1
|
Numanoglu Cevik Y, Altun D, Serin M, Namli Bozkurt EN, Bozyigit I, Icigen HO, Kanat MA. Investigation of paraspecific effects of polyvalent snake antivenom on the venom of three vipers (Vipera berus berus; Linnaeus 1758, Vipera ammodytes ammodytes; Linnaeus, 1758 and Montivipera raddei; Boettger, 1890). Toxicon 2025; 260:108349. [PMID: 40228632 DOI: 10.1016/j.toxicon.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE The aim was to investigate the paraspecific efficiacy of the National HSGM-polyvalent snake antivenom, which is used in the treatment of snakebite poisoning cases in Turkey, on Vipera ammodytes ammodytes and Vipera berus berus snakes that live widely in Europe and Montivipera raddei venoms that live in Turkey and Armenia. METHOD The paraspecific efficiacy of the antivenom on these three venoms were determined using the test method for neutralization of the lethal effect of the venom in mice specified in the European pharmacopoeia. CONCLUSION It was observed that HSGM-PVSAV produced using Vipera ammodytes montandoni, Macrovipera lebetina obtusa and Montivipera xanthina venoms showed an effect above the European pharmacopoeia limits against all three snake venoms.
Collapse
Affiliation(s)
- Yasemin Numanoglu Cevik
- Microbiology and Reference Laboratory and Biological Products Department, Republic of Turkish Ministry of Health General Directorate of Public Health, 06430, Ankara, Turkiye.
| | - Derya Altun
- Microbiology and Reference Laboratory and Biological Products Department, Republic of Turkish Ministry of Health General Directorate of Public Health, 06430, Ankara, Turkiye.
| | - Metin Serin
- Microbiology and Reference Laboratory and Biological Products Department, Republic of Turkish Ministry of Health General Directorate of Public Health, 06430, Ankara, Turkiye.
| | - Edibe Nurzen Namli Bozkurt
- Tuberculosis Department, Republic of Turkish Ministry of Health General Directorate of Public Health 06430, Ankara, Turkiye.
| | - Ilhan Bozyigit
- Turkish Medicines and Medical Devices Agency,Republic of Turkish Ministry of Health, 06430, Ankara, Turkiye.
| | | | - Mehmet Ali Kanat
- Microbiology and Reference Laboratory and Biological Products Department, Republic of Turkish Ministry of Health General Directorate of Public Health, 06430, Ankara, Turkiye.
| |
Collapse
|
2
|
Choudhury A, Linne K, Bulfone TC, Hossain T, Sina AAI, Bickler PL, Fry BG, Lewin MR. Electrical Cell Impedance Sensing (ECIS): Feasibility of a Novel In Vitro Approach to Studying Venom Toxicity and Potential Therapeutics. Toxins (Basel) 2025; 17:193. [PMID: 40278691 PMCID: PMC12031041 DOI: 10.3390/toxins17040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are challenging to study in live animals and can be ethically fraught due to animal welfare concerns such that attention to the 3Rs of animal welfare motivates the development of in vitro techniques in this arena. Herein, we tested the use of a wound-healing study technique known as Electric Cell-Substrate Impedance Sensing (ECIS) to assess populations of cultured cells exposed to venom with or without sPLA2 and/or metalloprotease inhibitors (varespladib and marimastat, respectively). For comparison, the StarMax coagulation analyzer for coagulotoxicity was further used to evaluate the venoms and the neutralizing capabilities of the abovementioned direct toxin inhibitors (DTIs) against the same venoms examined using ECIS. Three viper and three elapid venoms that were examined for their effects on H1975 cells were Agkistrodon contortrix (Eastern Copperhead), Crotalus helleri (Southern Pacific Rattlesnake), and Vipera ammodytes (Horned Viper) and Naja atra (Chinese Cobra), Naja mossambica (Mozambique Spitting Cobra), and Naja nigricollis (Black-necked Spitting Cobra), respectively. The combination of cellular and coagulation techniques appears to usefully discriminate the in vitro capabilities and limitations of specific inhibitors to inhibit specific venom effects. This study suggests that ECIS with or without concomitant coagulation testing is a feasible method to generate reproducible, meaningful preclinical data and could be used with any type of cell line. Importantly, this approach is both quantitative and has the potential of reducing animal use and suffering during the evaluation of potential therapeutics. To further evaluate the potential of this method, rescue studies should be performed.
Collapse
Affiliation(s)
- Abhinandan Choudhury
- Adaptive Biotoxicology Lab, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Kaitlin Linne
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
| | - Tommaso C. Bulfone
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
| | - Tanvir Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia (A.A.I.S.)
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia (A.A.I.S.)
| | - Philip L. Bickler
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA 94118, USA
- Ophirex, Inc., Corte Madera, CA 94925, USA
| |
Collapse
|
3
|
Lakušić M, Martínez-Freiría F, Anđelković M, Hempel BF. Beyond sexual maturity: Importance of dietary changes in venom variation in Vipera ammodytes. Toxicon 2025; 257:108291. [PMID: 39983996 DOI: 10.1016/j.toxicon.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Identifying individual age and size is crucial in venom research to understand potential phenotypic changes. When studying venom ontogeny, juveniles and adults are often determined by size at sexual maturity. However, in gape-limited predators such as snakes, venom shifts may occur earlier, coinciding with an increase in jaw size that allows the intake of larger prey. This study explored venom variation in Vipera ammodytes along the snout-vent length (SVL), linking these changes to dietary shifts and reproductive status. A total of 57 venom samples from two populations were analysed using chip electrophoresis (CE) and MALDI-TOF mass spectrometry. Individuals were categorised into three groups: immature individuals feeding on lizards (<300 mm SVL), immature individuals feeding on lizards but start including mammals in their diet (between 300 and 440 mm), and mature individuals feeding on mammals and lizards (>440 mm). Significant venom composition changes around 300 mm SVL were observed, aligning with a dietary shift marked by increased mammalian prey intake and preceding sexual maturity. This finding highlights the need to use SVL as a metric for accurate venom analysis along ontogeny. Our results indicate that when pooling venom samples is necessary, allocating individuals to age categories should be based on dietary shifts rather than sexual maturity. Additionally, CE and MALDI-TOF MS proved effective in detecting ontogenetic venom changes, offering a fast and affordable approach to venom profiling. This study emphasises the importance of integrating natural history data in venom studies to better understand the ecological and evolutionary drivers of venom adaptation.
