1
|
Bader T, Boone K, Johnson C, Berrie CL, Tamerler C. Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model. Biomimetics (Basel) 2025; 10:107. [PMID: 39997130 PMCID: PMC11853711 DOI: 10.3390/biomimetics10020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio-hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties involving peptide-peptide and peptide-solid interactions, which result in high-affinity material-selective binding. Atomic force microscopy investigations confirmed this complex interplay of multi-step peptide assemblies in a cooperative modus. Yet, most studies report adsorption properties of SBPs using non-cooperative or single-step adsorption models. Using non-cooperative kinetic models for predicting cooperative self-assembly behavior creates an oversimplified view of peptide adsorption, restricting implementing SBPs beyond their current use. To address these limitations and provide insight into surface-level events during self-assembly, a novel method, the Frequency Response Cooperativity model, was developed. This model iteratively fits adsorption data through spectral analysis of several time-dependent kinetic parameters. The model, applied to a widely used gold-binding peptide data obtained using a quartz crystal microbalance with dissipation, verified multi-step assembly. Peak deconvolution of spectral plots revealed distinct differences in the size and distribution of the kinetic rates present during adsorption across the concentrations. This approach provides new fundamental insights into the intricate dynamics of self-assembly of biomolecules on surfaces.
Collapse
Affiliation(s)
- Taylor Bader
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA;
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA;
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Chris Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (C.J.); (C.L.B.)
| | - Cindy L. Berrie
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (C.J.); (C.L.B.)
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA;
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Sieber A, Spiess S, Rassy WY, Schild D, Rieß T, Singh S, Jain R, Schönberger N, Lederer F, Kremser K, Guebitz GM. Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams. Front Bioeng Biotechnol 2025; 12:1528992. [PMID: 39850509 PMCID: PMC11755047 DOI: 10.3389/fbioe.2024.1528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods. In contrast to previous reviews which have partially addressed this topic, a special focus will be given on how fundamental principles of bio-based recovery technologies can influence the selectivity and specificity of metal recovery. While conventional methods for metal recovery show benefits in terms of economic affordability, bio-based recovery technologies offer advantages in terms of efficiency and environmentally friendliness. Modifications and adaptations in the processes of biosorption, bioaccumulation and bioelectrochemical systems are highlighted, further emphasizing the application of metal-binding peptides and siderophores to increase selectivity in the recovery of metals. Single metal solutions or mixtures with a low complexity have been the focus of previous studies and reviews, but this does not reflect the nature of complex industrial effluents. Therefore, key challenges that arise when dealing with complex polymetallic solutions are addressed and the focus is set on optimizing bio-based technologies to recover metals efficiently and selectively from bio-leachates or liquid waste streams.
Collapse
Affiliation(s)
| | | | - Wadih Y. Rassy
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
- Faculty of Technical Chemistry, TU Wien, Vienna, Austria
| | - Dominik Schild
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Thomas Rieß
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Shalini Singh
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Nora Schönberger
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Klemens Kremser
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| |
Collapse
|
3
|
Lee H, Bang Y, Chang IS. Orientation-Controllable Enzyme Cascade on Electrode for Bioelectrocatalytic Chain Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40355-40368. [PMID: 37552888 DOI: 10.1021/acsami.3c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface. The interenzyme relative orientation was found to determine the intermediate delivery route and affect overall chain reaction efficiency. Moreover, interfacial DET between the fusion GDHγα and the electrode was altered by the binding conformation of the coimmobilized enzyme and fusion INVs. Collectively, this work emphasizes the importance of interenzyme orientation when incorporating enzymatic cascade in an electrocatalytic system and demonstrates the efficacy of SBP fusion technology as a generic tool for developing cascade-induced direct bioelectrocatalytic systems. The proposed approach is applicable to enzyme cascade-based bioelectronics such as biofuel cells, biosensors, and bioeletrosynthetic systems utilizing or producing complex biomolecules.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yuna Bang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Zheng C, Alvisi N, de Haas RJ, Zhang Z, Zuilhof H, de Vries R. Modular Design for Proteins Assembling into Antifouling Coatings: Case of Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37366321 DOI: 10.1021/acs.langmuir.3c00389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We analyze modularity for a B-M-E triblock protein designed to self-assemble into antifouling coatings. Previously, we have shown that the design performs well on silica surfaces when B is taken to be a silica-binding peptide, M is a thermostable trimer domain, and E is the uncharged elastin-like polypeptide (ELP), E = (GSGVP)40. Here, we demonstrate that we can modulate the nature of the substrate on which the coatings form by choosing different solid-binding peptides as binding domain B and that we can modulate antifouling properties by choosing a different hydrophilic block E. Specifically, to arrive at antifouling coatings for gold surfaces, as binding block B we use the gold-binding peptide GBP1 (with the sequence MHGKTQATSGTIQS), while we replace the antifouling blocks E by zwitterionic ELPs of different lengths, EZn = (GDGVP-GKGVP)n/2, with n = 20, 40, or 80. We find that even the B-M-E proteins with the shortest E blocks make coatings on gold surfaces with excellent antifouling against 1% human serum (HS) and reasonable antifouling against 10% HS. This suggests that the B-M-E triblock protein can be easily adapted to form antifouling coatings on any substrate for which solid-binding peptide sequences are available.
Collapse
Affiliation(s)
- Chuanbao Zheng
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Robbert Jan de Haas
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Zhisen Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
5
|
Andriyevsky B, Tarrat N, Cortés J, Schön JC. Dehydrogenation versus deprotonation of disaccharide molecules in vacuum: a thorough theoretical investigation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220436. [PMID: 36249331 PMCID: PMC9554720 DOI: 10.1098/rsos.220436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Dehydrogenation and deprotonation of sucrose and trehalose molecules in vacuum is theoretically studied by using ab initio calculations in the framework of the density functional theory. The differences in the structural, electronic, energetic and vibrational properties of dehydrogenated and deprotonated molecules are discussed, depending on the site from which the hydrogen atom or the proton has been removed. The dehydrogenated molecules are found to be stable, regardless of which hydrogen atom is removed. This contrasts with the instability of the deprotonated molecules, where break-ups or structural reorganizations of the molecule are observed in 20-30% of the cases, but only when the hydrogen atom whose proton is removed was bonded to a carbon atom. Considering the stability and possible rearrangements of the hydrogen network of the deprotonated/dehydrogenated molecule, the formation of additional hydrogen-bridge bonds compared with the nominal molecule appears to be more pronounced for the deprotonated molecules than for the dehydrogenated ones. Moreover, our calculations show that the hydrogen-transfer energy barriers are usually larger for the deprotonated molecules than for the dehydrogenated ones. Finally, compared with the nominal molecule, the vibrational frequency spectrum is shifted to lower frequencies for both the dehydrogenated and the deprotonated molecules.
