1
|
Eltayeb A, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic Factors Behind Long COVID: VI. Combined Impact of G3BPs and SARS-CoV-2 Nucleocapsid Protein on the Viral Persistence and Long COVID. J Cell Biochem 2025; 126:e70038. [PMID: 40415285 DOI: 10.1002/jcb.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The efficient transmission of SARS-CoV-2 caused the COVID-19 pandemic, which affected millions of people around the globe. Despite extensive efforts, specific therapeutic interventions and preventive measures against COVID-19 and its consequences, such as long COVID, have not yet been identified due to the lack of a comprehensive knowledge of the SARS-CoV-2 biology. Therefore, a deeper understanding of the sophisticated strategies employed by SARS-CoV-2 to bypass the host antiviral defense systems is needed. One of these strategies is the inhibition of the Ras GTPase-activating protein-binding protein (GAP SH3-binding protein or G3BP)-dependent host immune response by the SARS-CoV-2 nucleocapsid (N) protein. This inhibition disrupts the formation of stress granules (SGs), which are crucial for antiviral defense. By preventing SG formation, the virus enhances its replication and evades the host's immune response, leading to increased disease severity. Given the involvement of G3BP1 in SG formation and its ability to interact with viral proteins, along with the crucial role of the N protein in the replication of the virus, we hypothesize that these proteins may have a potential role in the pathogenesis of long COVID. Despite the current lack of direct evidence linking these proteins to long COVID, their interactions and functions suggest a possible connection that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
2
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
3
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
6
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Uversky VN. Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:179-210. [PMID: 38220424 DOI: 10.1016/bs.apcsb.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
8
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
9
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022; 126:4814-4827. [PMID: 35749260 PMCID: PMC9267131 DOI: 10.1021/acs.jpcb.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an abundant class of highly charged proteins that participate in numerous crucial biological processes, often in regulatory roles. IDPs do not have one major free energy minimum with a dominant structure, instead existing as conformational ensembles of multiple semistable conformations. p53 is a prototypical protein with disordered regions and binds to many structurally diverse partners, making it a useful model for exploring the role of electrostatic interactions at IDP binding interfaces. In this study, we used the Drude-2019 force field to simulate the p53 transactivation domain with two protein partners to probe the role of electrostatic interactions in IDP protein-protein interactions. We found that the Drude-2019 polarizable force field reasonably reproduced experimental chemical shifts of the p53 transactivation domain (TAD) in one complex for which these data are available. We also found that the proteins in these complexes displayed dipole response at specific residues of each protein and that residues primarily involved in binding showed a large percent change in dipole moment between the unbound and complexed states. Probing the role of electrostatic interactions in IDP binding can allow us greater fundamental understanding of these interactions and may help with targeting p53 or its partners for drug design.
Collapse
Affiliation(s)
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 20461, United States,Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461, United States,Corresponding Author: , Address: 111 Engel Hall, 340 West Campus Dr., Blacksburg, VA 24061, Phone: +1 (540) 231-3129
| |
Collapse
|
11
|
Binder JL, Berendzen J, Stevens AO, He Y, Wang J, Dokholyan NV, Oprea TI. AlphaFold illuminates half of the dark human proteins. Curr Opin Struct Biol 2022; 74:102372. [PMID: 35439658 PMCID: PMC10669925 DOI: 10.1016/j.sbi.2022.102372] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 01/05/2023]
Abstract
We investigate the use of confidence scores to evaluate the accuracy of a given AlphaFold (AF2) protein model for drug discovery. Prediction of accuracy is improved by not considering confidence scores below 80 due to the effects of disorder. On a set of recent crystal structures, 95% are likely to have accurate folds. Conformational discordance in the training set has a much more significant effect on accuracy than sequence divergence. We propose criteria for models and residues that are possibly useful for virtual screening. Based on these criteria, AF2 provides models for half of understudied (dark) human proteins and two-thirds of residues in those models.
Collapse
Affiliation(s)
- Jessica L Binder
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/@jessicamaine
| | - Joel Berendzen
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amy O Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yi He
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Chemistry and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; UNM Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Kalman ZE, Dudola D, Mészáros B, Gáspári Z, Dobson L. PSINDB: the postsynaptic protein-protein interaction database. Database (Oxford) 2022; 2022:baac007. [PMID: 35234850 PMCID: PMC9216581 DOI: 10.1093/database/baac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The postsynaptic region is the receiving part of the synapse comprising thousands of proteins forming an elaborate and dynamically changing network indispensable for the molecular mechanisms behind fundamental phenomena such as learning and memory. Despite the growing amount of information about individual protein-protein interactions (PPIs) in this network, these data are mostly scattered in the literature or stored in generic databases that are not designed to display aspects that are fundamental to the understanding of postsynaptic functions. To overcome these limitations, we collected postsynaptic PPIs complemented by a high amount of detailed structural and biological information and launched a freely available resource, the Postsynaptic Interaction Database (PSINDB), to make these data and annotations accessible. PSINDB includes tens of thousands of binding regions together with structural features, mediating and regulating the formation of PPIs, annotated with detailed experimental information about each interaction. PSINDB is expected to be useful for various aspects of molecular neurobiology research, from experimental design to network and systems biology-based modeling and analysis of changes in the protein network upon various stimuli. Database URL https://psindb.itk.ppke.hu/.