Collapse
Affiliation(s)
- Margareta Lakušić
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Marko Anđelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Benjamin-Florian Hempel
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
4
|
Lakušić M, Damm M, Bjelica V, Anđelković M, Tomović L, Bonnet X, Arsovski D, Süssmuth RD, Calvete JJ, Martínez-Freiría F. Ontogeny, not prey availability, underlies allopatric venom variability in insular and mainland populations of Vipera ammodytes. J Proteomics 2025; 310:105320. [PMID: 39306033 DOI: 10.1016/j.jprot.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Allopatric populations living under distinct ecological conditions are excellent systems to infer factors underlying intraspecific venom variation. The venom composition of two populations of Vipera ammodytes, insular with a diet based on ectotherms and mainland with a diet based on ectotherms and endotherms, was compared considering the sex and age of individuals. Ten toxin families, dominated by PLA2, svMP, svSP, and DI, were identified through a bottom-up approach. The venom profiles of adult females and males were similar. Results from 58 individual SDS-PAGE profiles and venom pool analysis revealed significant differences between juveniles compared to subadults and adults. Two venom phenotypes were identified: a juvenile svMP-dominated and KUN-lacking phenotype and an adult PLA2/svMP-balanced and KUN-containing phenotype. Despite differences in prey availability (and, therefore, diet) between populations, no significant differences in venom composition were found. As the populations are geographically isolated, the lack of venom diversification could be explained by insufficient time for natural selection and/or genetic drift to act on the venom composition of island vipers. However, substantial differences in proteomes were observed when compared to venoms from geographically distant populations inhabiting different conditions. These findings highlight the need to consider ecological and evolutionary processes when studying venom variability. SIGNIFICANCE: This study provides the first comprehensive analysis of the venom composition of two allopatric populations of Vipera ammodytes, living under similar abiotic (climate) but distinct biotic (prey availability) conditions. The ontogenetic changes in venom composition, coupled with the lack of differences between sex and between populations, shed light on the main determinants of venom evolution in this medically important snake. Seven new proteomes may facilitate future comparative studies of snake venom evolution. This study highlights the importance of considering ecological and evolutionary factors to understand snake venom variation.
Collapse
Affiliation(s)
- Margareta Lakušić
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen 35392, Germany; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vukašin Bjelica
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marko Anđelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Ljiljana Tomović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Xavier Bonnet
- CEBC, UMR-7372, CNRS Université de La Rochelle, 79360 Villiers en Bois, France
| | - Dragan Arsovski
- Macedonian Ecological Society, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
5
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Krecsák L, Bauer AM, Westerström A, Wahlgren R, Tomović L, Stille BO, Åhlander E. Assessment of the Linnaean type material of the Nose-horned viper, Vipera ammodytes (Linnaeus, 1758). Zootaxa 2024; 5537:24-48. [PMID: 39646352 DOI: 10.11646/zootaxa.5537.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Within the framework of surveys investigating the origins of Linnaean taxa, we assessed the evidence supporting historical taxonomic and nomenclatural proposals and decisions regarding the nose-horned viper (Vipera ammodytes). The viper was described as Coluber ammodytes Linnaeus, 1758 from "the Orient." Bruno (1968) assessed the pre-Systema Naturae Ed. 10 sources and designated the specimen described in detail by Linnaeus as the lectotype of the species and restricted the type locality to near Castello Nuovo di Duino (Trieste, Venezia Giulia NW), NE Italy. We used a two-pronged approach using literary sources and statistical analyses to show that previous type locality restrictions suggested by different authors (including Bruno), were made incorrectly, without a proper assessment of the history or the morphological characteristics of the existing type material. Our surveys suggest that the lectotype was collected by the Swedish diplomat Edvard Carleson (1704-1767) in Belgrad Forest (Belgrad Ormanı), Belgrad village, Istanbul Metropolitan Municipality, Türkiye, between August 1738 and June 1746. In light of our results, the populations currently known as V. a. montandoni Boulenger, 1904 become the nominotypical subspecies, with the type locality Belgrad Forest (Belgrad Ormanı), Belgrad village, Istanbul Metropolitan Municipality, Türkiye. Nose-horned viper populations from the north-western and central parts of the distribution range of the species that were regarded as nominotypical, thus become Vipera ammodytes illyrica (Laurenti, 1768).
Collapse
Affiliation(s)
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship; Villanova University; 800 Lancaster Avenue; Villanova; Pennsylvania 19085; USA.
| | | | | | - Ljiljana Tomović
- University of Belgrade; Faculty of Biology; Studentski trg 16; 11000 Belgrade; Serbia.
| | | | - Erik Åhlander
- Swedish Museum of Natural History; Department of Zoology; PO Box 50007; SE-10405 Stockholm; Sweden.
| |
Collapse
|
7
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
8
|
Di Nicola MR, Crevani M, Avella I, Cerullo A, Dorne JLCM, Paolino G, Zattera C. A Guide to the Clinical Management of Vipera Snakebite in Italy. Toxins (Basel) 2024; 16:255. [PMID: 38922149 PMCID: PMC11209566 DOI: 10.3390/toxins16060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study provides an updated, detailed set of guidelines for the management and treatment of Vipera snakebite tailored for Italian clinicians. It includes taxonomic keys for snake identification, insights into viper venom composition, and recommendations for clinical management. Emphasis is placed on quick and reliable identification of medically relevant snake species, along with appropriate first aid measures. Criteria for antivenom administration are outlined, as well as indications on managing potential side effects. While the protocol is specific to Italy, its methodology can potentially be adapted for other European countries, depending on local resources. The promotion of comprehensive data collection and collaboration among Poison Control Centres is advocated to optimise envenomation management protocols and improve the reporting of epidemiological data concerning snakebite at the country level.