Collapse
Affiliation(s)
- Bohdan Andriyevsky
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich Street 2, 74-453 Koszalin, Poland
| | - Nathalie Tarrat
- CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Johann Christian Schön
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Sun L, Li P, Seki T, Tsuchiya S, Yatsu K, Narimatsu T, Sarikaya M, Hayamizu Y. Chiral Recognition of Self-Assembled Peptides on MoS 2 via Lattice Matching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8696-8704. [PMID: 34278791 DOI: 10.1021/acs.langmuir.1c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chiral recognition of peptides on solid surfaces has been studied for a better understanding of their assembly mechanism toward its applications in stereochemistry and enantioselective catalysis. However, moving from small peptides such as dipeptides, understanding the chiral recognition of larger biomolecules such as oligopeptides or peptides with a larger sequence is challenging. Furthermore, their intrinsic mechanism for chiral recognition in liquid conditions was poorly investigated experimentally. Here, we used in/ex situ atomic force microscopy (AFM) to investigate the chiral recognition of self-assembled structures of l/d-type peptides on molybdenum disulfide (MoS2). We chose single-layer MoS2 with a triangular shape as a substrate for the self-assembly of peptides. The facet edges of MoS2 were utilized as a landmark to identify the crystallographic orientation of their ordered structures. We found both peptide enantiomers formed nanowires on MoS2 with a mirror symmetry according to the facet edges of MoS2. From in situ AFM measurements, we found a dimension of a unit cell in the self-assembled structure and proposed a model of lattice matching between peptides and MoS2 lattice. The lattice matching for chiral recognition was further investigated by changing peptide sequences and surface lattice from MoS2 to graphite. This work further deepened the understanding of biomolecular chiral recognition and will lead us to rationally design specific morphologies and conformations of chiral self-assembled structures of peptides with expected functions in the future.
Collapse
Affiliation(s)
- Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Peiying Li
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takakazu Seki
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shohei Tsuchiya
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kazuki Yatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takuma Narimatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mehmet Sarikaya
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering, University of Washington, Seattle WA98195, United States
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
7
|
Luo K, Ryu J, Jeong KB, Kim HS, Kim YR. Colorimetric assay for the determination of molecular weight distribution and branching characteristics of starch hydrolysates. Carbohydr Polym 2021; 251:117046. [DOI: 10.1016/j.carbpol.2020.117046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
8
|
Chen J, Luo J, Bekele S, Tsige M, Liu T. Rational Control of Self-Recognition of Macroionic γ-Cyclodextrin by Host-Guest Interaction with Super-Chaotropic Borate Cluster Ions. Chempluschem 2020; 85:2316-2319. [PMID: 33058510 DOI: 10.1002/cplu.202000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/26/2020] [Indexed: 11/11/2022]
Abstract
We report a feasible method to control self-recognition during the self-assembly of a hydrophilic macroion, phosphate-functionalized γ-cyclodextrin (γ-CD-P), though host-guest interactions. We confirmed that γ-CD-P can form a host-guest complex with a super-chaotropic anion, namely the B12 F12 2- borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ-CD-P, which has a higher charge density, can be distinguished from the uncomplexed γ-CD-P, leading to self-sorting behavior during the self-assembly process, confirmed by the formation of two types of individual supramolecular structures (Rh of ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self-recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Jiancheng Luo
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Selemon Bekele
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Mesfin Tsige
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Tianbo Liu
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| |
Collapse
|
9
|
Kamathewatta NJB, Deay DO, Karaca BT, Seibold S, Nguyen TM, Tomás B, Richter ML, Berrie CL, Tamerler C. Self-Immobilized Putrescine Oxidase Biocatalyst System Engineered with a Metal Binding Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11908-11917. [PMID: 32921059 DOI: 10.1021/acs.langmuir.0c01986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flavin oxidases are valuable biocatalysts for the oxidative synthesis of a wide range of compounds, while at the same time reduce oxygen to hydrogen peroxide. Compared to other redox enzymes, their ability to use molecular oxygen as an electron acceptor offers a relatively simple system that does not require a dissociable coenzyme. As such, they are attractive targets for adaptation as cost-effective biosensor elements. Their functional immobilization on surfaces offers unique opportunities to expand their utilization for a wide range of applications. Genetically engineered peptides have been demonstrated as enablers of the functional assembly of biomolecules at solid material interfaces. Once identified as having a high affinity for the material of interest, these peptides can provide a single step bioassembly process with orientation control, a critical parameter for functional immobilization of the enzymes. In this study, for the first time, we explored the bioassembly of a putrescine oxidase enzyme using a gold binding peptide tag. The enzyme was genetically engineered to incorporate a gold binding peptide with an expectation of an effective display of the peptide tag to interact with the gold surface. In this work, the functional activity and expression were investigated, along with the selectivity of the binding of the peptide-tagged enzyme. The fusion enzyme was characterized using multiple techniques, including protein electrophoresis, enzyme activity, and microscopy and spectroscopic methods, to verify the functional expression of the tagged protein with near-native activity. Binding studies using quartz crystal microbalance (QCM), nanoparticle binding studies, and atomic force microscopy studies were used to address the selectivity of the binding through the peptide tag. Surface binding AFM studies show that the binding was selective for gold. Quartz crystal microbalance studies show a strong increase in the affinity of the peptide-tagged protein over the native enzyme, while activity assays of protein bound to nanoparticles provide evidence that the enzyme retained catalytic activity when immobilized. In addition to showing selectivity, AFM images show significant differences in the height of the molecules when immobilized through the peptide tag compared to immobilization of the native enzyme, indicating differences in orientation of the bound enzyme when attached via the affinity tag. Controlling the orientation of surface-immobilized enzymes would further improve their enzymatic activity and impact diverse applications, including oxidative biocatalysis, biosensors, biochips, and biofuel production.
