1
|
Shi Z, Wu T, Huang L, Liu S, Xiao X, Zhao B. Direct Enantioselective Allylic Alkylation of α-Amino Esters to Quaternary Glutamates via Strategic Pyridoxal Catalyst Design. J Am Chem Soc 2025. [PMID: 40273118 DOI: 10.1021/jacs.5c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The difficulty for N-unprotected α-substituted glycinates as α-C nucleophiles originates from both competing N nucleophilic interference and steric hindrance of the α substituent, which makes direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with Morita-Baylis-Hillman (MBH) adducts especially challenging. Given the wide utilization of α-quaternary chiral glutamic acid derivatives in therapeutic studies, we took advantage of biomimetic carbonyl catalysis to achieve their efficient synthesis. A bifunctional centrally chiral pyridoxal, featured with an expanded catalytic cavity and reduced steric hindrance around the aldehyde group, was designed and synthesized. In this work, we describe the novel centrally chiral pyridoxal enabled direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with MBH acetates. A broad range of α-quaternary chiral glutamic acid derivatives with multiple modifications were produced with high reactivity and excellent stereocontrol.
Collapse
Affiliation(s)
- Zhengjun Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tianhao Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Longjie Huang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Li C, Liu Y, Han Z, Wang Z, Ding K. Pd/Cu Catalyzed Asymmetric Allylation for Stereodivergent Synthesis of Glutamic Acid Derivatives. Chemistry 2025; 31:e202404209. [PMID: 39668114 DOI: 10.1002/chem.202404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.08 mol % for Cu). The high efficiency of the catalysis was attributed to the formation of intimate ion pair complex A1, composed of Pd-phosphonium cation and a t-butoxide anion, which would facilitate the subsequent deprotonation and C-C coupling events. All four stereoisomers of the β-branched glutamic acid derivatives were readily prepared by permutation of the catalyst enantiomers. Synthetic utility of the methodology was exemplified by efficient synthesis of a fused pyrrolooxazolidinone with three contiguous chiral centers, highlighting the power of synergistic Pd/Cu catalysis for asymmetric allylic alkylation with MBH carbonates.
Collapse
Affiliation(s)
- Chaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
4
|
Ohno I, Kanemoto K, Furuya S, Suzuki Y, Fukuzawa SI. Construction of Diverse Pyrrolidine-Based Skeletons through the Ag-Catalyzed Stereoselective Addition-Elimination Reaction of Azomethine Ylides with Nitroallyl Acetates. Org Lett 2024; 26:1880-1885. [PMID: 38417450 DOI: 10.1021/acs.orglett.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Because scaffold diversity has a pronounced impact on biological screening, the efficient and expedient construction of skeletally diverse compound collections is a fundamental demand in drug discovery. In this regard, we report here an asymmetric tandem conjugate addition-elimination reaction of pyrroline esters with nitroallyl acetates and its application to the construction of various types of fused or spirocyclic pyrrolidines. A AgOAc/(R,Sp)-ThioClickFerrophos (TCF) catalyst efficiently promotes the addition-elimination reaction, setting vicinal chiral stereocenters featuring a tetrasubstituted carbon with excellent enantio- and diastereoselectivity while leaving the versatile nitroolefin moiety. The broad substrate scope of this reaction and the transformability of the resulting nitroolefin, imine, and ester moieties allow for the construction of diverse pyrrolidine-based fused or spiro bicyclic skeletons in optically active forms by various intramolecular cyclization processes.