Collapse
Affiliation(s)
- Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, 9820 Merelbeke, Belgium
- Asociación Herpetológica Española, Apartado de correos 191, 28911 Leganés, Spain
| | - Marta Crevani
- Poison Control Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Ignazio Avella
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Anna Cerullo
- Department of Veterinary Sciences, University of Turin, L.go Braccini 2, 10095 Grugliasco, Italy
| | - Jean-Lou C. M. Dorne
- Methodological and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43100 Parma, Italy
| | - Giovanni Paolino
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Caterina Zattera
- Unit of Emergency Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo University Hospital, University of Pavia, P.Le Golgi, 19, 27100 Pavia, Italy
| |
Collapse
|
9
|
Abu Aisheh M, Kayili HM, Numanoglu Cevik Y, Kanat MA, Salih B. Composition characterization of various viperidae snake venoms using MS-based proteomics N-glycoproteomics and N-glycomics. Toxicon 2023; 235:107328. [PMID: 37884129 DOI: 10.1016/j.toxicon.2023.107328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Viperidae snake species is widely abundant and responsible for most envenomation cases in Turkey. The structural and compositional profiles of snake venom have been investigated to study the venom component variation across different species and to profile the venom biological activity variation against prey. In this context, we used proteomics, glycoproteomics and glycomics strategies to characterize the protein, glycoproteins and glycan structural and compositional profiles of various snake venoms in the Viperidae family. Moreover, we compared these profiles using the downstream bioinformatics and machine learning classification modules. The overall mass spectrometry profiles identified 144 different proteins, 36 glycoproteins and 78 distinct N-glycan structures varying in composition across the five venoms. A high amount of the characterized proteins belongs to the glycosylated protein family Trypsin-like serine protease (Tryp_SPc), Disintegrin (DISIN), and ADAM Cysteine-Rich (ACR). Most identified N-glycans have a complex chain carrying galactosylated N-glycans abundantly. The glycan composition data obtained from glycoproteomics aligns consistently with the findings from glycomics. The clustering and principal component analyses (PCA) illustrated the composition-based similarities and differences between each snake venom species' proteome, glycoproteome and glycan profiles. Specifically, the N-glycan profiles of M. xanthina (Mx) and V. a. ammodytes (Vaa) venoms were identical and difficult to differentiate; in contrast, their proteome profiles were distinct. Interestingly, the variety of the proteins across the species highlighted the impact of glycosylation on the diversity of the glycosylated protein families. This proposed high throughput approach provides accurate and comprehensive profiles of the composition and function of various Viperidae snake venoms.
Collapse
Affiliation(s)
- Marwa Abu Aisheh
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Haci Mehmet Kayili
- Department of Medical Engineering, Faculty of Engineering, Karabük University, 78000, Karabük, Turkey
| | - Yasemin Numanoglu Cevik
- Microbiology Reference Laboratory, Turkish Public Health Institute, Ministery of Health, 06430, Ankara, Turkey
| | - Mehmet Ali Kanat
- Microbiology and Reference Laboratory and Biological Products Department, General Directorate of Public Health, Minister of Health, 06430, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|
10
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
11
|
Chowdhury A, Zdenek CN, Lewin MR, Carter R, Jagar T, Ostanek E, Harjen H, Aldridge M, Soria R, Haw G, Fry BG. Venom-Induced Blood Disturbances by Palearctic Viperid Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. Front Immunol 2021; 12:688802. [PMID: 34177943 PMCID: PMC8222980 DOI: 10.3389/fimmu.2021.688802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Palearctic vipers are medically significant snakes in the genera Daboia, Macrovipera, Montivipera, and Vipera which occur throughout Europe, Central Asia, Near and Middle East. While the ancestral condition is that of a small-bodied, lowland species, extensive diversification has occurred in body size, and niche specialization. Using 27 venom samples and a panel of in vitro coagulation assays, we evaluated the relative coagulotoxic potency of Palearctic viper venoms and compared their neutralization by three antivenoms (Insoserp Europe, VIPERFAV and ViperaTAb) and two metalloprotease inhibitors (prinomastat and DMPS). We show that variation in morphology parallels variation in the Factor X activating procoagulant toxicity, with the three convergent evolutions of larger body sizes (Daboia genus, Macrovipera genus, and Vipera ammodytes uniquely within the Vipera genus) were each accompanied by a significant increase in procoagulant potency. In contrast, the two convergent evolutions of high altitude specialization (the Montivipera genus and Vipera latastei uniquely within the Vipera genus) were each accompanied by a shift away from procoagulant action, with the Montivipera species being particularly potently anticoagulant. Inoserp Europe and VIPERFAV antivenoms were both effective against a broad range of Vipera species, with Inoserp able to neutralize additional species relative to VIPERFAV, reflective of its more complex antivenom immunization mixture. In contrast, ViperaTAb was extremely potent in neutralizing V. berus but, reflective of this being a monovalent antivenom, it was not effective against other Vipera species. The enzyme inhibitor prinomastat efficiently neutralized the metalloprotease-driven Factor X activation of the procoagulant venoms. In contrast, DMPS (2,3-dimercapto-1-propanesulfonic acid), which as been suggested as another potential treatment option in the absence of antivenom, DMPS failed against all venoms tested. Overall, our results highlight the evolutionary variations within Palearctic vipers and help to inform clinical management of viper envenomation.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA, United States
- Ophirex, Inc., Corte Madera, CA, United States
| | | | | | | | - Hannah Harjen
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Grace Haw
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
12
|
Di Nicola MR, Pontara A, Kass GEN, Kramer NI, Avella I, Pampena R, Mercuri SR, Dorne JLCM, Paolino G. Vipers of Major clinical relevance in Europe: Taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology 2021; 453:152724. [PMID: 33610611 DOI: 10.1016/j.tox.2021.152724] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
