1
|
Guo YY, Tian ZH, Ma C, Han YC, Bai D, Jiang Z. Unlocking mild-condition benzene ring contraction using nonheme diiron N-oxygenase. Chem Sci 2023; 14:11907-11913. [PMID: 37920353 PMCID: PMC10619644 DOI: 10.1039/d3sc04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Benzene ring contractions are useful yet rare reactions that offer a convenient synthetic route to various valuable chemicals. However, the traditional methods of benzene contraction rely on noble-metal catalysts under extreme conditions with poor efficiency and uncontrollable selectivity. Mild-condition contractions of the benzene ring are rarely reported. This study presents a one-step, one-pot benzene ring contraction reaction mediated by an engineered nonheme diiron N-oxygenase. Using various aniline substrates as amine sources, the enzyme causes the phloroglucinol-benzene-ring contraction to afford a series of 4-cyclopentene-1,3-dione structures. A reaction detail study reveals that the nonheme diiron N-oxygenase first oxidizes the aromatic amine to a nitroso intermediate, which then attacks the phloroglucinol anion and causes benzene ring contraction. Besides, we have identified two potent antitumor compounds from the ring-contracted products.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ChunHua Ma
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - DaChang Bai
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ZhiYong Jiang
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
2
|
Li F, Li HM, Xiu RF, Zhang JK, Cui BD, Wan NW, Chen YZ, Han WY. Palladium-Catalyzed Domino Reaction for the Assembly of Norbornane-Containing Chromones with Dimethyl Squarate as the Solid C1 Source. Org Lett 2022; 24:9392-9397. [PMID: 36524990 DOI: 10.1021/acs.orglett.2c03713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reported herein is a novel palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, bridged olefins, and dimethyl squarate allowing the construction of chromone-containing polycyclic compounds in good to high yields. Importantly, dimethyl squarate is first employed as the solid C1 source in organic synthesis. Gram-scale experiments, late-stage modification of natural products, as well as transformations of products show potential for further synthetic elaborations.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Hui-Min Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Ren-Feng Xiu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Jin-Ke Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
3
|
Effects of Compounds Isolated from Lindera erythrocarpa on Anti-Inflammatory and Anti-Neuroinflammatory Action in BV2 Microglia and RAW264.7 Macrophage. Int J Mol Sci 2022; 23:ijms23137122. [PMID: 35806130 PMCID: PMC9267112 DOI: 10.3390/ijms23137122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lindera erythrocarpa contains various constituents such as cyclopentenedione-, flavonoid-, and chalcone-type components. In this study, a novel bi-linderone derivative and 17 known compounds were isolated from the leaves of L. erythrocarpa by using various chromatographic methods. The structures of the components were determined from nuclear magnetic resonance and mass spectrometry data. All isolated compounds were tested for anti-inflammatory and anti-neuroinflammatory activities in lipopolysaccharide (LPS)-induced BV2 and RAW264.7 cells. Some of these compounds showed anti-inflammatory effects by inhibiting the nitric oxide (NO) produced by LPS. In particular, linderaspirone A (16), bi-linderone (17) and novel compound demethoxy-bi-linderone (18) showed significant inhibitory effects on the production of prostaglandin E2 (PGE2), tumor necrosis factor-α, and interleukin-6. The three compounds also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are pro-inflammatory proteins, and the activation of nuclear factor κB (NF-κB). Therefore, linderaspirone A (16), bi-linderone (17), and demethoxy-bi-linderone (18) isolated from the leaves of L. erythrocarpa have therapeutic potential in neuroinflammatory diseases.
Collapse
|
4
|
Biletskyi B, Colonna P, Masson K, Parrain JL, Commeiras L, Chouraqui G. Small rings in the bigger picture: ring expansion of three- and four-membered rings to access larger all-carbon cyclic systems. Chem Soc Rev 2021; 50:7513-7538. [PMID: 34002179 DOI: 10.1039/d0cs01396j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of the inherent ring strain of cyclobutane and cyclopropane derivatives allows a rapid build-up of molecular complexity. This review highlights the state-of-the-art of the ring expansions of three- and four-membered cycles and is organised by types of reactions with emphasis on the reaction mechanisms. Selected examples are discussed to illustrate the synthetic potential of this elegant synthetic tool.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Kévin Masson
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
5
|
Reddy DS, Kutateladze AG. Photoinitiated Cascade for Rapid Access to Pyrroloquinazolinone Core of Vasicinone, Luotonins, and Related Alkaloids. Org Lett 2019; 21:2855-2858. [PMID: 30933523 DOI: 10.1021/acs.orglett.9b00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Furylimines of aromatic o-nitro aldehydes undergo a photoinduced cascade transformation offering rapid atom- and step-economical access to complex polyheterocyclic scaffolds possessing a privileged pyrroloquinazolinone core.