Collapse
Affiliation(s)
- Itsuki Ohno
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shohei Furuya
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuko Suzuki
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-Ichi Fukuzawa
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
5
|
Zhu BK, Xu H, Xiao L, Chang X, Wei L, Teng H, Dang Y, Dong XQ, Wang CJ. Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis. Chem Sci 2023; 14:4134-4142. [PMID: 37063803 PMCID: PMC10094240 DOI: 10.1039/d3sc00118k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
Highly diastereo-/enantioselective assembly of 2,3-fused indolizine derivatives could be easily available through a cascade allylation/Friedel-Crafts type reaction enabled by a synergistic Cu/Ir catalysis. This designed protocol provides an unprecedented and facile route to enantioenriched indolizines bearing three stereogenic centers in moderate to high yields with excellent stereoselective control, which also featured broad substrate generality. Remarkably, four stereoisomers of the 2,3-fused indolizine products could be efficiently constructed in a predictable manner through the pairwise combination of copper and iridium catalysts. The synthetic utility of this method was readily elaborated by a gram-scale reaction, and synthetic transformations to other important chiral indolizine derivatives. Quantum mechanical explorations constructed a plausible synergetic catalytic cycle, revealed the origins of stereodivergence, and rationalized the protonation-stimulated stereoselective Friedel-Crafts type cyclization to form the indolizine products.
Collapse
Affiliation(s)
- Bing-Ke Zhu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
6
|
Lu Y, Zhang J, Duan X, Yang B, Zhao C, Gu L, Chen C, Zhu H, Ye Y, Luo Z, Zhang Y. K 2S 2O 8-Mediated Radical Cyclization of 1,6-Enyne for the Synthesis of Diiodonated γ-Lactams. J Org Chem 2023; 88:2393-2403. [PMID: 36715636 DOI: 10.1021/acs.joc.2c02818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel and convenient K2S2O8-mediated diiodo cyclization of 1,6-enynes for the facile synthesis of functionalized γ-lactam derivatives has been developed. This reaction features mild and transition-metal-free conditions, which offer a green and efficient entry to synthetically important γ-lactam scaffolds. Mechanistic studies suggest that iodide radicals initiate the cascade cyclic transformation.
Collapse
Affiliation(s)
- Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Jiale Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Xianxian Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Boyi Yang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunhua Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. of China
| |
Collapse
|
7
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200850. [PMID: 35182094 DOI: 10.1002/anie.202200850] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qingfang Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Zi Ye
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
8
|
Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen WW, Zhao B. Asymmetric a‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiguo Ma
- Shanghai Normal University Chemistry CHINA
| | - Bin Gao
- Shanghai Normal University Chemistry CHINA
| | | | | | | | - Zi Ye
- Shanghai Normal University Chemistry CHINA
| | - Wen-Wen Chen
- Shanghai Normal University Chemistry 100 Guilin Rd 200234 Shanghai CHINA
| | - Baoguo Zhao
- Shanghai Normal University Chemistry Department 100 Guiling Rd 200234 Shanghai CHINA
| |
Collapse
|
9
|
Suzuki Y, Kanemoto K, Inoue A, Imae K, Fukuzawa SI. Silver/ThioClickFerrophos-Catalyzed 1,3-Dipolar Cycloaddition and Tandem Addition-Elimination Reaction of Morita-Baylis-Hillman Adducts. J Org Chem 2021; 86:14586-14596. [PMID: 34661412 DOI: 10.1021/acs.joc.1c01440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The asymmetric 1,3-dipolar cycloaddition of glycine imino esters to Morita-Baylis-Hillman (MBH) adducts or acetylated MBH adducts is described. The reaction was efficiently catalyzed by AgOAc/(R,Sp)-ThioClickFerrophos at room temperature to afford pyrrolidine derivatives bearing a quaternary carbon as a single diastereomer with excellent enantioselectivity. When a cyclic pyrroline ester was used as the nucleophile instead of a glycine imino ester, the enantioselective tandem addition-elimination reaction with an acetylated MBH adduct proceeded with an excellent yield and enantioselectivity, resulting in the formation of an exo-olefin. The wide substrate scope of these reactions and the transformability of the products enable expeditious access to divergent multifunctionalized pyrrolidines in an optically pure fashion.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ayana Inoue