Snakebites in Europe are mostly due to bites from Viperidae species of the genus Vipera. This represents a neglected public health hazard with poorly defined incidence, morbidity and mortality. In Europe, fourteen species of "true vipers" (subfamily Viperinae) are present, eleven of which belong to the genus Vipera. Amongst these, the main medically relevant species due to their greater diffusion across Europe and the highest number of registered snakebites are six, namely: Vipera ammodytes, V. aspis, V. berus, V. latastei, V. seoanei and V. ursinii. Generally speaking, viper venom composition is characterised by many different toxin families, like phospholipases A2, snake venom serine proteases, snake venom metalloproteases, cysteine-rich secretory proteins, C-type lectins, disintegrins, haemorrhagic factors and coagulation inhibitors. A suspected snakebite is often associated with severe pain, erythema, oedema and, subsequently, the onset of an ecchymotic area around one or two visible fang marks. In the field, the affected limb should be immobilised and mildly compressed with a bandage, which can then be removed once the patient is being treated in hospital. The clinician should advise the patient to remain calm to reduce blood circulation and, therefore, decrease the spread of the toxins. In the case of pain, an analgesic therapy can be administered, the affected area can be treated with hydrogen peroxide or clean water. However, anti-inflammatory drugs and disinfection with alcohol or alcoholic substances should be avoided. For each patient, clinical chemistry and ECG are always a pre-requisite as well as the evaluation of the tetanus immunisation status and for which immunisation may be provided if needed. The treatment of any clinical complication, due to the envenomation, does not differ from treatments of emergency nature. Antivenom is recommended when signs of systemic envenomation exist or in case of advanced local or systemic progressive symptoms. Recommendations for future work concludes. The aim of this review is to support clinicians for the clinical management of viper envenomation, through taxonomic keys for main species identification, description of venom composition and mode of action of known toxins and provide a standardised clinical protocol and antivenom administration.
Collapse
Affiliation(s)
| | - Andrea Pontara
- Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - George E N Kass
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Ignazio Avella
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal; Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia - CSIC, Calle Jaime Roig 11, 46010, Valencia, Spain
| | - Riccardo Pampena
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Italy
| | | | - Jean Lou C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | | |
Collapse
|
13
|
Milovanovic V, Minic R, Vakic J, Ivanovic S, Cupic V, Borozan S, Nesic A, Zivkovic I. MTT based L-aminoacid oxidase activity test for determination of antivenom potency against Vipera ammodytes envenomation. Toxicon 2021; 192:57-65. [PMID: 33497745 DOI: 10.1016/j.toxicon.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
The MTT assay is routinely used to detect the activity of living cells. While working with Vipera ammodytes venom we detected the reduction of MTT without the presence of cells, in a concentration-dependent manner. By combining non-reducing PAGE, L-amino acid oxidase (LAAO) assays, and standard MTT assays, we established and confirmed that venom MTT reduction is catalyzed by only one enzyme, the LAAO. Even though it was previously known that the dimeric and tetrameric forms of LAAO are active, we conclude that the enzyme is also active in the monomeric form. Our results have led to the definition of a new MTT assay in a microtiter plate for in vitro testing of svLAAO activity i.e. from the venom of the V. ammodytes snake. Potentially, this method can be used for testing hemorrhagic venoms of other snakes as well as the LAAO neutralization capability of appropriate antivenoms.
Collapse
Affiliation(s)
- Vladimir Milovanovic
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe St., 11152, Belgrade, Serbia
| | - Rajna Minic
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe St., 11152, Belgrade, Serbia
| | - Jelena Vakic
- Faculty of Biology, University of Belgrade, 16 Studentski Trg St., 11000, Belgrade, Serbia
| | - Sasa Ivanovic
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, 18 Bulevar Oslobođenja St., 11000, Belgrade, Serbia
| | - Vitomir Cupic
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, 18 Bulevar Oslobođenja St., 11000, Belgrade, Serbia
| | - Suncica Borozan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, University of Belgrade, 18 Bulevar Oslobođenja St., 11000, Belgrade, Serbia
| | - Andrijana Nesic
- Faculty of Chemistry, University of Belgrade, 16 Studentski Trg St., 11000, Belgrade, Serbia
| | - Irena Zivkovic
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe St., 11152, Belgrade, Serbia.
| |
Collapse
|
14
|
Gopcevic K, Karadzic I, Izrael-Zivkovic L, Medic A, Isakovic A, Popović M, Kekic D, Stanojkovic T, Hozic A, Cindric M. Study of the venom proteome of Vipera ammodytes ammodytes (Linnaeus, 1758): A qualitative overview, biochemical and biological profiling. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100776. [PMID: 33197857 DOI: 10.1016/j.cbd.2020.100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022]
Abstract
Vipera ammodytes (Va), is the European venomous snake of the greatest medical importance. We analyzed whole venom proteome of the subspecies V. ammodytes ammodytes (Vaa) from Serbia for the first time using the shotgun proteomics approach and identified 99 proteins belonging to four enzymatic families: serine protease (SVSPs), L-amino acid oxidase (LAAOs), metalloproteinases (SVMPs), group II phospholipase (PLA2s), and five nonenzymatic families: cysteine-rich secretory proteins (CRISPs), C-type lectins (snaclecs), growth factors -nerve (NGFs) and vascular endothelium (VEGFs), and Kunitz-type protease inhibitors (SPIs). Considerable enzymatic activity of LAAO, SVSPs, and SVMPs and a high acidic PLA2 activity was measured implying potential of Vaa to produce haemotoxic, myotoxic, neuro and cardiotoxic effects. Moreover, significant antimicrobial activity of Vaa venom against Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) was found. The crude venom shows considerable potential cytotoxic activity on the C6 and HL60 and a moderate level of potency on B16 cell lines. HeLa cells showed the same sensitivity, while DU 145 and PC-3 are less sensitive than as normal cell line. Our data demonstrated a high complexity of Vaa and considerable enzymatic, antibacterial and cytotoxic activity, implying a great medical potential of Vaa venom as a promising source for new antibacterial and cytostatic agents.
