Wang MF, Chen FF, Wang LL. Functional modulation of cytochrome C upon specific binding to DNA nanoribbons. Chem Commun (Camb) 2019; 55:14074-14077. [PMID: 31696869 DOI: 10.1039/c9cc05427h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered that the function of cytochrome C can be modulated by DNA nanoribbons. Meanwhile, the interplay between the DNA nanoribbons and the native cytochrome C and the possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Si-Yao Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Ting Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Yong-An Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Mei-Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Fang-Fang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| | - Li-Li Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
8
|
Zhang Y, Zhang L, Gao J, Wen L. Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy. Acc Chem Res 2019; 52:3164-3176. [PMID: 31621285 DOI: 10.1021/acs.accounts.9b00397] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy is a critical lysosome-mediated cellular degradation process for the clearance of damaged organelles, obsolete proteins, and invading pathogens and plays important roles in the pathogenesis and treatment of human diseases including cancer. While not a cell death process per se, autophagy is nevertheless intimately linked to a cell's live/die decision. Basal autophagy, operating constitutively at low levels in essentially every mammalian cell, is vital for maintaining cellular homeostasis and promotes cell survival. On the other hand, elevated level of autophagy is frequently observed in cells responding to a physical, chemical, or biological stress. This "induced" autophagy, a hallmark under a variety of pathological and pathophysiological conditions, may be either pro-death or pro-survival, two contrasting paradigms for cell fate determination. Research in our laboratory and other groups around the world over the last 15 years has revealed nanomaterials as a unique class of autophagy inducers, with the capability of elevating the cellular autophagy to extremely high levels. In this Account we focus on the contrasting cell fate decision impacted by nanomaterial-induced autophagy. First, we give a brief introduction to nanomaterial-induced autophagy and summarize our current understanding on how it affects a cell's live/die decision. Autophagy induced by nanomaterials, in most cases, promotes cell death, but a significant number of nanomaterials are also able to elicit pro-survival autophagy. Although not a common feature, some nanomaterials may induce pro-death autophagy in one cell type while eliciting pro-survival autophagy in a different cell type. The ability to control the level of the induced autophagy, and furthermore its pro-death/pro-survival nature, is critically important for nanomedicine. Second, we discuss several possible mechanistic insights on the pro-death/pro-survival decision for nanomaterial-induced autophagy. "Disrupted" autophagic processes, with a "block" or perhaps "diversion" at the various stages, may be a characteristic hallmark for nanomaterial-induced autophagy, rendering it intrinsically pro-death in nature. On the other hand, autophagy-mediated upregulation and activation of pro-survival factors or signaling pathways, overriding the intrinsic pro-death nature, may be a common mechanism for nanomaterial-induced pro-survival autophagy. In addition, cargo degradation and reactive oxygen species may also play important roles in the pro-death/pro-survival decision impacted by nanomaterial-induced autophagy. Finally, we focus on the situation where nanomaterials induce autophagy in cancer cells and summarize the different strategies in exploiting the pro-death or pro-survival nature of nanomaterial-induced autophagy to enhance the various modalities of cancer therapy, including direct cancer cell killing, chemotherapy and radiotherapy, photothermal therapy, and integrated diagnosis and therapy. While the details vary, the basic principle is simple and straightforward. If the induced autophagy is pro-death, maximize it. Otherwise, inhibit it. Effective exploitation of nanomaterial-induced autophagy has the potential to become a new weapon in our ever-increasing arsenal to fight cancer, particularly difficult-to-treat and drug-resistant cancer.