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazumi Imae
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-Ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
10
|
Kim B, Song Y, Lee SY. Stereodivergent silver-catalyzed synthesis of pyroglutamic acid esters. Chem Commun (Camb) 2021; 57:11052-11055. [PMID: 34608900 DOI: 10.1039/d1cc04875a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a silver-catalyzed method for the enantio- and diastereodivergent synthesis of chiral pyroglutamic acid esters with multiple stereocenters. This process proceeds through asymmetric conjugate addition of glycine imine esters to a broad range of β-substituted α,β-unsaturated perfluorophenyl esters followed by lactamization. By leveraging catalyst control and stereospecificity of the 1,4-addition process, all four product stereoisomers containing two adjacent stereocenters are accessible with high stereoselectivity.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Yuna Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
11
|
Seibel ZM, Bandar JS, Lambert TH. Enantioenriched α-substituted glutamates/pyroglutamates via enantioselective cyclopropenimine-catalyzed Michael addition of amino ester imines. Beilstein J Org Chem 2021; 17:2077-2084. [PMID: 34476014 PMCID: PMC8381810 DOI: 10.3762/bjoc.17.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
A procedure for the enantioselective synthesis of α-substituted glutamates and pyroglutamates via a cyclopropenimine-catalyzed Michael addition of amino ester imines is described. Enantioselectivities of up to 94% have been achieved, and a variety of functional groups were found to be compatible. The impact of the catalyst structure and imine substitution is discussed. Compared to other methods, this protocol allows for a broader and more enantioselective access to pyroglutamate derivatives.
Collapse
Affiliation(s)
- Zara M Seibel
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Tristan H Lambert
- Department of Chemistry, Columbia University, New York, New York 10027, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Hu Y, Yan Z, Shi W, Liao J, Liu M, Pan T, Wang W, Wu Y, Hao X, Guo H. Copper/Lewis base cooperatively catalyzed asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with azomethine ylides. Chem Commun (Camb) 2021; 57:8059-8062. [PMID: 34296236 DOI: 10.1039/d1cc02861h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, an asymmetric allylic alkylation of easily available azomethine ylides with Morita-Baylis-Hillman (MBH) carbonates through a copper (i)/Lewis base cooperative catalysis strategy has been realized. The co-catalyzed asymmetric allylic alkylation provided the corresponding amino acid derivatives in up to 90% yields with up to 99% ee as well as good to excellent regioselectivity.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Zhengyang Yan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Jianning Liao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Min Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Ting Pan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghong Hao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Xie ZZ, Qian YL, Zheng Y, Zhao QL, Xiao JA, Xiang HY, Chen K, Yang H. Organocatalytic domino sequence to asymmetrically access spirocyclic oxindole-α-methylene-γ-lactams. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021; 60:10588-10592. [PMID: 33554429 DOI: 10.1002/anie.202017306] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Direct α-functionalization of NH2 -free glycinates with relatively weak electrophiles such as α,β-unsaturated esters still remains a big challenge in organic synthesis. With chiral pyridoxal 5 d as a carbonyl catalyst, direct asymmetric conjugated addition at the α-C of glycinate 1 a with α,β-unsaturated esters 2 has been successfully realized, to produce various chiral pyroglutamic acid esters 4 in 14-96 % yields with 81-97 % ee's after in situ lactamization. The trans and cis diastereomers can be obtained at the same time by chromatography and both of them can be easily converted into chiral 4-substituted pyrrolidin-2-ones such as Alzheimer's drug Rolipram (11) with the same absolute configuration via tert-butyl group removal and subsequent Barton decarboxylation.