Collapse
Affiliation(s)
- D Sai Reddy
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States
| |
Collapse
|
6
|
Affiliation(s)
- Zhen Guo
- School of Pharmaceutical Sciences & Comprehensive AIDS Research Center, Tsinghua University, Beijing 100084, China
| | - Zhiguo Wang
- School of Pharmaceutical Sciences & Comprehensive AIDS Research Center, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences & Comprehensive AIDS Research Center, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Chen L, Liu B, Deng JJ, Zhang JS, Li W, Ahmed A, Yin S, Tang GH. Lindera cyclopentenedione intermediates from the roots of Lindera aggregata. RSC Adv 2018; 8:17898-17904. [PMID: 35542074 PMCID: PMC9080501 DOI: 10.1039/c8ra03094d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Chromatographic fractionation of the roots of Lindera aggregata has led to the isolation of three new monomers of Lindera cyclopentenedione derivatives (1–3), a pair of new enantiomers of bi-linderone derivatives (4a/4b), and six known Lindera cyclopentenediones (5–8 and 9a/9b). Their structures were determined by NMR and MS data. The absolute configurations of the new bi-linderone derivative enantiomers (4a/4b) were determined by ECD calculation. (±)-Lindepentone A (1) presents the novel skeleton of 3,5-dioxocyclopent-1-enecarboxylate. Lindoxepines A (2) and B (3) present an unprecedented oxepine-2,5-dione derivative skeleton, which may be enlightening for the in vivo biosynthesis of the monomers of Lindera cyclopentenediones. A possible biosynthetic pathway for 1 and a plausible biosynthetic pathway from stilbenes to Lindera cyclopentenediones via the key intermediates 2 and 3 were postulated. The inhibitory activity of these compounds against three microorganisms was also evaluated. Lindera cyclopentenediones together with their dimers and novel biosynthetic intermediates were isolated from Lindera aggregata.![]()
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Bo Liu
- The Second Clinical Medical College
- Guangzhou University of Chinese Medicine
- Guangzhou 510006
- China
| | - Jun-Jie Deng
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun-Sheng Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Wei Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Abrar Ahmed
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Sheng Yin
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
8
|
New anti-angiogenic leading structure discovered in the fruit of Cimicifuga yunnanensis. Sci Rep 2015; 5:9026. [PMID: 25762443 PMCID: PMC4356973 DOI: 10.1038/srep09026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/13/2015] [Indexed: 12/31/2022] Open
Abstract
Cimyunnins A–C (1–3), characterized with an unusual fused cyclopentenone ring G, together with cimyunnin D (4), possessing a highly rearranged γ-lactone ring F, were characterized from the fruit of Cimicifuga yunnanensis. Their structures were elucidated by spectroscopic analysis, X-ray diffraction, and density functional theory calculations. In addition, cimyunnin A exhibited comparable anti-angiogenic activities to those of sunitinib, a clinically-used first-line angiogenesis inhibitor, in the in vitro and ex vivo studies.
Collapse
|
9
|
Smith LK, Baxendale IR. Total syntheses of natural products containing spirocarbocycles. Org Biomol Chem 2015; 13:9907-33. [DOI: 10.1039/c5ob01524c] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The spiro motif is becoming an increasingly prevalent structure in medicinal and organic chemistry. The total syntheses of natural products containing all-carbon spirocycles is reviewed.
Collapse
|
10
|
Varejão JOS, Barbosa LCA, Varejão EVV, Maltha CRA, King-Díaz B, Lotina-Hennsen B. Cyclopent-4-ene-1,3-diones: a new class of herbicides acting as potent photosynthesis inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5772-5780. [PMID: 24912105 DOI: 10.1021/jf5014605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In a recent paper, we reported the synthesis and photosynthesis-inhibitory activity of a series of analogues of rubrolides. From quantitative structure-activity relationship (QSAR) studies, we found that the most efficient compounds are those having higher ability to accept electrons. On the basis of those findings, we directed our effort to synthesize new analogues bearing a strong electron-withdrawing group (nitro) in the benzylidene ring and evaluate their effects on photosynthesis. However, the employed synthetic approach led to novel cyclopent-4-ene-1,3-diones as major products. Here, we report the synthesis and mechanism of action of such cyclopent-4-ene-1,3-diones as a new class of photosynthesis inhibitors. These compounds block the electron transport at the QB level by interacting at the D1 protein at the reducing side of Photosystem II and act as Hill reaction inhibitors, with higher activity than the corresponding rubrolides. To the best of our knowledge, this is the first report on the photosynthesis inhibitory activity of cyclopentenediones.
Collapse
Affiliation(s)
- Jodieh O S Varejão
- Department of Chemistry, Federal University of Viçosa , Avenida Peter Henry Rolfs, s/n, 36570-000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Xiao F, Liu W, Wang Y, Zhang Q, Li X, Hu X. Concise Synthesis of Linderaspirone A and Bi-linderone. ASIAN J ORG CHEM 2013; 2:216-219. [PMID: 32313803 PMCID: PMC7159600 DOI: 10.1002/ajoc.201200184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Fenfen Xiao
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919
| | - Wu Liu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919
| | - Yunxia Wang
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919
| | - Qing Zhang
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919
| | - Xiang Li
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural, Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710069 (China), -88305919.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China)
| |
Collapse
|
12
|
Zhang P, Wang Y, Bao R, Luo T, Yang Z, Tang Y. Enantioselective Biomimetic Total Syntheses of Katsumadain and Katsumadain C. Org Lett 2011; 14:162-5. [DOI: 10.1021/ol2029433] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pengtao Zhang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Yongguang Wang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Ruiyang Bao
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Tuoping Luo
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Zhen Yang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Yefeng Tang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|