Collapse
Affiliation(s)
| | - Dwight O Deay
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Banu Taktak Karaca
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biology and Genetics, Biruni University, İstanbul 34010, Turkey
| | - Steve Seibold
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tyler M Nguyen
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon Tomás
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cindy L Berrie
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Jorgenson TD, Yucesoy DT, Sarikaya M, Overney RM. Thermal Selection of Aqueous Molecular Conformations for Tailored Energetics of Peptide Assemblies at Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:318-327. [PMID: 31829632 DOI: 10.1021/acs.langmuir.9b02425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Key to the development of functional bioinorganic soft interfaces is the predictive control over the micron-scale assembly structure and energetics of biomolecules at solid interfaces. While assembly of labile biomolecules, such as short peptides, at interfaces is a great deal affected by the shape of the molecule, biomolecular conformations are prompted by external solution conditions, involving temperature, pH, and salt concentration. In this light, one can expect that the environmental conformational selection of aqueous biomolecules could potentially allow for fine-tuning of the equilibrium assembly structure at interfaces, as well as, the binding strength and molecular mobility within these assemblies. Here, we demonstrate the energetic and structural tailoring of two-dimensional surface assemblies of graphite-binding dodecapeptides, through the thermal selection of aqueous peptide conformations. Our findings based on a scanning probe energetic analysis, supplemented by molecular dynamics modeling, show that peptide-graphite and peptide-peptide intermolecular interactions strongly depend on the thermally selected molecular conformation and that the extent of the conformational change is directly related to the observed assembled structure. Enabled by these results was the design of a peptide with predictable binding and assembled structure, thus, suggesting environmental preconditioning of peptides as a means for controlling self-assembling active bioinorganic interfaces for bioelectronic implementations such as biomolecular fuel cells and biosensors.
Collapse
Affiliation(s)
- Tyler D Jorgenson
- Molecular Engineering and Sciences Institute , University of Washington , Box 351653, Seattle , Washington 98195-1653 , United States
- GEMSEC, Genetically Engineered Materials Science and Engineering Center , University of Washington , Seattle , Washington 98195 , United States
| | - Deniz T Yucesoy
- GEMSEC, Genetically Engineered Materials Science and Engineering Center , University of Washington , Seattle , Washington 98195 , United States
- Department of Material Science and Engineering , University of Washington , Roberts Hall , Box 352120, Seattle , Washington 98195-2120 , United States
| | - Mehmet Sarikaya
- Molecular Engineering and Sciences Institute , University of Washington , Box 351653, Seattle , Washington 98195-1653 , United States
- GEMSEC, Genetically Engineered Materials Science and Engineering Center , University of Washington , Seattle , Washington 98195 , United States
- Department of Material Science and Engineering , University of Washington , Roberts Hall , Box 352120, Seattle , Washington 98195-2120 , United States
- Department of Chemical Engineering , University of Washington , Benson Hall , Box 351750, Seattle , Washington 98195-1750 , United States
| | - René M Overney
- Molecular Engineering and Sciences Institute , University of Washington , Box 351653, Seattle , Washington 98195-1653 , United States
- Department of Chemical Engineering , University of Washington , Benson Hall , Box 351750, Seattle , Washington 98195-1750 , United States
| |
Collapse
|
11
|
Luo K, Ryu J, Seol IH, Jeong KB, You SM, Kim YR. Paper-Based Radial Chromatographic Immunoassay for the Detection of Pathogenic Bacteria in Milk. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46472-46478. [PMID: 31746586 DOI: 10.1021/acsami.9b16075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, a paper-based radial flow chromatographic immunoassay (RFCI) employing gold nanoparticles (AuNPs) as chromatic agents was developed for the detection of Escherichia coli O157:H7 in whole milk. A 4-repeated gold-binding peptide-tagged (4GBP) streptococcal protein G (SPG) fusion protein was constructed as a bifunctional linker to immobilize antibodies on the surface of AuNPs with a well-oriented form based on the specific affinity of GBP and SPG to the gold and Fc portion of the antibody, respectively. 4GS@AuNPs prepared with the bifunctional linker protein exhibited excellent colloidal stability even at high salt concentrations of up to 500 mM, which is a critical requirement for its application to a broad range of biological and food samples. The enhanced colloidal stability and excellent binding capability of the immuno-4GS@AuNPs toward target bacteria lowered the detection limit of RFCI for target pathogenic bacteria in whole milk as low as 103 CFU/mL, which is by an order of magnitude lower than that of conventional immuno-AuNPs prepared with physical adsorption of antibodies. The RFCI pattern could also be converted into a grayscale value by simple image processing for quantitative determination of target pathogenic bacteria. This paper-based detection system would provide an effective means of monitoring the presence of food-borne pathogens in real food samples with naked eyes.
Collapse
Affiliation(s)
- Ke Luo
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| | - Jian Ryu
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| | - In-Hye Seol
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| | - Ki-Baek Jeong
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| | - Sang-Mook You
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology & Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Korea
| |
Collapse
|
12
|
Walsh TR, Knecht MR. Biomolecular Material Recognition in Two Dimensions: Peptide Binding to Graphene, h-BN, and MoS 2 Nanosheets as Unique Bioconjugates. Bioconjug Chem 2019; 30:2727-2750. [PMID: 31593454 DOI: 10.1021/acs.bioconjchem.9b00593] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional nanosheet-based materials such as graphene, hexagonal boron nitride, and MoS2 represent intriguing structures for a variety of biological applications ranging from biosensing to nanomedicine. Recent advances have demonstrated that peptides can be identified with affinity for these three materials, thus generating a highly unique bioconjugate interfacial system. This Review focuses on recent advances in the formation of bioconjugates of these types, paying particular attention to the structure/function relationship of the peptide overlayer. This is achieved through the amino acid composition of the nanosheet binding peptides, thus allowing for precise control over the properties of the final materials. Such bioconjugate systems offer rapid advances via direct property control that remain difficult to achieve for biological applications using nonbiological approaches.