Collapse
Affiliation(s)
- Yunjiao Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longping Wen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
9
|
Xu J, Wang H, Hu Y, Zhang YS, Wen L, Yin F, Wang Z, Zhang Y, Li S, Miao Y, Lin B, Zuo D, Wang G, Mao M, Zhang T, Ding J, Hua Y, Cai Z. Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801233. [PMID: 31016106 PMCID: PMC6468974 DOI: 10.1002/advs.201801233] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/04/2018] [Indexed: 05/28/2023]
Abstract
Fullerene C60 nanocrystals (nano-C60) possess various attractive bioactivities, including autophagy induction and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) activation. CaMKIIα is a multifunctional protein kinase involved in many cellular processes including tumor progression; however, the biological effects of CaMKIIα activity modulated by nano-C60 in tumors have not been reported, and the relationship between CaMKIIα activity and autophagic degradation remains unclear. Herein, nano-C60 is demonstrated to elicit reactive oxygen species (ROS)-dependent cytotoxicity and persistent activation of CaMKIIα in osteosarcoma (OS) cells. CaMKIIα activation, in turn, produces a protective effect against cytotoxicity from nano-C60 itself. Inhibition of CaMKIIα activity by either the chemical inhibitor KN-93 or CaMKIIα knockdown dramatically promotes the anti-OS effect of nano-C60. Moreover, inhibition of CaMKIIα activity causes lysosomal alkalinization and enlargement, and impairs the degradation function of lysosomes, leading to autophagosome accumulation. Importantly, excessive autophagosome accumulation and autophagic degradation blocking are shown to play an important role in KN-93-enhanced-OS cell death. The synergistic anti-OS efficacy of KN-93 and nano-C60 is further revealed in an OS-xenografted murine model. The results demonstrate that CaMKIIα inhibition, along with the suppression of autophagic degradation, presents a promising strategy for improving the antitumor efficacy of nano-C60.
Collapse
Affiliation(s)
- Jing Xu
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yi Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life SciencesUniversity of Science and Technology of China96 Jinzhai StreetHefei230026P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Longping Wen
- School of MedicineSouth China University of TechnologyNanobio LaboratoryInstitutes for Life SciencesSouth China University of Technology381 Wushan StreetGuangzhou510006P. R. China
| | - Fei Yin
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhuoying Wang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yingchao Zhang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yanyan Miao
- Key Laboratory of Gene Engineering of the Ministry of EducationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen University135 West Xingang StreetGuangzhou510275P. R. China
| | - Binhui Lin
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Gangyang Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Min Mao
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yingqi Hua
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhengdong Cai
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| |
Collapse
|
10
|
Di Giosia M, Nicolini F, Ferrazzano L, Soldà A, Valle F, Cantelli A, Marforio TD, Bottoni A, Zerbetto F, Montalti M, Rapino S, Tolomelli A, Calvaresi M. Stable and Biocompatible Monodispersion of C 60 in Water by Peptides. Bioconjug Chem 2019; 30:808-814. [PMID: 30616344 DOI: 10.1021/acs.bioconjchem.8b00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C60. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C60 in water. Phenylalanines were used as recognizing moieties, able to interact with C60 through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines. The best performance in the dispersion of C60 was obtained with the FGGGF peptidic nanotweezer at a pH of 12. A full characterization of this adduct was carried out. The peptides disperse C60 in water with high efficiency, and the solutions are stable for months both in pure water and in physiological environments. NMR measurements demonstrated the ability of the peptides to interact with C60. AFM measurements showed that C60 is monodispersed. Electrospray ionization mass spectrometry determined a stoichiometry of C60@(FGGGF)4. Molecular dynamics simulations showed that the peptides assemble around the C60 cage, like a candy in its paper wrapper, creating a supramolecular host able to accept C60 in the cavity. The peptide-wrapped C60 is fully biocompatible and the C60 "dark toxicity" is eliminated. C60@(FGGGF)4 shows visible light-induced reactive oxygen species (ROS) generation at physiological saline concentrations and reduction of the HeLa cell viability in response to visible light irradiation.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Federica Nicolini
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Lucia Ferrazzano
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alice Soldà
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR , via Gobetti 101 , 40129 Bologna , Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alessandra Tolomelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| |
Collapse
|
11
|
Serda M, Ware MJ, Newton JM, Sachdeva S, Krzykawska-Serda M, Nguyen L, Law J, Anderson AO, Curley SA, Wilson LJ, Corr SJ. Development of photoactive Sweet-C 60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond) 2018; 13:2981-2993. [PMID: 30501557 PMCID: PMC6462851 DOI: 10.2217/nnm-2018-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
AIM Glycoconjugated C60 derivatives are of particular interest as potential cancer targeting agents due to an upregulated metabolic glucose demand, especially in the case of pancreatic adenocarcinoma and its dense stroma, which is known to be driven by a subset of pancreatic stellate cells. MATERIALS & METHODS Herein, we describe the synthesis and biological characterization of a hexakis-glucosamine C60 derivative (termed 'Sweet-C60'). RESULTS Synthesized fullerene derivative predominantly accumulates in the nucleus of pancreatic stellate cells; is inherently nontoxic up to concentrations of 1 mg/ml; and is photoactive when illuminated with blue and green light, allowing its use as a photodynamic therapy agent. CONCLUSION Obtained glycoconjugated nanoplatform is a promising nanotherapeutic for pancreatic cancer.