Collapse
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
15
|
Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guanshui Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Yongchang Song
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Guoqing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials College of Chemistry and Materials Science Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
16
|
Gao YQ, Hou Y, Chen J, Zhen Y, Xu D, Zhang H, Wei H, Xie W. Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Org Biomol Chem 2021; 19:348-354. [PMID: 33300926 DOI: 10.1039/d0ob02140g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. and Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Elemento‐organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Sun XS, Wang XH, Tao HY, Wei L, Wang CJ. Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives via umpolung allylation/2-aza-Cope rearrangement. Chem Sci 2020; 11:10984-10990. [PMID: 34094346 PMCID: PMC8162408 DOI: 10.1039/d0sc04685j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement of tertiary α-trifluoromethyl α-amino acid derivatives for the preparation of a variety of quaternary α-trifluoromethyl α-amino acids in high yields with excellent enantioselectivities. The umpolung reactivity empowered by the activation of the key isatin-ketoimine moiety obviates the intractable enantioselectivity control in Pd-catalyzed asymmetric linear α-allylation. In combination with quasi parallel kinetic resolution or kinetic resolution, the generality of this method is further demonstrated by the first preparation of enantioenriched quaternary trifluoromethyl β-, γ-, δ- and ε-amino acid derivatives.
Collapse
Affiliation(s)
- Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xing-Heng Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Wu HM, Zhang Z, Xiao F, Wei L, Dong XQ, Wang CJ. Stereodivergent Synthesis of α-Quaternary Serine and Cysteine Derivatives Containing Two Contiguous Stereogenic Centers via Synergistic Cu/Ir Catalysis. Org Lett 2020; 22:4852-4857. [DOI: 10.1021/acs.orglett.0c01687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hui-Min Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Wei L, Chang X, Wang CJ. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. Acc Chem Res 2020; 53:1084-1100. [PMID: 32320206 DOI: 10.1021/acs.accounts.0c00113] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optically active nitrogen-containing compounds have attracted substantial attention due to their ubiquity in the cores of natural products and bioactive molecules. Among the various synthetic approaches to nitrogenous frameworks, catalytic asymmetric 1,3-dipolar cycloadditions are one of the most attractive methods because of their powerful ability to rapidly construct various chiral N-heterocycles. In particular, N-metallated azomethine ylides, common and readily available 1,3-dipoles, have been extensively applied in dipolar cycloaddition reactions. Despite the fact that asymmetric transformations of azomethine ylides have been investigated for decades, most of the efforts have been directed toward the preparation of pyrrolidines using glycinate-derived α-unsubstituted aldimine esters as the precursors of the azomethine ylides. While α-substituted azomethine ylides derived from amino esters other than glycinate have seldom been harnessed, the construction of non-five-membered chiral N-heterocycles via 1,3-dipolar cycloadditions remains underexplored. In addition, the asymmetric α-functionalization of aldimine esters to prepare acyclic nitrogenous compounds such as α-amino acids, in which an in situ-generated N-metallated azomethine ylide serves as the nucleophile, has not been sufficiently described.In this Account, we mainly discuss the achievements we have made in the past decade toward broadening the applications of N-metallated azomethine ylides for the preparation of nitrogen-containing compounds. We began our investigation with the design and synthesis of a new type of chiral ligand, TF-BiphamPhos, which not only coordinates with Lewis acids to activate dipolar species but also serves as an H-bond donor to increase the reactivity of dipolarophiles with significantly enhanced stereochemical control. Using the Cu(I) or Ag(I)/TF-BiphamPhos complex as the catalyst, we achieved highly stereoselective (3+2) cycloadditions of glycinate and non-glycinate-derived azomethine ylides with diverse dipolarophiles, producing a variety of enantioenriched pyrrolidines with multiple stereocenters in a single step. To further expand the synthetic utility of N-metallated azomethine ylides, we successfully developed higher order cycloadditions with fulvenes, tropone, 2-acyl cycloheptatrienes, and pyrazolidinium ylides serving as the reaction partner, and this reaction provides straightforward access to enantioenriched fused piperidines, bridged azabicyclic frameworks, and triazines via (3+6)- and (3+3)-type cycloadditions. Using N-metallated azomethine ylides as the nucleophile, we realized Cu(I)-catalyzed asymmetric 1,4-Michael additions with α,β-unsaturated bisphosphates/Morita-Baylis-Hillman products, furnishing an array of structurally diverse unnatural α-amino acids. Based on the strategy of synergistic activation, we achieved highly efficient dual Cu/Pd and Cu/Ir catalysis for the α-functionalization of aldimine esters via the asymmetric allylic/allenylic alkylation of N-metallated azomethine ylides. Notably, Cu/Ir catalysis allowed the stereodivergent synthesis of α,α-disubstituted α-amino acids via a branched allylic alkylation reaction, in which the two distinct chiral metal catalysts independently have full stereochemical control over the corresponding nucleophile and electrophile. Furthermore, an expedient and stereodivergent preparation of biologically important tetrahydro-γ-carbolines was realized through a Cu/Ir-catalyzed cascade allylation/iso-Pictet-Spengler cyclization. In addition, when the steric congestion in the allylation intermediates was increased, the combined Cu/Ir catalysts provided an asymmetric cascade allylation/2-aza-Cope rearrangement, producing various optically active homoallylic amines with impressive results.