Collapse
Affiliation(s)
- Tiffany R Walsh
- Institute for Frontier Materials , Deakin University , Waurn Ponds , Victoria 3216 VIC , Australia
| | - Marc R Knecht
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States.,Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute , University of Miami , UM Life Science Technology Building, 1951 NW Seventh Ave, Suite 475 , Miami , Florida 33136 , United States
| |
Collapse
|
13
|
Prasad J, Viollet S, Gurunatha KL, Urvoas A, Fournier AC, Valerio-Lepiniec M, Marcelot C, Baris B, Minard P, Dujardin E. Directed evolution of artificial repeat proteins as habit modifiers for the morphosynthesis of (111)-terminated gold nanocrystals. NANOSCALE 2019; 11:17485-17497. [PMID: 31532442 DOI: 10.1039/c9nr04497c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biocomposites are shaped by proteins that have evolved to interact with inorganic materials. Protein directed evolution methods which mimic Darwinian evolution have proven highly successful to generate improved enzymes or therapeutic antibodies but have rarely been used to evolve protein-material interactions. Indeed, most reported studies have focused on short peptides and a wide range of oligopeptides with chemical binding affinity for inorganic materials have been uncovered by phage display methods. However, their small size and flexible unfolded structure prevent them from dictating the shape and crystallinity of the growing material. In the present work, a specific set of artificial repeat proteins (αRep), which exhibit highly stable 3D folding with a well-defined hypervariable interacting surface, is selected by directed evolution of a very efficient home-built protein library for their high and selective affinity for the Au(111) surface. The proteins are built from the extendable concatenation of self-compatible repeated motifs idealized from natural HEAT proteins. The high-yield synthesis of Au(111)-faceted nanostructures mediated by these αRep proteins demonstrates their chemical affinity and structural selectivity that endow them with high crystal habit modification performances. Importantly, we further exploit the protein shell spontaneously assembled on the nanocrystal facets to drive protein-mediated colloidal self-assembly and on-surface enzymatic catalysis. Our method constitutes a generic tool for producing nanocrystals with determined faceting, superior biocompatibility and versatile bio-functionalization towards plasmon-based devices and (bio)molecular sensors.
Collapse
Affiliation(s)
- Janak Prasad
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Sébastien Viollet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Kargal L Gurunatha
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Agathe C Fournier
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Cécile Marcelot
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Bulent Baris
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Erik Dujardin
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| |
Collapse
|
14
|
Jorgenson TD, Milligan M, Sarikaya M, Overney RM. Conformationally directed assembly of peptides on 2D surfaces mediated by thermal stimuli. SOFT MATTER 2019; 15:7360-7368. [PMID: 31355403 DOI: 10.1039/c9sm00426b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic and environmentally directed assembly of molecules in biological systems is essential for the fabrication of micronscale, hierarchical, functional structures. Here, we demonstrate the directed assembly of genetically selected graphite binding peptides on 2D solid surfaces upon thermal stimuli. Structural and kinetic analyses as well as molecular dynamics simulations yield the self-assembly process as thermally controllable upon tuning the solvated peptide conformational states. The ability to tailor the structure of two-dimensional soft bio/nano interfaces via external stimuli shows the potential for the bottom-up fabrication of complex materials with nanotechnological importance, such as biosensors, bioelectronics, and biomolecular fuel cells.
Collapse
Affiliation(s)
- Tyler D Jorgenson
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
15
|
Lee DJ, Park HS, Koo K, Lee JY, Nam YS, Lee W, Yang MY. Gold Binding Peptide Identified from Microfluidic Biopanning: An Experimental and Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:522-528. [PMID: 30592604 DOI: 10.1021/acs.langmuir.8b02563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biopanning refers to the processes of screening peptides with a high affinity to a target material. Microfluidic biopanning has advantages compared to conventional biopanning which requires large amounts of the target material and involves inefficient multiple pipetting steps to remove nonspecific or low-affinity peptides. Here, we fabricate a microfluidic biopanning system to identify a new gold-binding peptide (GBP). A polydimethylsiloxane microfluidic device is fabricated and bonded to a glass slide with a gold pattern that is deposited by electron-beam evaporation. The microfluidic biopanning system can provide high adjustability in the washing step during the biopanning process because the liquid flow rate and the resulting shear stress can be precisely controlled. The surface plasmon resonance analysis shows that the binding affinity of the identified GBP is comparable to previously reported GBPs. Moreover, molecular dynamics simulations are performed to understand its binding affinity against the gold surface in detail. Theoretical calculations suggest that the association and dissociation rates of the GBPs depend on their sequence-dependent conformations and interactions with the gold surface. These findings provide insight into designing efficient biopanning tools and peptides with a high affinity for various target materials.
Collapse
Affiliation(s)
| | | | - Kunmo Koo
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | - Jeong Yong Lee
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | | | | | | |
Collapse
|
16
|
Fan G, Dundas CM, Zhang C, Lynd NA, Keitz BK. Sequence-Dependent Peptide Surface Functionalization of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18601-18609. [PMID: 29762004 DOI: 10.1021/acsami.8b05148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a noncovalent surface functionalization technique for water-stable metal-organic frameworks using short peptide sequences identified via phage display. Specific frameworks-binding peptides were identified for crystalline Zn(MeIM)2 (MeIM: 2-methylimidazole, ZIF-8), semiamorphous Fe-BTC (BTC: 1,3,5-benzene-tricarboxylate), and Al(OH)(C4H2O4) (MIL-53(Al)-FA, FA: fumaric acid), and their thermodynamic binding affinities and specificities were measured. Electron microscopy, powder X-ray diffraction, and gas adsorption analysis confirmed that the peptide-functionalized frameworks retained similar characteristics compared to their as-synthesized counterparts. Confocal laser-scanning microscopy demonstrated that peptide was localized on the surface of the frameworks, whereas surface area measurements showed no evidence of pore blockage. Finally, we measured the pH-dependent release of fluorescein from peptide-functionalized frameworks and discovered that peptide binding can attenuate fluorescein release by improving framework stability under low pH conditions. Our results demonstrate that phage display can be used as a general method to identify specific peptide sequences with strong binding affinity to water-stable metal-organic frameworks and that these peptides can alter drug release kinetics by affecting framework stability in aqueous environments.