Collapse
Affiliation(s)
- Maciej Serda
- Department of Chemistry & Smalley-Curl Institute, Rice University, Houston, TX 77251, USA
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Matthew J Ware
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared M Newton
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanchit Sachdeva
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martyna Krzykawska-Serda
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Faculty of Biochemistry, Biophysics & Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Lam Nguyen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Law
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew O Anderson
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven A Curley
- Department of Chemistry & Smalley-Curl Institute, Rice University, Houston, TX 77251, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Mechanical Engineering & Materials Science, Rice University, Houston, TX 77005, USA
| | - Lon J Wilson
- Department of Chemistry & Smalley-Curl Institute, Rice University, Houston, TX 77251, USA
| | - Stuart J Corr
- Department of Chemistry & Smalley-Curl Institute, Rice University, Houston, TX 77251, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, Houston 77204, TX, USA
- School of Medicine, Swansea University, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
12
|
A sandwich-type electrochemiluminescence aptasensor for insulin detection based on the nano-C60/BSA@luminol nanocomposite and ferrocene derivative. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
An ultrasensitive photoelectrochemical biosensor based on [Ru(dcbpy)2dppz]2+/Rose Bengal dyes co-sensitized fullerene for DNA detection. Biosens Bioelectron 2018; 120:71-76. [DOI: 10.1016/j.bios.2018.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
|
14
|
Bologna F, Mattioli EJ, Bottoni A, Zerbetto F, Calvaresi M. Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C 60-Lysozyme Model. ACS OMEGA 2018; 3:13782-13789. [PMID: 31458078 PMCID: PMC6644377 DOI: 10.1021/acsomega.8b01888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Endohedral metallofullerenes (EMFs) have great potential as radioisotope carriers for nuclear medicine and as contrast agents for X-ray and magnetic resonance imaging. EMFs have still important restrictions for their use due to low solubility in physiological environments, low biocompatibility, nonspecific cellular uptake, and a strong dependence of their peculiar properties on physiological parameters, such as pH and salt content. Conjugation of the EMFs with proteins can overcome many of these limitations. Here we investigated the thermodynamics of binding of a model EMF (Gd@C60) with a protein (lysozyme) that is known to act as a host for the empty fullerene. As a rule, even if the shape of an EMF is exactly the same as that of the related fullerene, the interactions with a protein are significantly different. The estimated interaction energy (ΔG binding) between Gd@C60 and lysozyme is -18.7 kcal mol-1, suggesting the possibility of using proteins as supramolecular carriers for EMFs. π-π stacking, hydrophobic interactions, surfactant-like interactions, and electrostatic interactions govern the formation of the hybrid between Gd@C60 and lysozyme. The comparison of the energy contributions to the binding between C60 or Gd@C60 and lysozyme suggests that, although shape complementarity remains the driving force of the binding, the presence of electron transfer from the gadolinium atom to the carbon cage induces a charge distribution on the fullerene cage that strongly affects its interaction with the protein.