Collapse
Affiliation(s)
- Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Dániel Dudola
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest 1083, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| |
Collapse
|
13
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
14
|
Bondos SE, Dunker AK, Uversky VN. On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal 2021; 19:88. [PMID: 34461937 PMCID: PMC8404256 DOI: 10.1186/s12964-021-00774-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For proteins, the sequence → structure → function paradigm applies primarily to enzymes, transmembrane proteins, and signaling domains. This paradigm is not universal, but rather, in addition to structured proteins, intrinsically disordered proteins and regions (IDPs and IDRs) also carry out crucial biological functions. For these proteins, the sequence → IDP/IDR ensemble → function paradigm applies primarily to signaling and regulatory proteins and regions. Often, in order to carry out function, IDPs or IDRs cooperatively interact, either intra- or inter-molecularly, with structured proteins or other IDPs or intermolecularly with nucleic acids. In this IDP/IDR thematic collection published in Cell Communication and Signaling, thirteen articles are presented that describe IDP/IDR signaling molecules from a variety of organisms from humans to fruit flies and tardigrades ("water bears") and that describe how these proteins and regions contribute to the function and regulation of cell signaling. Collectively, these papers exhibit the diverse roles of disorder in responding to a wide range of signals as to orchestrate an array of organismal processes. They also show that disorder contributes to signaling in a broad spectrum of species, ranging from micro-organisms to plants and animals.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
15
|
Telek E, Karádi K, Kardos J, Kengyel A, Fekete Z, Halász H, Nyitrai M, Bugyi B, Lukács A. The C-terminal tail extension of myosin 16 acts as a molten globule, including intrinsically disordered regions, and interacts with the N-terminal ankyrin. J Biol Chem 2021; 297:100716. [PMID: 33930467 PMCID: PMC8253979 DOI: 10.1016/j.jbc.2021.100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule-like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.
Collapse
Affiliation(s)
- Elek Telek
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Kristóf Karádi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - András Kengyel
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary.
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary; Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
16
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
17
|
Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev Cell 2021; 55:45-68. [PMID: 33049211 DOI: 10.1016/j.devcel.2020.09.014] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Protein aggregation is the main hallmark of neurodegenerative diseases. Many proteins found in pathological inclusions are known to undergo liquid-liquid phase separation, a reversible process of molecular self-assembly. Emerging evidence supports the hypothesis that aberrant phase separation behavior may serve as a trigger of protein aggregation in neurodegeneration, and efforts to understand and control the underlying mechanisms are underway. Here, we review similarities and differences among four main proteins, α-synuclein, FUS, tau, and TDP-43, which are found aggregated in different diseases and were independently shown to phase separate. We discuss future directions in the field that will help shed light on the molecular mechanisms of aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Aurélie Zbinden
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Manuela Pérez-Berlanga
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Langella E, Buonanno M, De Simone G, Monti SM. Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cell Mol Life Sci 2021; 78:2059-2067. [PMID: 33201250 PMCID: PMC11072538 DOI: 10.1007/s00018-020-03697-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022]
Abstract
hCA IX is a multi-domain protein belonging to the family of hCAs which are ubiquitous zinc enzymes that catalyze the reversible hydration of CO2 to HCO3- and H+. hCA IX is a tumor-associated enzyme with a limited distribution in normal tissues, but over-expressed in many tumors, and is a promising drug target. Although many studies concerning the CA IX catalytic domain were performed, little is known about the proteoglycan-like (PG-like) domain of hCA IX which has been poorly investigated so far. Here we attempt to fill this gap by providing an overview on the functional, structural and therapeutic studies of the PG-like domain of hCA IX which represents a unique feature within the CA family. The main studies and recent advances concerning PG role in modulating hCA IX catalytic activity as well as in tumor spreading and migration are here reported. Special attention has been paid to the newly discovered disordered features of the PG domain which open new perspectives about its molecular mechanisms of action under physiological and pathological conditions, since disorder is likely involved in mediating interactions with partner proteins. The emerged disordered features of PG domain will be explored for putative diagnostic and therapeutic applications involving CA IX targeting in tumors.