Collapse
|
17
|
Seki T, So CR, Page TR, Starkebaum D, Hayamizu Y, Sarikaya M. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1819-1826. [PMID: 28968112 DOI: 10.1021/acs.langmuir.7b02231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Collapse
Affiliation(s)
- Takakazu Seki
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Christopher R So
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Tamon R Page
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - David Starkebaum
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Mehmet Sarikaya
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
19
|
Shen WZ, Cetinel S, Sharma K, Borujeny ER, Montemagno C. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:74. [PMID: 28260966 PMCID: PMC5315719 DOI: 10.1007/s11051-017-3752-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles. Graphical abstract.
Collapse
Affiliation(s)
- Wei-Zheng Shen
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
- Departement of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB Canada
| | - Sibel Cetinel
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
- Departement of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB Canada
| | - Kumakshi Sharma
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
- Departement of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB Canada
| | - Elham Rafie Borujeny
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
- Departement of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB Canada
| | - Carlo Montemagno
- Ingenuity Lab, 1-070C, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
- Departement of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB Canada
- National Institute of Nanotechnology, 11421 Saskatchewan Drive NW, T6G 2M9, Edmonton, AB Canada
| |
Collapse
|
20
|
Peptide engineered microcantilevers for selective chemical force microscopy and monitoring of nanoparticle capture. Biointerphases 2016; 11:04B312. [PMID: 28010112 DOI: 10.1116/1.4972417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Engineered peptides capable of binding to silica have been used to provide contrast in chemical force microscopy and tested for their capacity to selectively capture silica nanoparticles (NPs). Gold coated atomic force microscopy (AFM) microcantilevers with integrated tips and colloidal probes were functionalized with engineered peptides through a thiol group of a terminal cysteine which was linked via a glycine trimer to a 12-mer binding sequence. The functionalized probes demonstrated a significantly increased binding force on silicon oxide areas of a gold-patterned silicon wafer, whereas plain gold probes, and those functionalized with a random permutation of the silica binding peptide motif or an all-histidine sequence displayed similar adhesion forces to gold and silicon oxide. As the functionalized probes also allowed contact mode imaging subsequently to the adhesion mapping, also the associated friction contrast was measured and found to be similar to the adhesion contrast. Furthermore, the adsorption of silica NPs onto planar gold surfaces functionalized in the same manner was observed to be selective. Notably, the surface coverage with silica NPs was found to decrease with increasing pH, implying the importance of electrostatic interactions between the peptide and the NPs. Finally, the adsorption of silica NPs was monitored via the decrease in fundamental resonance frequency of an AFM microcantilever functionalized with silica binding peptides.
Collapse
|
21
|
Zhong J, Ma M, Li W, Zhou J, Yan Z, He D. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures. Biopolymers 2016; 101:1181-92. [PMID: 25088327 DOI: 10.1002/bip.22532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
In this work, we studied the effects of incubation concentration and time on the self-assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration-dependent and there were four self-assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β-sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β-sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead-like oligomers (random coil), and then assembled into protofibrils (antiparallel β-sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid-like micelles (random coil), and finally self-arranged to form smooth and clear cuboid-like micelles (antiparallel β-sheet). These results provide useful insights into the process by which the RSF molecules self-assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk-based biomaterials.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Kuroda A, Alexandrov M, Nishimura T, Ishida T. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing. Biotechnol J 2016; 11:757-67. [DOI: 10.1002/biot.201500438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akio Kuroda
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Maxym Alexandrov
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Tomoki Nishimura
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
23
|
Kim SO, Jackman JA, Mochizuki M, Yoon BK, Hayashi T, Cho NJ. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials. Phys Chem Chem Phys 2016; 18:14454-9. [PMID: 27174015 DOI: 10.1039/c6cp01168c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.
Collapse
Affiliation(s)
- Seong-Oh Kim
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Corra S, Lewandowska U, Benetti EM, Wennemers H. Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefano Corra
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, D-MATL; ETH Zürich; Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
25
|
Corra S, Lewandowska U, Benetti EM, Wennemers H. Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide. Angew Chem Int Ed Engl 2016; 55:8542-5. [PMID: 27098442 DOI: 10.1002/anie.201510337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/23/2016] [Indexed: 11/09/2022]
Abstract
A combinatorial screening revealed the peptide H-His-d-Leu-d-Asp-NH2 (1) as an additive for the generation of monodisperse, water-soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size-controlled formation of other noble-metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self-assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles.
Collapse
Affiliation(s)
- Stefano Corra
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, D-MATL, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
26
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
Yao MH, Yang J, Song JT, Zhang L, Fang BY, Zhao DH, Xia RX, Jin RM, Zhao YD, Liu B. An engineered coiled-coil polypeptide assembled onto quantum dots for targeted cell imaging. NANOTECHNOLOGY 2015; 26:495102. [PMID: 26567721 DOI: 10.1088/0957-4484/26/49/495102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantum dot (QD)-polypeptide probes have been developed through the specific metal-affinity interaction between polypeptides appended with N-terminal polyhistidine sequences and CdSe/ZnS core-shell QDs. The size and charge of a QD-polypeptide can be tuned by using different coiled-coil polypeptides. Compared to glutathione-capped QDs (QD-GSH), QD-polypeptide probes showed an approximately two- to three-fold luminescence increase, and the luminescence increase was not obviously related to the charge of the polypeptide. QD-polypeptide probes with different charge have a great effect on nonspecific cellular uptake. QD-polypeptide probes with negative charge exhibited lower nonspecific cellular uptake in comparison to the QD-GSH, while positively charged QD-polypeptide probes presented higher cellular uptake than the QD-GSH. A targeted QD-ARGD probe can obviously increase targeted cellular uptake in α v β 3 overexpressing HeLa cells compared to QD-A. In addition, QD-polypeptide probes showed lower in vitro cytotoxicity compared to the original QDs. These results demonstrate that these QD-polypeptide probes with high specific cellular uptake, high fluorescence intensity and low background noise are expected to have great potential applications in targeted cell imaging.