Collapse
Affiliation(s)
- Fabio Bologna
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Di Giosia M, Bomans PHH, Bottoni A, Cantelli A, Falini G, Franchi P, Guarracino G, Friedrich H, Lucarini M, Paolucci F, Rapino S, Sommerdijk NAJM, Soldà A, Valle F, Zerbetto F, Calvaresi M. Proteins as supramolecular hosts for C 60: a true solution of C 60 in water. NANOSCALE 2018; 10:9908-9916. [PMID: 29790558 DOI: 10.1039/c8nr02220h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid. We show that lysozyme recognizes and disperses fullerene in water. AFM, cryo-TEM and high resolution X-ray powder diffraction show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in physiological and technologically-relevant environments, and easy to store. Hybridization with lysozyme preserves the electrochemical properties of C60. EPR spin-trapping experiments show that the C60@lysozyme hybrid produces ROS following both type I and type II mechanisms. Due to the shielding effect of proteins, the adduct generates significant amounts of 1O2 also in aqueous solution. In the case of type I mechanism, the protein residues provide electrons and the hybrid does not require addition of external electron donors. The preparation process and the properties of C60@lysozyme are general and can be expected to be similar to other C60@protein systems. It is envisaged that the properties of the C60@protein hybrids will pave the way for a host of applications in nanomedicine, nanotechnology, and photocatalysis.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lira AL, Ferreira RS, Torquato RJS, Zhao H, Oliva MLV, Hassan SA, Schuck P, Sousa AA. Binding kinetics of ultrasmall gold nanoparticles with proteins. NANOSCALE 2018; 10:3235-3244. [PMID: 29383361 PMCID: PMC5842697 DOI: 10.1039/c7nr06810g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Synthetic ultrasmall nanoparticles (NPs) can be designed to interact with biologically active proteins in a controlled manner. However, the rational design of NPs requires a clear understanding of their interactions with proteins and the precise molecular mechanisms that lead to association/dissociation in biological media. Although much effort has been devoted to the study of the kinetics mechanism of protein corona formation on large NPs, the nature of NP-protein interactions in the ultrasmall regime is radically different and poorly understood. Using a combination of experimental and computational approaches, we studied the interactions of a model protein, CrataBL, with ultrasmall gold NPs passivated with p-mercaptobenzoic acid (AuMBA) and glutathione (AuGSH). We have identified this system as an ideal in vitro platform to understand the dependence of binding affinity and kinetics on NP surface chemistry. We found that the structural and chemical complexity of the passivating NP layer leads to quite different association kinetics, from slow and reaction-limited (AuGSH) to fast and diffusion-limited (AuMBA). We also found that the otherwise weak and slow AuGSH-protein interactions measured in buffer solution are enhanced in macromolecular crowded solutions. These findings advance our mechanistic understanding of biomimetic NP-protein interactions in the ultrasmall regime and have implications for the design and use of NPs in the crowded conditions common to all biological media.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018; 8:1115. [PMID: 29348435 PMCID: PMC5773626 DOI: 10.1038/s41598-018-19521-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Pekka Kohonen
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fernando T Andón
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Institute, 20089, Rozzano-Milano, Italy
| | - Táňa Brzicová
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, 14220, Prague, Czech Republic
| | - Isabel Gessner
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00173, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Elena Kisin
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Anna Shvedova
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.,Department Pharmacology & Physiology, West Virginia University, Morgantown, WV, 26505, USA
| | - Reija Autio
- Faculty of Social Sciences, University of Tampere, 33014, Tampere, Finland
| | - Heli Salminen-Mankonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
18
|