Collapse
Affiliation(s)
- Kristina Gopcevic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ivanka Karadzic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lidija Izrael-Zivkovic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Medic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Isakovic
- Department of Medical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marjan Popović
- Department of Medical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Kekic
- Department of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Amela Hozic
- Ruđer Bošković Institute, Proteomics and Mass Spectrometry, Zagreb, Croatia
| | - Mario Cindric
- Ruđer Bošković Institute, Proteomics and Mass Spectrometry, Zagreb, Croatia
| |
Collapse
|
15
|
Venomics of the asp viper Vipera aspis aspis from France. J Proteomics 2020; 218:103707. [PMID: 32087377 DOI: 10.1016/j.jprot.2020.103707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.
Collapse
|
16
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
17
|
Lukšić B, Karabuva S, Markić J, Polić B, Kovačević T, Meštrović J, Križaj I. Thrombocytopenic purpura following envenomation by the nose-horned viper (Vipera ammodytes ammodytes): Two case reports. Medicine (Baltimore) 2018; 97:e13737. [PMID: 30593149 PMCID: PMC6314653 DOI: 10.1097/md.0000000000013737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Two clinical cases are reported of envenomation by the nose-horned viper (Vipera ammodytes ammodytes) venom of a 9-year-old boy and of an 84-year-old woman. PATIENT CONCERNS Both patients had been bitten on their extremities by such a snake in August near Split, a town in southern Croatia. DIAGNOSES Clinical manifestation of envenomation was severe in the case of the boy, being characterized by a severe coagulopathy. This was only just apparent in the case of the elderly woman, who suffered extensive local edema and hematoma at the site of the bite, together with a neurotoxic effect-bilateral ptosis. This was the first occasion of thrombocytopenic purpura being observed in patients envenomed by nose-horned viper venom. This unexpected clinical finding was characterized by an unusually profound thrombocytopenia of 5 and 10 × 10/L platelets of the respective patients on their admission to the hospital, together with purpura, observed on the face and thorax of both individuals. In the most serious cases, such pathology can be life threatening if not promptly recognized and treated. INTERVENTIONS The patients recovered quickly on receiving the specific antivenom along with all the usual supportive treatments. OUTCOMES No serious sequels were noticed at the moment of discharge. LESSONS Our finding constitutes an important message to clinicians to consider the possibility of such complications in the case of nose-horned viper envenomation.
Collapse
Affiliation(s)
- Boris Lukšić
- Clinical Department of Infectious Diseases, University Hospital of Split
- University of Split, School of Medicine
| | - Svjetlana Karabuva
- Clinical Department of Infectious Diseases, University Hospital of Split
| | - Joško Markić
- University of Split, School of Medicine
- Department of Pediatrics, University Hospital of Split, Split
| | - Branka Polić
- Department of Pediatrics, University Hospital of Split, Split
| | - Tanja Kovačević
- Department of Pediatrics, University Hospital of Split, Split
| | - Julije Meštrović
- University of Split, School of Medicine
- Department of Pediatrics, University Hospital of Split, Split
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
18
|
Application of the 3R Concept in the Production of European Antiviperinum on Horses – Multisite, Low Volumes Immunization Protocol and Elisa. ACTA VET-BEOGRAD 2018. [DOI: 10.2478/acve-2018-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
During time, both professionals and general public became aware of the importance of animal welfare. This term not only covers endangered wild animal species, animals used in food industry, pets and experimental animals, but also animals used in production of biologics. The implementation of the 3R concept (Replacement, Reduction and Refinement) is especially important in this type of production. In this article, we describe for the first time the low dose, low volume and multi-site immunization protocol, as well as appropriate ELISA we developed for production of European anti-viper (V. ammodytes, long horned) antivenom in horses, which can help to significantly improve the welfare of the used animals.
Collapse
|
19
|
Effect of Vipera ammodytes ammodytes Snake Venom on the Human Cytokine Network. Toxins (Basel) 2018; 10:toxins10070259. [PMID: 29941812 PMCID: PMC6070926 DOI: 10.3390/toxins10070259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Local inflammation is a well-known symptom of envenomation by snakes of the family Viperidae, attributed primarily to the phospholipase A2s, metalloproteinases and L-amino acid oxidases contained in their venom. The inflammatory effect of snake venoms has been associated with a marked increase of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α. To determine the impact of Vipera ammodytes ammodytes snake venom on the expression of inflammation-related genes, we incubated human U937 monocyte cells with dilutions of snake venom. Gene expression was quantified for 28 different genes using a TaqMan® Array Human Cytokine Network 96-well Plate in a RT-qPCR system. Our results have demonstrated that 1.0 μg/mL Vipera ammodytes ammodytes venom solution induces a notable change in the expression of several cytokine network genes. Among the upregulated genes, there were several that encode interleukins, interferons, and tumor necrosis factors. We further report the downregulation of three interleukin-related genes. Our findings come as supportive information for the known complex effect of snake venoms on the human cytokine network. It also provides relevant new information regarding the expression of genes that have not been previously associated with the effect of snake venoms.