Collapse
|
28
|
Oh MH, Yu JH, Kim I, Nam YS. Genetically Programmed Clusters of Gold Nanoparticles for Cancer Cell-Targeted Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22578-86. [PMID: 26413999 DOI: 10.1021/acsami.5b07029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Interpretations of the interactions of nanocarriers with biological cells are often complicated by complex synthesis of materials, broad size distribution, and heterogeneous surface chemistry. Herein, the major capsid proteins of an icosahedral T7 phage (55 nm in diameter) are genetically engineered to display a gold-binding peptide and a prostate cancer cell-binding peptide in a tandem sequence. The genetically modified phage attracts gold nanoparticles (AuNPs) to form a cluster of gold nanoparticles (about 70 nanoparticles per phage). The cluster of AuNPs maintains cell-targeting functionality and exhibits excellent dispersion stability in serum. Under a very low light irradiation (60 mW cm(-2)), only targeted AuNP clusters kill the prostate cancer cells in minutes (not in other cell types), whereas neither nontargeted AuNP clusters nor citrate-stabilized AuNPs cause any significant cell death. The result suggests that the prostate cancer cell-targeted clusters of AuNPs are targeted to only prostate cancer cells and, when illuminated, generate local heating to more efficiently and selectively kill the targeted cancer cells. Our strategy can be generalized to target other types of cells and assemble other kinds of nanoparticles for a broad range of applications.
Collapse
Affiliation(s)
- Mi Hwa Oh
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, §KAIST Institute for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jeong Heon Yu
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, §KAIST Institute for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Insu Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, §KAIST Institute for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yoon Sung Nam
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, §KAIST Institute for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
29
|
Rawlings AE, Bramble JP, Tang AAS, Somner LA, Monnington AE, Cooke DJ, McPherson MJ, Tomlinson DC, Staniland SS. Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis. Chem Sci 2015; 6:5586-5594. [PMID: 29861896 PMCID: PMC5949846 DOI: 10.1039/c5sc01472g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/30/2015] [Indexed: 11/21/2022] Open
Abstract
Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative to traditional antibody binding proteins for highly specific molecular recognition applications. This paper reports for the first time the use of these versatile proteins for material binding, and as tools for controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic magnetite nanoparticles. The selected variable regions display a strong preference for basic residues such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel additives for wider nanomaterial fabrication.
Collapse
Affiliation(s)
- Andrea E Rawlings
- Department , of Chemistry , The University of Sheffield , Sheffield , UK .
| | - Jonathan P Bramble
- Department , of Chemistry , The University of Sheffield , Sheffield , UK .
| | - Anna A S Tang
- Faculty of Biological , Sciences , The University of Leeds , Leeds , UK
| | - Lori A Somner
- Department , of Chemistry , The University of Sheffield , Sheffield , UK .
| | - Amy E Monnington
- Chemical and Biological Sciences , University of Huddersfield , Huddersfield , UK
| | - David J Cooke
- Chemical and Biological Sciences , University of Huddersfield , Huddersfield , UK
| | | | | | - Sarah S Staniland
- Department , of Chemistry , The University of Sheffield , Sheffield , UK .
| |
Collapse
|
30
|
Baumann V, Habeeb Muhammed MA, Blanch AJ, Dey P, Rodríguez-Fernández J. Biomolecules in Metal and Semiconductor Nanoparticle Growth. Isr J Chem 2015. [DOI: 10.1002/ijch.201500031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
So CR, Liu J, Fears KP, Leary DH, Golden JP, Wahl KJ. Self-Assembly of Protein Nanofibrils Orchestrates Calcite Step Movement through Selective Nonchiral Interactions. ACS NANO 2015; 9:5782-5791. [PMID: 25970003 DOI: 10.1021/acsnano.5b01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The recognition of atomically distinct surface features by adsorbed biomolecules is central to the formation of surface-templated peptide or protein nanostructures. On mineral surfaces such as calcite, biomolecular recognition of, and self-assembly on, distinct atomic kinks and steps could additionally orchestrate changes to the overall shape and symmetry of a bulk crystal. In this work, we show through in situ atomic force microscopy (AFM) experiments that an acidic 20 kDa cement protein from the barnacle Megabalanus rosa (MRCP20) binds specifically to step edge atoms on {101̅4} calcite surfaces, remains bound and further assembles over time to form one-dimensional nanofibrils. Protein nanofibrils are continuous and organized at the nanoscale, exhibiting striations with a period of ca. 45 nm. These fibrils, templated by surface steps of a preferred geometry, in turn selectively dissolve underlying calcite features displaying the same atomic arrangement. To demonstrate this, we expose the protein solution to bare and fibril-associated rhombohedral etch pits to reveal that nanofibrils accelerate only the movement of fibril-forming steps when compared to undecorated steps exposed to the same solution conditions. Calcite mineralized in the presence of MRCP20 results in asymmetric crystals defined by frustrated faces with shared mirror symmetry, suggesting a similar step-selective behavior by MRCP20 in crystal growth. As shown here, selective surface interactions with step edge atoms lead to a cooperative regime of calcite modification, where templated long-range protein nanostructures shape crystals.
Collapse
Affiliation(s)
- Christopher R So
- †Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Jinny Liu
- ‡Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Kenan P Fears
- †Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Dagmar H Leary
- ‡Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Joel P Golden
- ‡Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Kathryn J Wahl
- †Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
32
|
Zou F, Zhou H, Tan TV, Kim J, Koh K, Lee J. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12168-75. [PMID: 26006156 DOI: 10.1021/acsami.5b02523] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).