Collapse
Affiliation(s)
- Emma Langella
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
19
|
Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 2020; 19:60-68. [PMID: 29982297 DOI: 10.1093/bfgp/ely023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although for more than a century a protein function was intimately associated with the presence of unique structure in a protein molecule, recent years witnessed a skyrocket rise of the appreciation of protein intrinsic disorder concept that emphasizes the importance of the biologically active proteins without ordered structures. In different proteins, the depth and breadth of disorder penetrance are different, generating an amusing spatiotemporal heterogeneity of intrinsically disordered proteins (IDPs) and intrinsically disordered protein region regions (IDPRs), which are typically described as highly dynamic ensembles of rapidly interconverting conformations (or a multitude of short lifetime structures). IDPs/IDPRs constitute a substantial part of protein kingdom and have unique functions complementary to functional repertoires of ordered proteins. They are recognized as interaction specialists and global controllers that play crucial roles in regulation of functions of their binding partners and in controlling large biological networks. IDPs/IDPRs are characterized by immense binding promiscuity and are able to use a broad spectrum of binding modes, often resulting in the formation of short lifetime complexes. In their turn, functions of IDPs and IDPRs are controlled by various means, such as numerous posttranslational modifications and alternative splicing. Some of the functions of IDPs/IDPRs are briefly considered in this review to shed some light on the biological roles of short-lived structures at large.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
20
|
Monzon AM, Necci M, Quaglia F, Walsh I, Zanotti G, Piovesan D, Tosatto SCE. Experimentally Determined Long Intrinsically Disordered Protein Regions Are Now Abundant in the Protein Data Bank. Int J Mol Sci 2020; 21:ijms21124496. [PMID: 32599863 PMCID: PMC7349999 DOI: 10.3390/ijms21124496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/12/2023] Open
Abstract
Intrinsically disordered protein regions are commonly defined from missing electron density in X-ray structures. Experimental evidence for long disorder regions (LDRs) of at least 30 residues was so far limited to manually curated proteins. Here, we describe a comprehensive and large-scale analysis of experimental LDRs for 3133 unique proteins, demonstrating an increasing coverage of intrinsic disorder in the Protein Data Bank (PDB) in the last decade. The results suggest that long missing residue regions are a good quality source to annotate intrinsically disordered regions and perform functional analysis in large data sets. The consensus approach used to define LDRs allows to evaluate context dependent disorder and provide a common definition at the protein level.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Ian Walsh
- Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore;
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
- Correspondence: (D.P.); (S.C.E.T.)
| | - Silvio C. E. Tosatto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (A.M.M.); (M.N.); (F.Q.); (G.Z.)
- Correspondence: (D.P.); (S.C.E.T.)
| |
Collapse
|
21
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
22
|
Skupien-Rabian B, Jankowska U, Kedracka-Krok S. Analysis of a Nuclear Intrinsically Disordered Proteome. Methods Mol Biol 2020; 2175:181-196. [PMID: 32681491 DOI: 10.1007/978-1-0716-0763-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cell functioning, although they do not possess defined three-dimensional architecture. They are highly abundant in the cell nucleus, and the vast majority of transcription factors (TFs) contain extended regions of intrinsic disorder. IDPs do not respond to denaturing conditions in a standard manner, and this can be used for their separation from structured proteins. Here we describe a protocol for the isolation and characterization of nuclear IDPs in which heat treatment is used for enrichment of IDPs in samples. The whole workflow comprises the following steps: nuclei isolation from HEK293 (human embryonic kidney) cells, protein extraction, enrichment of IDPs, sample preparation for mass spectrometric analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, in silico assessment of protein disorder, and Gene Ontology analysis.
Collapse
Affiliation(s)
- Bozena Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Laboratory of Proteomics and Mass Spectrometry, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
23
|
Lohia R, Salari R, Brannigan G. Sequence specificity despite intrinsic disorder: How a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein. PLoS Comput Biol 2019; 15:e1007390. [PMID: 31626641 PMCID: PMC6821141 DOI: 10.1371/journal.pcbi.1007390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/30/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) in precursor brain-derived neurotrophic factor (BDNF) is one of the earliest SNPs to be associated with neuropsychiatric disorders, and the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica-exchange molecular dynamics (MD) simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence. The simulations were able to correctly reproduce the location of both local and non-local secondary structure changes due to the Val66Met mutation, when compared with NMR spectroscopy. We find that the change in local structure is mediated via entropic and sequence specific effects. We developed a hierarchical sequence-based framework for analysis and conceptualization, which first identifies “blobs” of 4-15 residues representing local globular regions or linkers. We use this framework within a novel test for enrichment of higher-order (tertiary) structure in disordered proteins; the size and shape of each blob is extracted from MD simulation of the real protein (RP), and used to parameterize a self-avoiding heterogenous polymer (SAHP). The SAHP version of the BDNF prodomain suggested a protein segmented into three regions, with a central long, highly disordered polyampholyte linker separating two globular regions. This effective segmentation was also observed in full simulations of the RP, but the Val66Met substitution significantly increased interactions across the linker, as well as the number of participating residues. The Val66Met substitution replaces β-bridging between V66 and V94 (on either side of the linker) with specific side-chain interactions between M66 and M95. The protein backbone in the vicinity of M95 is then free to form β-bridges with residues 31-41 near the N-terminus, which condenses the protein. A significant role for Met/Met interactions is consistent with previously-observed non-local effects of the Val66Met SNP, as well as established interactions between the Met66 sequence and a Met-rich receptor that initiates neuronal growth cone retraction. Intrinsically disordered proteins are proteins that have no well-defined structure in at least one functional form. Mutations in one amino acid may still affect their function significantly, especially in subtle ways with cumulative adverse effects on health. Here we report on molecular dynamics simulations of a protein that is critical for neuronal health throughout adulthood (brain-derived neurotrophic factor). We investigate the effects of a mutation carried by 30% of human population, which has been widely studied for its association with aging-related and stress-related disorders, reduced volume of the hippocampus, and variations in episodic memory. We identify a molecular mechanism in which the mutation may change the global conformations of the protein and its ability to bind to receptors.