Collapse
|
20
|
Hempel BF, Damm M, Göçmen B, Karis M, Oguz MA, Nalbantsoy A, Süssmuth RD. Comparative Venomics of the Vipera ammodytes transcaucasiana and Vipera ammodytes montandoni from Turkey Provides Insights into Kinship. Toxins (Basel) 2018; 10:toxins10010023. [PMID: 29301241 PMCID: PMC5793110 DOI: 10.3390/toxins10010023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
The Nose-horned Viper (Vipera ammodytes) is one of the most widespread and venomous snakes in Europe, which causes high frequent snakebite accidents. The first comprehensive venom characterization of the regional endemic Transcaucasian Nose-horned Viper (Vipera ammodytes transcaucasiana) and the Transdanubian Sand Viper (Vipera ammodytes montandoni) is reported employing a combination of intact mass profiling and bottom-up proteomics. The bottom-up analysis of both subspecies identified the major snake protein families of viper venoms. Furthermore, intact mass profiling revealed the presence of two tripeptidic metalloprotease inhibitors and their precursors. While previous reports applied multivariate analysis techniques to clarify the taxonomic status of the subspecies, an accurate classification of Vipera ammodytestranscaucasiana is still part of the ongoing research. The comparative analysis of the viper venoms on the proteome level reveals a close relationship between the Vipera ammodytes subspecies, which could be considered to clarify the classification of the Transcaucasian Nose-horned Viper. However, the slightly different ratio of some venom components could be indicating interspecific variations of the two studied subspecies or intraspecies alternations based on small sample size. Additionally, we performed a bioactivity screening with the crude venoms against several human cancerous and non-cancerous cell lines, which showed interesting results against a human breast adenocarcinoma epithelial cell line. Several fractions of Vipera a. transcaucasiana demonstrated a strong cytotoxic effect on triple negative MDA MB 231 breast cancer cells.
Collapse
Affiliation(s)
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Bayram Göçmen
- Department of Biology, Ege University, 35100 Izmir, Turkey.
| | - Mert Karis
- Department of Biology, Ege University, 35100 Izmir, Turkey.
| | | | - Ayse Nalbantsoy
- Department of Bioengineering, Ege University, 35100 Izmir, Turkey.
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
21
|
Karabuva S, Lukšić B, Brizić I, Latinović Z, Leonardi A, Križaj I. Ammodytin L is the main cardiotoxic component of the Vipera ammodytes ammodytes venom. Toxicon 2017; 139:94-100. [PMID: 29030107 DOI: 10.1016/j.toxicon.2017.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 11/15/2022]
Abstract
Venom of the nose-horned viper (V. a. ammodytes) as also venoms of some related European viperids can induce also cardiotoxic effects in mammals. In this work we demonstrated that the protein in the V. a. ammodytes venom acting on heart is a myotoxic secreted phospholipase A2 analogue ammodytin L (AtnL). In the isolated perfused rat heart AtnL induced significant and irreversible cardiotoxicity characterized by atrioventricular (AV) blockade. This venom protein induced appearance of high levels of creatine kinase, lactate dehydrogenase, aspartate aminotransferase and troponin I in the sinus effluent of the isolated heart, indicative for myocardial damage, which is obviously the primary cause of its cardiotoxic action. Gel filtration chromatography subfractions C1 and C2 of the V. a. ammodytes venom harboured most of the venom cardiotoxicity. As we showed, just these two subfractions contained also AtnL. Subfraction C1 in the final CF concentration 11.3 μg/mL (containing 3.1 μg/mL AtnL) induced a complete cardiac arrest while subfraction C2 in the final CF concentration 6.0 μg/mL (containing 0.8 μg/mL AtnL) and the pure AtnL (1.0 μg/mL) did not. Contrary to AtnL, subfraction C1 at 11.3 μg/mL was not able to induce the AV blockade. This exposed the only other cardiotoxic subfractions-specific venom protein, a cysteine-rich secretory protein (CRISP), as an additional venom component potentially involved in modulation of the heart activity. Cardiotoxicity reported in some cases of the adder (V. berus) venom and the asp viper (V. aspis) venom poisonings may be assigned to AtnL in these venoms.
Collapse
Affiliation(s)
- Svjetlana Karabuva
- Clinical Department of Infectious Diseases, University Hospital of Split, Šoltanska 1, Split, Croatia.
| | - Boris Lukšić
- Clinical Department of Infectious Diseases, University Hospital of Split, Šoltanska 1, Split, Croatia; University of Split School of Medicine, Šoltanska 2, Split, Croatia.
| | - Ivica Brizić
- Department of Pharmacology, Mostar University School of Medicine, Bijeli brijeg bb, Mostar, Bosnia and Herzegovina.
| | - Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Resistance towards monensin is proposed to be acquired in a Toxoplasma gondii model by reduced invasion and egress activities, in addition to increased intracellular replication. Parasitology 2017; 145:313-325. [PMID: 28870270 DOI: 10.1017/s0031182017001512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monensin (Mon) is an anticoccidial polyether ionophore widely used to control coccidiosis. The extensive use of polyether ionophores on poultry farms resulted in widespread resistance, but the underlying resistance mechanisms are unknown in detail. For analysing the mode of action by which resistance against polyether ionophores is obtained, we induced in vitro Mon resistance in Toxoplasma gondii-RH strain (MonR-RH) and compared it with the sensitive parental strain (Sen-RH). The proteome assessment of MonR-RH and Sen-RH strains was obtained after isotopic labelling using stable isotope labelling by amino acid in cell culture. Relative proteomic quantification between resistant and sensitive strains was performed using liquid chromatography-mass spectrometry/mass spectrometry. Overall, 1024 proteins were quantified and 52 proteins of them were regulated. The bioinformatic analysis revealed regulation of cytoskeletal and transmembrane proteins being involved in transport mechanisms, metal ion-binding and invasion. During invasion, actin and microneme protein 8 (MIC8) are seem to be important for conoid extrusion and forming moving junction with host cells, respectively. Actin was significantly upregulated, while MIC8 was downregulated, which indicate an invasion reduction in the resistant strain. Resistance against Mon is not a simple process but it involves reduced invasion and egress activity of T. gondii tachyzoites while intracellular replication is enhanced.