Collapse
Affiliation(s)
- Fengming Zou
- †High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- ‡Department of Nano Fusion Technology and BK21 Plus Nano Convergence Technology Division, Pusan National University, Busan 609-735, Republic of Korea
| | - Hongjian Zhou
- §Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
- ∥Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tran Van Tan
- §Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeonghyo Kim
- §Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kwangnak Koh
- ⊥Office of General Education, Pusan National University, Busan 609-735, Republic of Korea
| | - Jaebeom Lee
- §Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
33
|
Effect of incubation temperature on the self-assembly of regenerated silk fibroin: A study using AFM. Int J Biol Macromol 2015; 76:195-202. [DOI: 10.1016/j.ijbiomac.2015.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
|
34
|
Tuttle T. Computational Approaches to Understanding the Self-assembly of Peptide-based Nanostructures. Isr J Chem 2015. [DOI: 10.1002/ijch.201400188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 2015; 33:259-68. [PMID: 25796487 DOI: 10.1016/j.tibtech.2015.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Over the past decade, solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to the surfaces of a diverse range of solid materials including metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers, and minerals. They can direct the assembly and functionalisation of materials, and have the ability to mediate the synthesis and construction of nanoparticles and complex nanostructures. As the availability of newly synthesised nanomaterials expands rapidly, so too do the potential applications for SBPs.
Collapse
|
36
|
Wang Z, Han X, He N, Chen Z, Brooks CL. Environmental Effect on Surface Immobilized Biological Molecules. J Phys Chem B 2014; 118:12176-85. [DOI: 10.1021/jp508550d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zunliang Wang
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaofeng Han
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Nongyue He
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Thermodynamics of Engineered Gold Binding Peptides: Establishing the Structure–Activity Relationships. Biomacromolecules 2014; 15:2369-77. [DOI: 10.1021/bm4019006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wang Z, Han X, He N, Chen Z, Brooks CL. Molecular Structures of C- and N-Terminus Cysteine Modified Cecropin P1 Chemically Immobilized onto Maleimide-Terminated Self-Assembled Monolayers Investigated by Molecular Dynamics Simulation. J Phys Chem B 2014; 118:5670-80. [DOI: 10.1021/jp5023482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zunliang Wang
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaofeng Han
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Nongyue He
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Protein/peptide based nanomaterials for energy application. Curr Opin Biotechnol 2013; 24:599-605. [DOI: 10.1016/j.copbio.2013.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 11/19/2022]
|
40
|
Yin P, Zhang J, Li T, Zuo X, Hao J, Warner AM, Chattopadhyay S, Shibata T, Wei Y, Liu T. Self-Recognition of Structurally Identical, Rod-Shaped Macroions with Different Central Metal Atoms during Their Assembly Process. J Am Chem Soc 2013; 135:4529-36. [DOI: 10.1021/ja400656j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Panchao Yin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jin Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Tao Li
- X-ray Science Division, Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science Division, Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jian Hao
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Anna Marie Warner
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soma Chattopadhyay
- CSRRI-IIT, MRCAT, Sector 10,
Building 433B, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616, United
States
| | - Tomohiro Shibata
- CSRRI-IIT, MRCAT, Sector 10,
Building 433B, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616, United
States
| | - Yongge Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Tianbo Liu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Polymer
Science, The University of Akron, Akron,
Ohio 44325, United
States
| |
Collapse
|
41
|
Ruan L, Ramezani-Dakhel H, Chiu CY, Zhu E, Li Y, Heinz H, Huang Y. Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}. NANO LETTERS 2013; 13:840-6. [PMID: 23320831 DOI: 10.1021/nl400022g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.
Collapse
Affiliation(s)
- Lingyan Ruan
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
de Juan-Franco E, Caruz A, Pedrajas JR, Lechuga LM. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing. Analyst 2013; 138:2023-31. [PMID: 23400028 DOI: 10.1039/c3an36498d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.
Collapse
Affiliation(s)
- Elena de Juan-Franco
- Nanobiosensors and Bioanalytical Applications Group, Research Center on Nanoscience and Nanotechnology (CSIC) & CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
KANATA S, NISHINO T, MAKIURA R, SAIKI S, HAYASHI N. Single-Molecule Imaging of Gold-Binding Peptide Adsorbed on Au(111). ANAL SCI 2013; 29:405-9. [DOI: 10.2116/analsci.29.405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Satoshi KANATA
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University
| | - Tomoaki NISHINO
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University
| | - Rie MAKIURA
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University
| | - Sho SAIKI
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University
| | - Nobuhiko HAYASHI
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University
| |
Collapse
|
44
|
Thompson D, Hermes JP, Quinn AJ, Mayor M. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. ACS NANO 2012; 6:3007-3017. [PMID: 22432786 DOI: 10.1021/nn204470g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand-nanoparticle complexes and also nanoparticle-molecule-nanoparticle "dumbbell" nanostructures. Electronic structure calculations reveal the individually weak thioether-gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand-nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this "wrapping" process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand-nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic-inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics.
Collapse
Affiliation(s)
- Damien Thompson
- Theory Modelling and Design Centre, Tyndall National Institute, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
45
|
Feng J, Slocik JM, Sarikaya M, Naik RR, Farmer BL, Heinz H. Influence of the shape of nanostructured metal surfaces on adsorption of single peptide molecules in aqueous solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1049-1059. [PMID: 22323430 DOI: 10.1002/smll.201102066] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 05/31/2023]
Abstract
Self-assembly and function of biologically modified metal nanostructures depend on surface-selective adsorption; however, the influence of the shape of metal surfaces on peptide adsorption mechanisms has been poorly understood. The adsorption of single peptide molecules in aqueous solution (Tyr(12) , Ser(12) , A3, Flg-Na(3) ) is investigated on even {111} surfaces, stepped surfaces, and a 2 nm cuboctahedral nanoparticle of gold using molecular dynamics simulation with the CHARMM-METAL force field. Strong and selective adsorption is found on even surfaces and the inner edges of stepped surfaces (-20 to -60 kcal/mol peptide) in contrast to weaker and less selective adsorption on small nanoparticles (-15 to -25 kcal/mol peptide). Binding and selectivity appear to be controlled by the size of surface features and the extent of co-ordination of epitaxial sites by polarizable atoms (N, O, C) along the peptide chain. The adsorption energy of a single peptide equals a fraction of the sum of the adsorption energies of individual amino acids that is characteristic of surface shape, epitaxial pattern, and conformation constraints (often β-strand and random coil). The proposed adsorption mechanism is supported and critically evaluated by earlier sequence data from phage display, dissociation constants of small proteins as a function of nanoparticle size, and observed shapes of peptide-stabilized nanoparticles. Understanding the interaction of single peptides with shaped metal surfaces is a key step towards control over self-organization of multiple peptides on shaped metal surfaces and the assembly of superstructures from nanostructures.