Collapse
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai230021, China
| |
Collapse
|
21
|
Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers. Org Lett 2020; 22:569-574. [PMID: 31895576 DOI: 10.1021/acs.orglett.9b04341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-phosphinooxazoline (Pd-PHOX)-catalyzed asymmetric hydroalkylation of 1,3-dienes with azlactones was successfully developed for the first time, affording various enantioenriched α-quaternary α-amino acid derivatives bearing contiguous quaternary and tertiary stereogenic centers in good yields with exclusive regioselectivity and excellent stereoselective control (up to 92% yield, >20:1 dr, and >99% ee). The scale-up catalytic asymmetric hydroalkylation was performed well without loss of reactivity and stereoselectivities, which exhibited great potential application. The synthetic utility of the current methodology was demonstrated through product transformations to access other biologically important compounds such as chiral β-amino alcohol and α-quaternary cyclic α-amino acid derivatives.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hui-Min Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 230021 , China
| |
Collapse
|
22
|
Sun XS, Ou-Yang Q, Xu SM, Wang XH, Tao HY, Chung LW, Wang CJ. Asymmetric synthesis of quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed allylation followed by kinetic resolution. Chem Commun (Camb) 2020; 56:3333-3336. [DOI: 10.1039/d0cc00845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facile access to quaternary α-trifluoromethyl α-amino acids has been developed. This sequential reaction involves an Ir-catalyzed asymmetric allylation of α-trifluoromethyl aldimine esters followed by an unprecedented kinetic resolution.
Collapse
Affiliation(s)
- Xi-Shang Sun
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| | - Qiu Ou-Yang
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xing-Heng Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
23
|
Wei L, Xiao L, Wang Z, Tao H, Wang C. Ir/Phase‐Transfer‐Catalysis Cooperatively Catalyzed Asymmetric Cascade Allylation/2‐aza‐Cope Rearrangement: An Efficient Route to Homoallylic Amines from Aldimine Esters
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Lu Xiao
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Zuo‐Fei Wang
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Hai‐Yan Tao
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
24
|
Liu H, Hu Y, Wang Z, Tao H, Wang C. Synergistic Cu/Pd‐Catalyzed Asymmetric Allenylic Alkylation of Azomethine Ylides for the Construction of α‐Allene‐Substituted Nonproteinogenic α‐Amino Acids. Chemistry 2019; 25:8681-8685. [DOI: 10.1002/chem.201901046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hua‐Chao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Yuan‐Zheng Hu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Zuo‐Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Hai‐Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
- State Key Laboratory of Elemento-organic ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
25
|
Shi LM, Sun XS, Shen C, Wang ZF, Tao HY, Wang CJ. Catalytic Asymmetric Synthesis of α-Trifluoromethyl Homoallylic Amines via Umpolung Allylation/2-Aza-Cope Rearrangement: Stereoselectivity and Mechanistic Insight. Org Lett 2019; 21:4842-4848. [DOI: 10.1021/acs.orglett.9b01738] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li-Min Shi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zuo-Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Synergistic catalysis for cascade allylation and 2-aza-cope rearrangement of azomethine ylides. Nat Commun 2019; 10:1594. [PMID: 30962429 PMCID: PMC6453969 DOI: 10.1038/s41467-019-09563-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 11/28/2022] Open
Abstract
The efficient construction of enantiomerically enriched molecules from simple starting materials via catalytic asymmetric synthesis strategies is a key challenge in synthetic chemistry. Metallated azomethine ylides are commonly-used synthons for the preparation of N-heterocycles and α-amino acids. Remarkably, to date, the utilization of azomethine ylides for the facile access to chiral amines has proven elusive. Here, we report that a synergistic Cu/Ir-catalytic system combined with careful tuning of the steric congestion can be used to convert aldimine esters to a variety of chiral homoallylic amines via a cascade allylation/2-aza-Cope rearrangement. The elucidation of the distinct effects of each stereogenic center of the allylation intermediates on the stereochemical outcome and chirality transfer in the rearrangement further guided the selection of catalysts combination. Metallated azomethine ylides are commonly used for the construction of N-heterocycles and α-amino acids. Here, the authors report a synergistic Cu/Ir-catalytic system that converts aldimine esters to a variety of chiral homoallylic amines via a cascade allylation/2-aza-Cope rearrangement.