Collapse
|
23
|
Karabuva S, Brizić I, Latinović Z, Leonardi A, Križaj I, Lukšić B. Cardiotoxic effects of the Vipera ammodytes ammodytes venom fractions in the isolated perfused rat heart. Toxicon 2016; 121:98-104. [PMID: 27623431 DOI: 10.1016/j.toxicon.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/16/2023]
Abstract
The nose-horned viper (Vipera ammodytes ammodytes) is the most venomous European snake. Its venom is known as haematotoxic, myotoxic and neurotoxic but it exerts also cardiotoxic effects. To further explore the cardiotoxicity of the venom we separated it into four fractions by gel filtration chromatography. Three fractions that contain polypeptides (A, B, and C) were tested for their effects on isolated rat heart. Heart rate (HR), incidence of arrhythmias (atrioventricular (AV) blocks, ventricular tachycardia, ventricular fibrillation, and asystolia), coronary flow (CF), systolic, developed and diastolic left ventricular pressure (LVP) were measured before, during, and after the application of venom fractions in three different concentrations. Fraction A, containing proteins of 60-100 kDa, displayed no effect on the rat heart. Fractions B and C disturbed heart functioning in similar way, but with different potency that was higher by the latter. This was manifested by significant decrease of HR and CF, the increase of diastolic, and the decrease of systolic and developed LVPs. All hearts treated with fraction C in the final CF concentrations 22.5 and 37.5 μg/mL suffered rapid and irreversible asystolia without AV blockade. They underwent also ventricular fibrillation and ventricular tachycardia. Fraction B affected hearts only at the highest dose inducing asystolia in all hearts, ventricular fibrillation in 80% and ventricular tachycardia in 70% of the hearts. Venom fraction C induced 71% of all recorded heart rhythm disturbances, significantly more than fraction B, which induced 29%. Most abundant proteins in fraction C were secreted phospholipases A2 among which the venom component acting on the heart is most probably to be looked for.
Collapse
Affiliation(s)
- Svjetlana Karabuva
- Clinical Department of Infectious Diseases, University Hospital Centre Split, Šoltanska 1, Split, Croatia.
| | - Ivica Brizić
- Department of Pharmacology, Mostar University School of Medicine, Bijeli brijeg bb, Mostar, Bosnia and Herzegovina.
| | - Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva cesta 5, Ljubljana, Slovenia.
| | - Boris Lukšić
- Clinical Department of Infectious Diseases, University Hospital Centre Split, Šoltanska 1, Split, Croatia; University of Split School of Medicine, Šoltanska 2, Split, Croatia.
| |
Collapse
|
24
|
Latinović Z, Leonardi A, Šribar J, Sajevic T, Žužek MC, Frangež R, Halassy B, Trampuš-Bakija A, Pungerčar J, Križaj I. Venomics of Vipera berus berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. J Proteomics 2016; 146:34-47. [PMID: 27327134 DOI: 10.1016/j.jprot.2016.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Vipera berus berus (Vbb) is the most widely distributed and Vipera ammodytes ammodytes (Vaa) the most venomous viper in Europe. In particular areas of the Old continent their toxic bites constitute a considerable public health problem. To make the current envenomation therapy more effective we have analysed the proteome of Vbb venom and compared it with that of Vaa. We found the proteome of Vbb to be much less complex and to contain smaller levels of particularly snaclecs and sPLA2s. Snaclecs are probably responsible for thrombocytopenia. The neurotoxic sPLA2s, ammodytoxins, are responsible for the most specific feature of the Vaa venom poisoning - induction of signs of neurotoxicity in patients. These molecules were not found in Vbb venom. Both venoms induce haemorrhage and coagulopathy in man. As Vaa and Vbb venoms possess homologous P-III snake venom metalloproteinases, the main haemorrhagic factors, the severity of the haemorrhage is dictated by concentration and specific activity of these molecules. The much greater anticoagulant effect of Vaa venom than that of Vbb venom lies in its higher extrinsic pathway coagulation factor-proteolysing activity and content of ammodytoxins which block the prothrombinase complex formation. BIOLOGICAL SIGNIFICANCE Envenomations by venomous snakes constitute a considerable public health problem worldwide, and also in Europe. In the submitted work we analysed the venom proteome of Vipera berus berus (Vbb), the most widely distributed venomous snake in Europe and compared it with the venom proteome of the most venomous viper in Europe, Vipera ammodytes ammodytes (Vaa). We have offered a possible explanation, at the molecular level, for the differences in clinical pictures inflicted by the Vbb and Vaa venoms. We have provided an explanation for the effectiveness of treatment of Vbb envenomation by Vaa antiserum and explained why full protection of Vaa venom poisoning by Vbb antiserum should not be always expected, especially not in cases of severe poisoning. The latter makes a strong case for Vaa antiserum production as we are faced with its shortage due to ceasing of production of two most frequently used products.
Collapse
Affiliation(s)
- Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Croatia
| | | | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Vorreiter F, Richter S, Peter M, Baumann S, von Bergen M, Tomm JM. Comparison and optimization of methods for the simultaneous extraction of DNA, RNA, proteins, and metabolites. Anal Biochem 2016; 508:25-33. [PMID: 27237373 DOI: 10.1016/j.ab.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Abstract
The challenge of performing a time-resolved comprehensive analysis of molecular systems has led to the quest to optimize extraction methods. When the size of a biological sample is limited, there is demand for the simultaneous extraction of molecules representing the four areas of "omics": genomics, transcriptomics, proteomics, and metabolomics. Here we optimized a protocol for the simultaneous extraction of DNA, RNA, proteins, and metabolites and compared it with two existing protocols. Our optimization comprised the addition of a methanol/chloroform metabolite purification before the separation of DNA/RNA and proteins. Extracted DNA, RNA, proteins, and metabolites were quantitatively and/or qualitatively analyzed. Of the three methods, only the newly developed protocol yielded all biomolecule classes of adequate quantity and quality.