Yu Y, Sun H, Hou T, Wang S, Li Y. Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations. RSC Adv 2018; 8:13997-14008. [PMID: 35539330 PMCID: PMC9079904 DOI: 10.1039/c7ra13543b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity. However, the underlying molecular mechanism remains elusive. In this study, molecular dynamics (MD) simulations in conjunction with molecular docking calculations were utilized to investigate the binding effects of C60, C60(NH2)30, and C60(OH)30 on the enzymatic activity of CD45 (a receptor-like protein tyrosine phosphatase). Our results show that all the investigated molecules can be docked into the region between D1 and D2 domains of CD45, and stabilize the protein structure. The average number of residues that directly interact with the C60(NH2)30 is two more than that of C60(OH)30, F819 and F820 (located in the loop connects α3 and β12), resulting in different effects of C60(NH2)30 and C60(OH)30 on protein activity. Detailed MD simulation analyses show that transformation of the interaction network caused by C60(NH2)30 is completely different from that of the control simulation due to the misfolding of α3. Furthermore, the movement of D1 active pocket and KNRY motif are most severely impaired by docking with C60(NH2)30. Our simulation results illustrate that fullerene derivatives modified with amino groups exhibit conspicuous tumor inhibition to protein tyrosine phosphatases, and can act as effective inhibitors. Our results give insight into the inhibitory effects of fullerene-based molecules on protein tyrosine phosphatases and providing a theoretical basis for the design of effective inhibitors. Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity.![]()
Collapse
Affiliation(s)
- Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Suidong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
19
|
Li MJ, Zheng YN, Liang WB, Yuan R, Chai YQ. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS 2 Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42111-42120. [PMID: 29111661 DOI: 10.1021/acsami.7b13894] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C60)-decorated Au nanoparticle@MoS2 (C60-Au NP@MoS2) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C60 with narrow band gap MoS2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C60-Au NP@MoS2 was effectively quenched because p-type PbS QDs could compete with C60-Au NP@MoS2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S1) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10-2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ying-Ning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Miao Y, Zhang H, Pan Y, Ren J, Ye M, Xia F, Huang R, Lin Z, Jiang S, Zhang Y, Songyang Z, Zhang Y. Single-walled carbon nanotube: One specific inhibitor of cancer stem cells in osteosarcoma upon downregulation of the TGFβ1 signaling. Biomaterials 2017; 149:29-40. [PMID: 28988062 DOI: 10.1016/j.biomaterials.2017.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to have a critical role in tumorigenesis, metastasis, therapeutic resistance or recurrence. Therefore, strategies designed to specifically target and eliminate CSCs have become one of the most promising and desirable ways for tumor treatment. Osteosarcoma stem cells (OSCs), the CSCs in osteosarcoma (OS), are critically associated with OS progression. Here, we show that single-walled carbon nanotubes (SWCNTs), including unmodified SWCNT (SWCNT-Raw) and SWCNT-COOH, have the ability to specifically inhibit the process of TGFβ1-induced OS cells dedifferentiation, prevent the stem cell phenotypes acquisition in OS cells and reduce the OSC viability under conditions which mimic the OS microenvironment. Concurrently, SWCNT treatment significantly down-regulates the expression of OSC markers in OS, and markedly reduces the tumor microvessel density and tumor growth. Furthermore, we found that SWCNT could suppress the TGFβ1-induced activation of TGFβ type I receptor and downstream signaling, which are key for the OSC formation and maintenance. Our results reveal an unexpected function of SWCNT in negative modulation of OSCs, and provide significant implications for the potential CSCs-targeted therapeutic applications of SWCNT.
Collapse
Affiliation(s)
- Yanyan Miao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Haixia Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yubin Pan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jian Ren
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Miaoman Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fangfang Xia
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rui Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhuoheng Lin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shuai Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
21
|
Bairi P, Minami K, Hill JP, Ariga K, Shrestha LK. Intentional Closing/Opening of "Hole-in-Cube" Fullerene Crystals with Microscopic Recognition Properties. ACS NANO 2017; 11:7790-7796. [PMID: 28742325 DOI: 10.1021/acsnano.7b01569] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report production of highly crystalline fullerene C70 cubes possessing an open-hole structure at the center of each of their faces using a solution-based self-assembly strategy. The holes are isolated with a solid core at the interiors of the cubes. The open-hole structure of the cubes can be intentionally closed by introducing additional C70 and reopened by applying electron beam irradiation. The open-hole cubes exhibit preferential recognition of graphitic carbon particles over polymeric resin particles of similar dimensions due to the cubes' sp2-rich carboniferous nature.