Collapse
Affiliation(s)
- Ruchi Lohia
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Reza Salari
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University, Camden, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Deiana A, Forcelloni S, Porrello A, Giansanti A. Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PLoS One 2019; 14:e0217889. [PMID: 31425549 PMCID: PMC6699704 DOI: 10.1371/journal.pone.0217889] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies about classification and the functional annotation of intrinsically disordered proteins (IDPs) are based on either the occurrence of long disordered regions or the fraction of disordered residues in the sequence. Taking into account both criteria we separate the human proteome, taken as a case study, into three variants of proteins: i) ordered proteins (ORDPs), ii) structured proteins with intrinsically disordered regions (IDPRs), and iii) intrinsically disordered proteins (IDPs). The focus of this work is on the different functional roles of IDPs and IDPRs, which up until now have been generally considered as a whole. Previous studies assigned a large set of functional roles to the general category of IDPs. We show here that IDPs and IDPRs have non-overlapping functional spectra, play different roles in human diseases, and deserve to be treated as distinct categories of proteins. IDPs enrich only a few classes, functions, and processes: nucleic acid binding proteins, chromatin binding proteins, transcription factors, and developmental processes. In contrast, IDPRs are spread over several functional protein classes and GO annotations which they partly share with ORDPs. As regards to diseases, we observe that IDPs enrich only cancer-related proteins, at variance with previous results reporting that IDPs are widespread also in cardiovascular and neurodegenerative pathologies. Overall, the operational separation of IDPRs from IDPs is relevant towards correct estimates of the occurrence of intrinsically disordered proteins in genome-wide studies and in the understanding of the functional spectra associated to different flavors of protein disorder.
Collapse
Affiliation(s)
- Antonio Deiana
- Sapienza University of Rome, Department of Physics, Roma, Italy
| | | | - Alessandro Porrello
- Lineberger Comprehensive Cancer Center (LCCC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Andrea Giansanti
- Sapienza University of Rome, Department of Physics, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, INFN, Roma, Italy
| |
Collapse
|
25
|
Zhou J, Oldfield CJ, Yan W, Shen B, Dunker AK. Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships. Protein Sci 2019; 28:1652-1663. [PMID: 31299122 DOI: 10.1002/pro.3680] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Disordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein-protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence-disorder-function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ➔ disorder ensemble ➔ function paradigm.
Collapse
Affiliation(s)
- Jianhong Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | | | - Wenying Yan
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Kiss-Tóth A, Dobson L, Péterfia B, Ángyán AF, Ligeti B, Lukács G, Gáspári Z. Occurrence of Ordered and Disordered Structural Elements in Postsynaptic Proteins Supports Optimization for Interaction Diversity. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E761. [PMID: 33267475 PMCID: PMC7515291 DOI: 10.3390/e21080761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
The human postsynaptic density is an elaborate network comprising thousands of proteins, playing a vital role in the molecular events of learning and the formation of memory. Despite our growing knowledge of specific proteins and their interactions, atomic-level details of their full three-dimensional structure and their rearrangements are mostly elusive. Advancements in structural bioinformatics enabled us to depict the characteristic features of proteins involved in different processes aiding neurotransmission. We show that postsynaptic protein-protein interactions are mediated through the delicate balance of intrinsically disordered regions and folded domains, and this duality is also imprinted in the amino acid sequence. We introduce Diversity of Potential Interactions (DPI), a structure and regulation based descriptor to assess the diversity of interactions. Our approach reveals that the postsynaptic proteome has its own characteristic features and these properties reliably discriminate them from other proteins of the human proteome. Our results suggest that postsynaptic proteins are especially susceptible to forming diverse interactions with each other, which might be key in the reorganization of the postsynaptic density (PSD) in molecular processes related to learning and memory.