Collapse
Affiliation(s)
- Jie Feng
- Department of Polymer Engineering, University of Akron, Akron, OH 44325-0301, USA
| | | | | | | | | | | |
Collapse
|
46
|
Donatan S, Sarikaya M, Tamerler C, Urgen M. Effect of solid surface charge on the binding behaviour of a metal-binding peptide. J R Soc Interface 2012; 9:2688-95. [PMID: 22491974 DOI: 10.1098/rsif.2012.0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may probably play an important role, which then can be used as a potential tuning parameter of peptide adsorption. Here, we report quantitative investigation on the viscoelastic properties and binding kinetics of an engineered gold-binding peptide, 3RGBP(1), adsorbed onto the gold surface at different surface charge densities. The experiments were performed in aqueous solutions using an electrochemical dissipative quartz crystal microbalance system. Hydrodynamic mass, hydration state and surface coverage of the adsorbed peptide films were determined as a function of surface charge density of the gold metal substrate. Under each charged condition, binding of 3rGBP(1) displayed quantitative differences in terms of adsorbed peptide amount, surface coverage ratio and hydration state. Based on the intrinsically disordered structure of the peptide, we propose a possible mechanism for binding of the peptide that can be used for tuning surface adsorption in further studies. Controlled alteration of peptide binding on solid surfaces, as shown here, may provide novel methods for surface functionalization used for bioenabled processing and fabrication of future micro- and nanodevices.
Collapse
Affiliation(s)
- Senem Donatan
- Department of Materials Science and Engineering, Istanbul Technical University, Istanbul, Maslak 34469, Turkey
| | | | | | | |
Collapse
|
47
|
Effect of Gold Nanoparticle Conjugation on Peptide Dynamics and Structure. ENTROPY 2012. [DOI: 10.3390/e14040630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Page TR, Hayamizu Y, So CR, Sarikaya M. Electrical detection of biomolecular adsorption on sprayed graphene sheets. Biosens Bioelectron 2012; 33:304-8. [PMID: 22326700 PMCID: PMC4080793 DOI: 10.1016/j.bios.2012.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/08/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
The binding affinities of graphite-binding peptides to a graphite surface were electrically characterized using sprayed graphene field effect transistors (SGFETs) fabricated with solution exfoliated graphene. The binding affinities of these peptides were also characterized using atomic force microscopy (AFM) and mechanically exfoliated graphene field effect transistors (GFETs) to confirm the validity of the SGFET platform. Binding constants obtained via GFET and AFM were comparable with those observed using SGFETs. The sprayed graphene film serves as a scalable platform to study biomolecular adsorption to graphitic surfaces.
Collapse
Affiliation(s)
- Tamon R. Page
- Genetically Engineered Materials Science and Engineering Center, MSE, University of Washington, Seattle, WA 98195, USA
| | - Yuhei Hayamizu
- Genetically Engineered Materials Science and Engineering Center, MSE, University of Washington, Seattle, WA 98195, USA
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Christopher R. So
- Genetically Engineered Materials Science and Engineering Center, MSE, University of Washington, Seattle, WA 98195, USA
| | - Mehmet Sarikaya
- Genetically Engineered Materials Science and Engineering Center, MSE, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
So CR, Hayamizu Y, Yazici H, Gresswell C, Khatayevich D, Tamerler C, Sarikaya M. Controlling self-assembly of engineered peptides on graphite by rational mutation. ACS NANO 2012; 6:1648-56. [PMID: 22233341 PMCID: PMC3304023 DOI: 10.1021/nn204631x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range-ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces.
Collapse
Affiliation(s)
- Christopher R. So
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yuhei Hayamizu
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hilal Yazici
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Carolyn Gresswell
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Dmitriy Khatayevich
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Candan Tamerler
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Mehmet Sarikaya
- Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Corresponding Author Footnote: Mehmet Sarikaya, Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering, Roberts Hall, Box: 352120, University of Washington, Seattle, WA 98195, USA, ph: (206) 543-0724, fx: (206) 543-6381,
| |
Collapse
|
50
|
Schwemmer T, Baumgartner J, Faivre D, Börner HG. Peptide-mediated nanoengineering of inorganic particle surfaces: a general route toward surface functionalization via peptide adhesion domains. J Am Chem Soc 2012; 134:2385-91. [PMID: 22239472 DOI: 10.1021/ja2104944] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The peptide-mediated functionalization of inorganic particle surfaces is demonstrated on gadolinium oxide (GdO) particles, revealing specific means to functionalize nano- or microparticles. Phage display screening is exploited to select 12mer peptides, which exhibit sequence-specific adhesion onto surfaces of GdO particles. These peptide adhesion domains are exploited to effectively decorate GdO particles with fluorescently labeled poly(ethylene oxide) (PEO), proving to result in a stable surface modification as shown by significant reduction of protein adsorption by 80%, compared to nonfunctionalized particles. Peptide adhesion and stability of the noncovalent coating are investigated by adsorption/elution experiments and Langmuir isotherms. Fluorescence microscopy, contact angle, and energy dispersive X-ray (EDX) measurements confirmed the sequence specificity of the interactions by comparing adhesion sequences with scrambled peptide sequences. Noncovalent, but specific modification of inorganic particle surfaces represents a generic strategy to modulate functionality and function of nano- or microparticle surfaces.
Collapse
Affiliation(s)
- Thorsten Schwemmer
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | | | | | | |
Collapse
|