Collapse
|
27
|
Xie MS, Guo Z, Qu GR, Guo HM. Regiodivergent Synthesis of Pyrazolines with a Quaternary Carbon Center via Cycloaddition of Diazoesters to N-Purine-Substituted Allenes. Org Lett 2018; 20:5010-5014. [PMID: 30067368 DOI: 10.1021/acs.orglett.8b02161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diversity-oriented synthesis of pyrazoline derivatives that contain a quaternary carbon center has been achieved via the 1,3-dipolar cycloaddition between N-purine-substituted allenes and α-alkyl/aryl diazoesters. Using Pd2(dba)3 as a catalyst, only 1-pyrazoline derivatives are produced in a regioselective manner. When DPPB is used as a catalyst, diverse 1-pyrazolines and 2-pyrazolines are obtained in moderate to good total yields.
Collapse
Affiliation(s)
- Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Zhen Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
28
|
Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. Stereodivergent Synthesis of α,α-Disubstituted α-Amino Acids via Synergistic Cu/Ir Catalysis. J Am Chem Soc 2018; 140:1508-1513. [DOI: 10.1021/jacs.7b12174] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Liang Wei
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao Zhu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shi-Ming Xu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Zhou H, Yang X, Li S, Zhu Y, Li Y, Zhang Y. Visible light-induced aerobic oxidative cross-coupling of glycine esters with α-angelicalactone: a facile pathway to γ-lactams. Org Biomol Chem 2018; 16:6728-6734. [DOI: 10.1039/c8ob01844h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid synthesis of substituted γ-lactams is achieved via metal-free photocatalyzed aerobic oxidative dehydrogenative formal [2 + 3] cyclization of glycine esters with α-angelicalactone.