Collapse
Affiliation(s)
- Annamária Kiss-Tóth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
- 3in-PPCU Research Group, 2500 Esztergom, Hungary
| | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| | - Annamária F. Ángyán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| | - Gergely Lukács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083 Budapest, Hungary
| |
Collapse
|
27
|
Pattaro Júnior JR, Caruso ÍP, de Lima Neto QA, Duarte Junior FF, dos Santos Rando F, Gerhardt ECM, Fernandez MA, Seixas FAV. Biophysical characterization and molecular phylogeny of human KIN protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:645-657. [DOI: 10.1007/s00249-019-01390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022]
|
28
|
Han C, Cui C, Xing X, Lu Z, Zhang J, Liu J, Zhang Y. Functions of intrinsic disorder in proteins involved in DNA demethylation during pre-implantation embryonic development. Int J Biol Macromol 2019; 136:962-979. [PMID: 31229544 DOI: 10.1016/j.ijbiomac.2019.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
DNA demethylation is involved in many biological processes during pre-implantation embryonic development in mammals. To date, the complicated mechanism of DNA demethylation is still not fully understood. Ten-eleven translocation family (TET3, TET1 and TET2), thymine DNA glycosylase (TDG) and DNA methyltransferase 1 (DNMT1) are considered the major protein enzymes of DNA demethylation in pre-implantation embryos. TET3, TET1, TET2, TDG, and DNMT1 contain abundant levels of intrinsically disordered protein regions (IDPRs), which contribute to increasing the functional diversity of proteins. Thus we tried to explore the complicated DNA demethylation in pre-implantation embryos from the intrinsic disorder perspective. These five biological macromolecules all have DNA demethylation-related functional domains. They can work together to fulfill DNA demethylation in pre-implantation embryos through complex protein-protein interaction networks. Intrinsic disorder analysis results showed these proteins were partial intrinsically disordered proteins. Many identifiable disorder-based DNA-binding sites, protein-binding sites and post-translational modification sites located in the intrinsically disordered regions, and DNA demethylation deficiency point mutations in the IDPRs could significantly change the local disorder propensity of these proteins. To the best of our knowledge, this work provides a new viewpoint for studying the mechanism of DNA methylation reprogramming during mammalian pre-implantation embryonic development.
Collapse
Affiliation(s)
- Chengquan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenchen Cui
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenzhen Lu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
29
|
Craveur P, Narwani TJ, Rebehmed J, de Brevern AG. Investigation of the impact of PTMs on the protein backbone conformation. Amino Acids 2019; 51:1065-1079. [DOI: 10.1007/s00726-019-02747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
30
|
Katuwawala A, Ghadermarzi S, Kurgan L. Computational prediction of functions of intrinsically disordered regions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:341-369. [PMID: 31521235 DOI: 10.1016/bs.pmbts.2019.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intrinsically disorder regions (IDRs) are abundant in nature, particularly among Eukaryotes. While they facilitate a wide spectrum of cellular functions including signaling, molecular assembly and recognition, translation, transcription and regulation, only several hundred IDRs are annotated functionally. This annotation gap motivates the development of fast and accurate computational methods that predict IDR functions directly from protein sequences. We introduce and describe a comprehensive collection of 25 methods that provide accurate predictions of IDRs that interact with proteins and nucleic acids, that function as flexible linkers and that moonlight multiple functions. Virtually all of these predictors can be accessed online and many were developed in the last few years. They utilize a wide range of predictive architectures and take advantage of modern machine learning algorithms. Our empirical analysis shows that predictors that are available as webservers enjoy high rates of citations, attesting to their practical value and popularity. The most cited methods include DISOPRED3, ANCHOR, alpha-MoRFpred, MoRFpred, fMoRFpred and MoRFCHiBi. We present two case studies to demonstrate that predictions produced by these computational tools are relatively easy to interpret and that they deliver valuable functional clues. However, the current computational tools cover a relatively narrow range of disorder functions. Further development efforts that would cover a broader range of functions should be pursued. We demonstrate that a sufficient amount of functionally annotated IDRs that are associated with several other disorder functions is already available and can be used to design and validate novel predictors.
Collapse
Affiliation(s)
- Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
31
|
Powers KT, Gildenberg MS, Washington MT. Modeling Conformationally Flexible Proteins With X-ray Scattering and Molecular Simulations. Comput Struct Biotechnol J 2019; 17:570-578. [PMID: 31073392 PMCID: PMC6495069 DOI: 10.1016/j.csbj.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Proteins and protein complexes with high conformational flexibility participate in a wide range of biological processes. These processes include genome maintenance, gene expression, signal transduction, cell cycle regulation, and many others. Gaining a structural understanding of conformationally flexible proteins and protein complexes is arguably the greatest problem facing structural biologists today. Over the last decade, some progress has been made toward understanding the conformational flexibility of such systems using hybrid approaches. One particularly fruitful strategy has been the combination of small-angle X-ray scattering (SAXS) and molecular simulations. In this article, we provide a brief overview of SAXS and molecular simulations and then discuss two general approaches for combining SAXS data and molecular simulations: minimal ensemble approaches and full ensemble approaches. In minimal ensemble approaches, one selects a minimal ensemble of structures from the simulations that best fit the SAXS data. In full ensemble approaches, one validates a full ensemble of structures from the simulations using SAXS data. We argue that full ensemble models are more realistic than minimal ensemble searches models and that full ensemble approaches should be used wherever possible.