Collapse
Affiliation(s)
- Partha Bairi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kosuke Minami
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Science, The University of Tokyo , Kashiwa, Chiba 277-0827, Japan
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
22
|
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2017; 110:194-209. [PMID: 0 DOI: 10.1016/j.plaphy.2016.05.038] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
|
23
|
Tarasova NK, Gallud A, Ytterberg AJ, Chernobrovkin A, Aranzaes JR, Astruc D, Antipov A, Fedutik Y, Fadeel B, Zubarev RA. Cytotoxic and Proinflammatory Effects of Metal-Based Nanoparticles on THP-1 Monocytes Characterized by Combined Proteomics Approaches. J Proteome Res 2016; 16:689-697. [PMID: 27973853 DOI: 10.1021/acs.jproteome.6b00747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thorough characterization of toxic effects of nanoparticles (NP) is desirable due to the increasing risk of potential environmental contamination by NP. In the current study, we combined three recently developed proteomics approaches to assess the effects of Au, CuO, and CdTe NP on the innate immune system. The human monocyte cell line THP-1 was employed as a model. The anticancer drugs camptothecin and doxorubicin were used as positive controls for cell death, and lipopolysaccharide was chosen as a positive control for proinflammatory activation. Despite equivalent overall toxicity effect (50 ± 10% dead cells), the three NP induced distinctly different proteomics signatures, with the strongest effect being induced by CdTe NP, followed by CuO and gold NP. The CdTe toxicity mechanism involves down-regulation of topoisomerases. The effect of CuO NP is most reminiscent of oxidative stress and involves up-regulation of proteins involved in heat response. The gold NP induced up-regulation of the inflammatory mediator, NF-κB, and its inhibitor TIPE2 was identified as a direct target of gold NP. Furthermore, gold NP triggered activation of NF-κB as evidenced by phosphorylation of the p65 subunit. Overall, the combined proteomics approach described here can be used to characterize the effects of NP on immune cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Didier Astruc
- Université de Bordeaux 1, CNRS UMR , 5255 Talence, France
| | - Alexei Antipov
- PlasmaChem GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | - Yuri Fedutik
- PlasmaChem GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | | | | |
Collapse
|
24
|
Trozzi F, Marforio TD, Bottoni A, Zerbetto F, Calvaresi M. Engineering the Fullerene-protein Interface by Computational Design: The Sum is More than its Parts. Isr J Chem 2016. [DOI: 10.1002/ijch.201600127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesco Trozzi
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| |
Collapse
|
25
|
Chen Q, Hu X, Wang R, Yuan J, Yin D. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:36-45. [PMID: 26918948 DOI: 10.1016/j.aquatox.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP.
Collapse
Affiliation(s)
- Qiqing Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jin Yuan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Calvaresi M, Furini S, Domene C, Bottoni A, Zerbetto F. Blocking the passage: C60 geometrically clogs K(+) channels. ACS NANO 2015; 9:4827-4834. [PMID: 25873341 DOI: 10.1021/nn506164s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Classical molecular dynamics (MD) simulations combined with docking calculations, potential of mean force estimates with the umbrella sampling method, and molecular mechanic/Poisson-Boltzmann surface area (MM-PBSA) energy calculations reveal that C60 may block K(+) channels with two mechanisms: a low affinity blockage from the extracellular side, and an open-channel block from the intracellular side. The presence of a low affinity binding-site at the extracellular entrance of the channel is in agreement with the experimental results showing a fast and reversible block without use-dependence, from the extracellular compartment. Our simulation protocol suggests the existence of another binding site for C60 located in the channel cavity at the intracellular entrance of the selectivity filter. The escape barrier from this binding site is ∼21 kcal/mol making the corresponding kinetic rate of the order of minutes. The analysis of the change in solvent accessible surface area upon C60 binding shows that binding at this site is governed purely by shape complementarity, and that the molecular determinants of binding are conserved in the entire family of K(+) channels. The presence of this high-affinity binding site conserved among different K(+) channels may have serious implications for the toxicity of carbon nanomaterials.