Collapse
Affiliation(s)
- Huang Zhou
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shilin Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
30
|
Cao X, Cheng X, Xuan J. Arylsulfonyl Radical Triggered 1,6-Enyne Cyclization: Synthesis of γ-Lactams Containing Alkenyl C–X Bonds. Org Lett 2017; 20:449-452. [DOI: 10.1021/acs.orglett.7b03794] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xia Cao
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Xiao Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
31
|
Yuan Y, Yu B, Bai XF, Xu Z, Zheng ZJ, Cui YM, Cao J, Xu LW. Asymmetric Synthesis of Glutamic Acid Derivatives by Silver-Catalyzed Conjugate Addition–Elimination Reactions. Org Lett 2017; 19:4896-4899. [DOI: 10.1021/acs.orglett.7b02378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Yuan
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Bo Yu
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xing-Feng Bai
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhan-Jiang Zheng
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yu-Ming Cui
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key
Laboratory of Organosilicon Chemistry and Material Technology of Ministry
of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Suzhou
Research Institute and State Key Laboratory for Oxo Synthesis and
Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Wei L, Xu SM, Zhu Q, Che C, Wang CJ. Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to α,α-Disubstituted α-Amino Acids. Angew Chem Int Ed Engl 2017; 56:12312-12316. [DOI: 10.1002/anie.201707019] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Qiao Zhu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Chao Che
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
33
|
Wei L, Xu SM, Zhu Q, Che C, Wang CJ. Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to α,α-Disubstituted α-Amino Acids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Qiao Zhu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Chao Che
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
34
|
Sengoku T, Kokubo K, Sakamoto M, Takahashi M, Yoda H. Indium-catalysed amide allylation of α-iminoamide: highly enantioselective synthesis of amide functionalised α-methylene-γ-butyrolactams. Org Biomol Chem 2017; 15:320-323. [DOI: 10.1039/c6ob02506d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly enantioselective amide allylation of α-iminoamides has been achieved using catalytic amounts of InCl3, ZnCl2 and a BINOL derivative.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry
- Faculty of Engineering
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| | - Kana Kokubo
- Department of Applied Chemistry
- Faculty of Engineering
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | - Masaki Takahashi
- Department of Applied Chemistry
- Faculty of Engineering
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| | - Hidemi Yoda
- Department of Applied Chemistry
- Faculty of Engineering
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| |
Collapse
|
35
|
Peng F, McLaughlin M, Liu Y, Mangion I, Tschaen DM, Xu Y. A Mild Cu(I)-Catalyzed Oxidative Aromatization of Indolines to Indoles. J Org Chem 2016; 81:10009-10015. [DOI: 10.1021/acs.joc.6b01854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Peng
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Mark McLaughlin
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Yizhou Liu
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - David M. Tschaen
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Yingju Xu
- Department of Process and Analytical Chemistry, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
36
|
He FS, Jin JH, Yang ZT, Yu X, Fossey JS, Deng WP. Direct Asymmetric Synthesis of β-Bis-Aryl-α-Amino Acid Esters via Enantioselective Copper-Catalyzed Addition of p-Quinone Methides. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02619] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu-Sheng He
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing-Hai Jin
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhong-Tao Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xingxin Yu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - John S. Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
37
|
Gesmundo NJ, Grandjean JMM, Nicewicz DA. Amide and amine nucleophiles in polar radical crossover cycloadditions: synthesis of γ-lactams and pyrrolidines. Org Lett 2015; 17:1316-9. [PMID: 25695366 DOI: 10.1021/acs.orglett.5b00316] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we present a direct catalytic synthesis of γ-lactams and pyrrolidines from alkenes and activated unsaturated amides or protected unsaturated amines, respectively. Using a mesityl acridinium single electron photooxidant and a thiophenol cocatalyst under irradiation, we are able to directly forge these important classes of heterocycles with complete regiocontrol.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | |
Collapse
|
38
|
Xue ZY, Song ZM, Wang CJ. Cu(i)/TF-BiphamPhos-catalyzed asymmetric Michael addition of cyclic ketimino esters to alkylidene malonates. Org Biomol Chem 2015; 13:5460-6. [DOI: 10.1039/c5ob00591d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cu(i)-catalyzed asymmetric Michael addition of cyclic ketimino esters with alkylidene malonates has been developed for efficient construction of β-branched α-amino acids containing adjacent quaternary and tertiary stereogenic centers in good yields with excellent diastereo-/enantioselectivities.