Collapse
Key Words
- BD, Brownian dynamics
- CG, coarse-grained
- Cryo-EM, cryo-electron microscopy
- DNA polymerase
- DNA replication
- Dmax, maximal distance
- LD, Langevin dynamics
- MD, molecular dynamics
- Minimal ensemble search
- NMR, nuclear magnetic resonance
- PCNA, proliferating cell nuclear antigen
- Pol η, DNA polymerase eta
- Protein structure
- RPA, replication protein A
- Rg, radius of gyration
- SANS
- SANS, small-angle neutron scattering
- SAXS
- SAXS, small-angle X-ray scattering
- SEC, size exclusion chromatography
- SUMO, small ubiquitin-like modifie
Collapse
Affiliation(s)
| | | | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States of America
| |
Collapse
|
32
|
Intrinsically Disordered Proteins in Chronic Diseases. Biomolecules 2019; 9:biom9040147. [PMID: 30979084 PMCID: PMC6523076 DOI: 10.3390/biom9040147] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
|
33
|
Redwan EM, Alkarim SA, El-Hanafy AA, Saad YM, Almehdar HA, Uversky VN. Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane. J Biomol Struct Dyn 2019; 38:1214-1229. [PMID: 30896308 DOI: 10.1080/07391102.2019.1592027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Milk fat globules (MFGs), which are secreted by the epithelial cells of the lactating mammary glands, account for the most of the nutritional value of milk. They are enveloped by the milk fat globule membrane (MFGM), a complex structure consisting of three phospholipid membrane monolayers and containing various lipids. Depending on the origin of milk, specific proteins accounts for 5-70% of the MFGM mass. Proteome of MFGMs includes hundreds of proteins, with nine major components being adipophilin, butyrophilin, cluster of differentiation 36, fatty acid binding protein, lactadherin, mucin 1, mucin 15, tail-interacting protein 47 (TIP47), and xanthine oxidoreductase. Two of the MFGM components, adipophilin and TIP47, belong to the five-member perilipin family of lipid droplet proteins. Adipophilin is involved in the formation of cytoplasmic lipid droplets and secretion of MFGs. This protein is also related to the formation of other lipid droplets that exist in most cell types, playing an important role in the transport of lipids from ER to the surface of lipid droplets. TIP47 acts as a cytoplasmic sorting factor for mannose 6-phosphate receptors and is recruited to the MFGM. Therefore, both adipophilin and TIP47 are moonlighting proteins, each possessing several unrelated functions. This review focuses on the main functions and specific structural features of adipophilin and TIP47, analyzes similarities and differences of these proteins among different species, and describes these proteins in the context of other members of the perilipin family.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Saleh A Alkarim
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr A El-Hanafy
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Borg EL-Arab, Alexandria, Egypt
| | - Yasser M Saad
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Hussein A Almehdar
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russia Moscow Region.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
34
|
Vincent M, Uversky VN, Schnell S. On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins. Proteomics 2019; 19:e1800415. [PMID: 30793871 PMCID: PMC6571172 DOI: 10.1002/pmic.201800415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Since the early 2000s, numerous computational tools have been created and used to predict intrinsic disorder in proteins. At present, the output from these algorithms is difficult to interpret in the absence of standards or references for comparison. There are many reasons to establish a set of standard-based guidelines to evaluate computational protein disorder predictions. This viewpoint explores a handful of these reasons, including standardizing nomenclature to improve communication, rigor and reproducibility, and making it easier for newcomers to enter the field. An approach for reporting predicted disorder in single proteins with respect to whole proteomes is discussed. The suggestions are not intended to be formulaic; they should be viewed as a starting point to establish guidelines for interpreting and reporting computational protein disorder predictions.
Collapse
Affiliation(s)
- Michael Vincent
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow region, Russia
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Michigan 48109, USA
| |
Collapse
|
35
|
Redwan EM, AlJaddawi AA, Uversky VN. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell Mol Life Sci 2019; 76:577-608. [PMID: 30443749 PMCID: PMC7079808 DOI: 10.1007/s00018-018-2968-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Infection by the Alkhurma virus (ALKV) leading to the Alkhurma hemorrhagic fever is a common thread in Saudi Arabia, with no efficient treatment or prevention available as of yet. Although the rational drug design traditionally uses information on known 3D structures of viral proteins, intrinsically disordered proteins (i.e., functional proteins that do not possess unique 3D structures), with their multitude of disorder-dependent functions, are crucial for the biology of viruses. Here, viruses utilize disordered regions in their invasion of the host organisms and in hijacking and repurposing of different host systems. Furthermore, the ability of viruses to efficiently adjust and accommodate to their hostile habitats is also intrinsic disorder-dependent. However, little is currently known on the level of penetrance and functional utilization of intrinsic disorder in the ALKV proteome. To fill this gap, we used here multiple computational tools to evaluate the abundance of intrinsic disorder in the ALKV genome polyprotein. We also analyzed the peculiarities of intrinsic disorder predisposition of the individual viral proteins, as well as human proteins known to be engaged in interaction with the ALKV proteins. Special attention was paid to finding a correlation between protein functionality and structural disorder. To the best of our knowledge, this work represents the first systematic study of the intrinsic disorder status of ALKV proteome and interactome.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Abdullah A AlJaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
36
|
Oldfield CJ, Uversky VN, Dunker AK, Kurgan L. Introduction to intrinsically disordered proteins and regions. Proteins 2019. [DOI: 10.1016/b978-0-12-816348-1.00001-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
37
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 2018; 75:3907-3929. [PMID: 30066087 PMCID: PMC11105604 DOI: 10.1007/s00018-018-2894-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of "inert" macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid-liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
- St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
38
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
39
|
Borcherds WM, Daughdrill GW. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:101-136. [PMID: 30471686 PMCID: PMC8130511 DOI: 10.1016/bs.mie.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein disorder is a pervasive phenomenon in biology and a natural consequence of polymer evolution that facilitates cell signaling by organizing sites for posttranslational modifications and protein-protein interactions into arrays of short linear motifs that can be rearranged by RNA splicing. Disordered proteins are missing the long-range nonpolar interactions that form tertiary structures, but they often contain regions with residual secondary structure that are stabilized by protein binding. NMR spectroscopy is uniquely suited to detect residual secondary structure in a disordered protein and it can provide atomic resolution data on the structure and dynamics of disordered protein interaction sites. Here we describe how backbone chemical shifts are used for assigning residual secondary structure in disordered proteins and discuss some of the tools available for estimating secondary structure populations with a focus on disordered proteins containing different levels of alpha helical secondary structure which are stabilized by protein binding.