Collapse
Affiliation(s)
- Matteo Calvaresi
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Simone Furini
- ‡Dipartimento di Biotecnologie Mediche, Università di Siena, viale M. Bracci 12, I-53100 Siena, Italy
| | - Carmen Domene
- §Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- ⊥Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Andrea Bottoni
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- †Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
27
|
Ma MN, Zhang X, Zhuo Y, Chai YQ, Yuan R. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag. NANOSCALE 2015; 7:2085-2092. [PMID: 25559492 DOI: 10.1039/c4nr05918b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel electrochemiluminescent (ECL) signal tag of Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites (AuNPs/TSC-PTC/C60NPs) was developed for thrombin (TB) aptasensor construction based on the peroxydisulfate/oxygen (S2O8(2-)/O2) system. For signal tag fabrication, the C60 nanoparticles (C60NPs) were prepared and then coated with 3,4,9,10-perylene tetracarboxylic acid (PTCA) by π-π stacking interactions. Afterwards, thiosemicarbazide (TSC) was linked with PTCA functionalized C60NPs via amidation for further assembling Au nanoparticles (AuNPs). Finally, detection aptamer of thrombin (TBA 2) was labeled on the ECL signal amplification tag of AuNPs/TSC-PTC/C60NPs. Herein, TSC, with the active groups of -NH2 and -SH, was selected and introduced into the ECL S2O8(2-)/O2 system for the first time, which could not only offer the active groups of -SH to absorb AuNPs for TBA 2 anchoring but also remarkably enhance the ECL signal of the S2O8(2-)/O2 system by the formation of TSC-PTC/C60NPs for signal amplification. Meanwhile, the sensing interface of a glassy carbon electrode (GCE) was modified by AuNPs/graphene (AuNPs/GR) nanocomposites with the large specific surface area and the active sites, followed by immobilization of thiol-terminated thrombin capture aptamer (TBA 1). With the formation of the sandwich-type structure of TBA 1, TB, and TBA 2 signal probes, a desirable enhanced ECL signal was measured in the testing buffer of an S2O8(2-)/O2 solution for detecting TB. The aptasensor exhibited a good linear relationship for TB detection in the range of 1 × 10(-5)-10 nM with a detection limit of 3.3 fM.
Collapse
Affiliation(s)
- Meng-Nan Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | |
Collapse
|
28
|
Chen L, Miao Y, Chen L, Xu J, Wang X, Zhao H, Shen Y, Hu Y, Bian Y, Shen Y, Chen J, Zha Y, Wen LP, Wang M. The role of low levels of fullerene C60 nanocrystals on enhanced learning and memory of rats through persistent CaMKII activation. Biomaterials 2014; 35:9269-79. [PMID: 25129570 DOI: 10.1016/j.biomaterials.2014.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
Engineered nanomaterials are known to exhibit diverse and sometimes unexpected biological effects. Fullerene nanoparticles have been reported to specifically bind to and elicit persistent activation of hippocampal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), a multimeric intracellular serine/threonine kinase central to Ca(2+) signal transduction and critical for synaptic plasticity, but the functional consequence of that modulation is unknown. Here we show that low doses of fullerene C60 nanocrystals (Nano C60), delivered through intrahippocampal infusion and without any obvious cytotoxicity in hippocampal neuronal cells, enhance the long-term potentiation (LTP) of rats. Intraperitoneal injection of 320 μg/kg of Nano C60, once daily for 10 days, also enhanced spatial memory of rats in addition to an increase of LTP. In parallel, both the IH and IP administration of Nano C60 increased the autonomous activity and the level of threonine 286 (T286) autophosphorylation of CaMKII, enhanced post-synaptic AMPA/NMDA ratio, and triggered time-dependent activation of ERK and CREB. Our results reveal a striking and highly unexpected ability of Nano C60 in positively modulating learning and memory, an effect that is most likely manifested through locking CaMKII in an active conformation, and may have significant implications for the potential therapeutic applications of fullerene C60, a classic engineered nanomaterial.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanyan Miao
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jing Xu
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinxing Wang
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Han Zhao
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yi Shen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yi Hu
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunpeng Bian
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuanyuan Shen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jutao Chen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingying Zha
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Long-Ping Wen
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Ming Wang
- CAS Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|