Collapse
Affiliation(s)
- Zhi-Yong Xue
- College of Chemistry and Chemical Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- State Key Laboratory of Elemento-organic Chemistry
| | - Zhi-Min Song
- State Key Laboratory of Elemento-organic Chemistry
- Nankai University
- Tianjin
- China
| | - Chun-Jiang Wang
- State Key Laboratory of Elemento-organic Chemistry
- Nankai University
- Tianjin
- China
- College of Chemistry and Molecular Sciences
| |
Collapse
|
39
|
Bera K, Namboothiri INN. Asymmetric Synthesis of Quaternary α-Amino Acids and Their Phosphonate Analogues. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402178] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Halimehjani AZ, Namboothiri INN, Hooshmand SE. Nitroalkenes in the synthesis of carbocyclic compounds. RSC Adv 2014. [DOI: 10.1039/c4ra04069d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Wang X, Cheng G, Cui X. Tandem synthesis of 3-allyl-chromones from alkynones and allylic alcohols under metal-free conditions. Chem Commun (Camb) 2014; 50:652-4. [DOI: 10.1039/c3cc48259f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Heaviside EA, Moloney MG, Thompson AL. Diastereoselective intramolecular aldol ring closures of threonine derivatives leading to densely functionalised pyroglutamates related to oxazolomycin. RSC Adv 2014. [DOI: 10.1039/c4ra01967a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intramolecular aldol reactions on oxazolidine templates derived from threonine may be used to generate libraries of densely functionalised pyroglutamates with a high level of diastereoselectivity.
Collapse
Affiliation(s)
| | - Mark G. Moloney
- Department of Chemistry
- Chemistry Research Laboratory
- The University of Oxford
- Oxford, UK
| | - Amber L. Thompson
- Department of Chemistry
- Chemistry Research Laboratory
- The University of Oxford
- Oxford, UK
| |
Collapse
|
43
|
Tao HY, He ZL, Yang Y, Wang CJ. Cu(i)/TF–BiphamPhos-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with dimethyl itaconate and 2-methyleneglutarate. RSC Adv 2014. [DOI: 10.1039/c4ra02195a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with dimethyl itaconate and 2-methyleneglutarate was realized with Cu(i)/TF–BiphamPhos complex as the catalyst for the efficient construction of pyrrolidine derivatives bearing one unique all carbon-quaternary and two tertiary stereogenic centers.
Collapse
Affiliation(s)
- Hai-Yan Tao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Zhao-Lin He
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Yang Yang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry
- Nankai University
| |
Collapse
|
44
|
Yan D, Li Q, Wang C. A Facile Access to Fluorinated Pyrrolidines via Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Methylα-Fluoroacrylate. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Teng HL, Huang H, Wang CJ. Catalytic asymmetric construction of spiro(γ-butyrolactam-γ-butyrolactone) moieties through sequential reactions of cyclic imino esters with Morita-Baylis-Hillman bromides. Chemistry 2012; 18:12614-8. [PMID: 22927370 DOI: 10.1002/chem.201201475] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/16/2012] [Indexed: 12/21/2022]
Abstract
Spiro(γ-butyrolactam-γ-butyrolactone): a route to enantioenriched spiro(γ-butyrolactam-γ-butyrolactone) compounds, a valuable motif for drug discovery, was developed by use of a highly efficient copper(I)/TF-BiphamPhos-catalyzed tandem Michael addition-elimination of homoserine lactone derived cyclic imino esters with Morita-Baylis-Hillman (MBH) bromides, followed by treatment with para-toluenesulfonic acid.
Collapse
Affiliation(s)
- Huai-Long Teng
- College of Chemistry and Molecular Sciences, Wuhan University, PR China
| | | | | |
Collapse
|
46
|
Angelov P, Chau YKS, Fryer PJ, Moloney MG, Thompson AL, Trippier PC. Biomimetic synthesis, antibacterial activity and structure-activity properties of the pyroglutamate core of oxazolomycin. Org Biomol Chem 2012; 10:3472-85. [PMID: 22437843 DOI: 10.1039/c2ob00042c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomimetic intramolecular aldol reactions on oxazolidine templates derived from serine may be used to generate densely functionalised pyroglutamates, which are simpler mimics of the right hand side of oxazolomycin. Some of the compounds from this sequence exhibit in vivo activity against S. aureus and E. coli, suggesting that pyroglutamate scaffolds may be useful templates for the development of novel antibacterials, and cheminformatic analysis has been used to provide some structure-activity data.
Collapse
Affiliation(s)
- Plamen Angelov
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | |
Collapse
|