Collapse
Affiliation(s)
- Wade M Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States.
| | - Gary W Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
40
|
Dangwal M, Das S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 2018; 86:511-530. [PMID: 30206666 DOI: 10.1007/s00239-018-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the "transition zone", between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.
Collapse
Affiliation(s)
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
41
|
Narasumani M, Harrison PM. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins. PLoS Comput Biol 2018; 14:e1006349. [PMID: 30096183 PMCID: PMC6105011 DOI: 10.1371/journal.pcbi.1006349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/22/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered regions (IDRs) of proteins play significant biological functional roles despite lacking a well-defined 3D structure. For example, IDRs provide efficient housing for large numbers of post-translational modification (PTM) sites in eukaryotic proteins. Here, we study the distribution of more than 15,000 experimentally determined human methylation, acetylation and ubiquitination sites (collectively termed 'MAU' sites) in ordered and disordered regions, and analyse their conservation across 380 eukaryotic species. Conservation signals for the maintenance and novel emergence of MAU sites are examined at 11 evolutionary levels from the whole eukaryotic domain down to the ape superfamily, in both ordered and disordered regions. We discover that MAU PTM is a major driver of conservation for arginines and lysines in both ordered and disordered regions, across the 11 levels, most significantly across the mammalian clade. Conservation of human methylatable arginines is very strongly favoured for ordered regions rather than for disordered, whereas methylatable lysines are conserved in either set of regions, and conservation of acetylatable and ubiquitinatable lysines is favoured in disordered over ordered. Notably, we find evidence for the emergence of new lysine MAU sites in disordered regions of proteins in deuterostomes and mammals, and in ordered regions after the dawn of eutherians. For histones specifically, MAU sites demonstrate an idiosyncratic significant conservation pattern that is evident since the last common ancestor of mammals. Similarly, folding-on-binding (FB) regions are highly enriched for MAU sites relative to either ordered or disordered regions, with ubiquitination sites in FBs being highly conserved at all evolutionary levels back as far as mammals. This investigation clearly demonstrates the complex patterns of PTM evolution across the human proteome and that it is necessary to consider conservation of sequence features at multiple evolutionary levels in order not to get an incomplete or misleading picture.
Collapse
|
42
|
Panda A, Acharya D, Chandra Ghosh T. Insights into human intrinsically disordered proteins from their gene expression profile. MOLECULAR BIOSYSTEMS 2018; 13:2521-2530. [PMID: 29051952 DOI: 10.1039/c7mb00311k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression level provides important clues about gene function. Previously, various efforts have been undertaken to profile human genes according to their expression level. Intrinsically disordered proteins (IDPs) do not adopt any rigid conformation under physiological conditions, however, are considered as an important functional class in all domains of life. Based on a human tissue-averaged gene expression level, previous studies showed that IDPs are expressed at a lower level than ordered globular proteins. Here, we examined the gene expression pattern of human ordered and disordered proteins in 32 normal tissues. We noticed that in most of the tissues, ordered and disordered proteins are expressed at a similar level. Moreover, in a number of tissues IDPs were found to be expressed at a higher level than ordered proteins. Rigorous statistical analyses suggested that the lower tissue-averaged gene expression level of IDPs (reported earlier) may be the consequence of their biased gene expression in some specific tissues and higher protein length. When we considered the gene repertory of each tissue we noticed that a number of human tissues (brain, testes, etc.) selectively express a higher fraction of disordered proteins, which help them to maintain higher protein connectivity by forming disordered binding motifs and to sustain their functional specificities. Our results demonstrated that the disordered proteins are indispensable in these tissues for their functional advantages.
Collapse
Affiliation(s)
- Arup Panda
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, West Bengal, India.
| | | | | |
Collapse
|
43
|
Darling AL, Uversky VN. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front Genet 2018; 9:158. [PMID: 29780404 PMCID: PMC5945825 DOI: 10.3389/fgene.2018.00158] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins and domains that devoid stable secondary and/or tertiary structure. IDPs/IDPRs are abundantly present in various proteomes, where they are involved in regulation, signaling, and control, thereby serving as crucial regulators of various cellular processes. Various mechanisms are utilized to tightly regulate and modulate biological functions, structural properties, cellular levels, and localization of these important controllers. Among these regulatory mechanisms are precisely controlled degradation and different posttranslational modifications (PTMs). Many normal cellular processes are associated with the presence of the right amounts of precisely activated IDPs at right places and in right time. However, wrecked regulation of IDPs/IDPRs might be associated with various human maladies, ranging from cancer and neurodegeneration to cardiovascular disease and diabetes. Pathogenic transformations of IDPs/IDPRs are often triggered by altered PTMs. This review considers some of the aspects of IDPs/IDPRs and their normal and aberrant regulation by PTMs.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
44
|
Dahal L, Shammas SL, Clarke J. Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex. Biophys J 2018; 113:2706-2712. [PMID: 29262363 PMCID: PMC5770967 DOI: 10.1016/j.bpj.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates—unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form—but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
45
|
Darling AL, Liu Y, Oldfield CJ, Uversky VN. Intrinsically Disordered Proteome of Human Membrane-Less Organelles. Proteomics 2017; 18:e1700193. [PMID: 29068531 DOI: 10.1002/pmic.201700193] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/10/2017] [Indexed: 11/10/2022]
Abstract
It is recognized now that various proteinaceous membrane-less organelles (PMLOs) are commonly found in cytoplasm, nucleus, and mitochondria of various eukaryotic cells (as well as in the chloroplasts of plant cells). Being different from the "traditional" membrane-encapsulated organelles, such as chloroplasts, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and vacuoles, PMLOs solve the cellular need to facilitate and regulate molecular interactions via reversible and controllable isolation of target molecules in specialized compartments. PMLOs possess liquid-like behavior and are believed to be formed as a result of biological liquid-liquid phase transitions (LLPTs, also known as liquid-liquid phase separation), where an intricate interplay between RNA and intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) may play an important role. This review analyzes the prevalence of intrinsic disorder in proteins associated with various PMLOs found in human cells and considers some of the functional roles of IDPs/IDPRs in biogenesis of these organelles.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Russia
| |
Collapse
|
46
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
47
|
Disease gene classification with metagraph representations. Methods 2017; 131:83-92. [DOI: 10.1016/j.ymeth.2017.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022] Open
|
48
|
Uversky VN, El-Baky NA, El-Fakharany EM, Sabry A, Mattar EH, Uversky AV, Redwan EM. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors. FEBS J 2017; 284:3589-3618. [PMID: 28746777 DOI: 10.1111/febs.14182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nawal Abd El-Baky
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Amira Sabry
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
49
|
Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
This article continues a series of short comments on the paradoxes and wonders of the protein intrinsic disorder phenomenon by introducing the "stability of instability" paradox. Intrinsically disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have an exceptional ability to sustain exposure to extremely harsh environmental conditions (an illustration of the "you cannot break what is already broken" principle). Extended IDPs are known to possess extreme thermal and acid stability and are able either to keep their functionality under these extreme conditions or to rapidly regain their functionality after returning to the normal conditions. Furthermore, sturdiness of intrinsic disorder and its capability to "ignore" harsh conditions provides some interesting and important advantages to its carriers, at the molecular (e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes, biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or water bears, that use intrinsically disordered proteins to survive desiccation).
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
50
|
Uversky VN, Redwan EM. Erythropoietin and co.: intrinsic structure and functional disorder. MOLECULAR BIOSYSTEMS 2017; 13:56-72. [PMID: 27833947 DOI: 10.1039/c6mb00657d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Erythropoietin (Epo) is a heavily glycosylated protein, with its main function being related to erythropoiesis, where it controls red blood cell production via interaction with the Epo receptor (EpoR). It also plays a number of important roles in various hormonal, growth factor, and cytokine pathways. These roles are defined by Epo partners, such as the homodimeric (EpoR)2 receptor, the heterodimeric EpoR/βCR receptor and hypoxia inducing factor (HIF). Although the main structural features of both Epo and EpoR are conserved in vertebrates, the secretion sites of Epo in mammals are different from those in other vertebrates. Both biosynthetic and synthetic analogues of this protein are available on the market. Several side effects, such as pure red cells aplaisa, increase the rate of cancer-related death in patients treated with recombinant Epo. The multifunctionality of Epo and the ability of this protein to serve as a hormone, a cytokine, and a growth factor suggest the presence of functional disorder, which is a typical "structural" feature of moonlighting proteins. The goal of this article is to evaluate the roles of intrinsic disorder in the functions of Epo and its primary interactors, EpoR, βCR, and HIF-1α.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia and Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|