Collapse
Affiliation(s)
- Fränze Vorreiter
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Silke Richter
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Michel Peter
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Faculty of Biosciences, Pharmacy, and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; Faculty of Biosciences, Pharmacy, and Psychology, University of Leipzig, 04103 Leipzig, Germany; Department of Chemistry and Biosciences, Aalborg University, DK-9220 Aalborg, Denmark
| | - Janina M Tomm
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| |
Collapse
|
26
|
Kovalchuk SI, Ziganshin RH, Starkov VG, Tsetlin VI, Utkin YN. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components. Toxins (Basel) 2016; 8:105. [PMID: 27077884 PMCID: PMC4848631 DOI: 10.3390/toxins8040105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.
Collapse
Affiliation(s)
- Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
27
|
İğci N, Nalbantsoy A, Erkan LG, Akça GY, Yalçın HT, Yalçın M, Göçmen B. Screening of cytotoxic, anti-angiogenic, anti-tumorogenic and antimicrobial activities of Anatolian Vipera ammodytes (Nose-horned viper) venom. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/tjb-2016-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractObjective:In the present study, we aimed to screen the cytotoxic, antimicrobial, anti-angiogenic and anti-tumorogenic activities of AnatolianMaterial and methods:The cytotoxicity was screened against PC3, HeLa, CaCo-2, U-87MG, MCF-7 and Vero cells by using MTT assay. The antimicrobial activity onResults:The ICConclusion:The results of the present study contributed to the knowledge of the biological activities of Anatolian
Collapse
|
28
|
Baraldi PT, Magro AJ, Matioli FF, Marcussi S, Lemke N, Calderon LA, Stábeli RG, Soares AM, Correa AG, Fontes MRM. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases. Biochimie 2015; 121:179-88. [PMID: 26700145 DOI: 10.1016/j.biochi.2015.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022]
Abstract
Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms.
Collapse
Affiliation(s)
- Patrícia T Baraldi
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Angelo J Magro
- Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Agrárias, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| | - Fábio F Matioli
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Ney Lemke
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Leonardo A Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Rodrigo G Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Arlene G Correa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Marcos R M Fontes
- Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
29
|
Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014; 92:140-56. [PMID: 25449103 DOI: 10.1016/j.toxicon.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.
Collapse
Affiliation(s)
- Adam D Hargreaves
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom.
| | - John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| |
Collapse
|
30
|
Bolton FMS, Casewell NR, Al-Abdulla I, Landon J. Production and assessment of ovine antisera for the manufacture of a veterinary adder antivenom. Vet Rec 2014; 174:406. [DOI: 10.1136/vr.102286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- F M S Bolton
- MicroPharm Ltd; Station Road Industrial Estate Newcastle Emlyn Carmarthenshire SA38 9BY UK
| | - N R Casewell
- MicroPharm Ltd; Station Road Industrial Estate Newcastle Emlyn Carmarthenshire SA38 9BY UK
- Molecular Ecology and Evolution Group; School of Biological Sciences; Bangor University; Deiniol Road Bangor LL57 2UW UK
| | - I Al-Abdulla
- MicroPharm Ltd; Station Road Industrial Estate Newcastle Emlyn Carmarthenshire SA38 9BY UK
| | - J Landon
- MicroPharm Ltd; Station Road Industrial Estate Newcastle Emlyn Carmarthenshire SA38 9BY UK
| |
Collapse
|
31
|
Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics 2014; 11:315-29. [PMID: 24678852 DOI: 10.1586/14789450.2014.900447] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Venom research has been continuously enhanced by technological advances. High-throughput technologies are changing the classical paradigm of hypothesis-driven research to technology-driven approaches. However, the thesis advocated in this paper is that full proteome coverage at locus-specific resolution requires integrating the best of both worlds into a protocol that includes decomplexation of the venom proteome prior to liquid chromatography-tandem mass spectrometry matching against a species-specific transcriptome. This approach offers the possibility of proof-checking the species-specific contig database using proteomics data. Immunoaffinity chromatography constitutes the basis of an antivenomics workflow designed to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venom toxins. In the author's view, snake venomics and antivenomics form part of a biology-driven conceptual framework to unveil the genesis and natural history of venoms, and their within- and between-species toxicological and immunological divergences and similarities. Understanding evolutionary trends across venoms represents the Rosetta Stone for generating broad-ranging polyspecific antivenoms.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain +34 963 391 778 +34 963 690 800
| |
Collapse
|
32
|
Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics 2014; 5:787-97. [DOI: 10.1586/14789450.5.6.787] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
35
|
Brgles M, Kurtović T, Kovačič L, Križaj I, Barut M, Lang Balija M, Allmaier G, Marchetti-Deschmann M, Halassy B. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography. Anal Bioanal Chem 2013; 406:293-304. [DOI: 10.1007/s00216-013-7453-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
|
36
|
Murugesan K, Baumann S, Wissenbach DK, Kliemt S, Kalkhof S, Otto W, Mögel I, Kohajda T, von Bergen M, Tomm JM. Subtoxic and toxic concentrations of benzene and toluene induce Nrf2-mediated antioxidative stress response and affect the central carbon metabolism in lung epithelial cells A549. Proteomics 2013; 13:3211-21. [PMID: 24108694 DOI: 10.1002/pmic.201300126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/24/2013] [Accepted: 07/26/2013] [Indexed: 01/12/2023]
Abstract
Since people in industrialized countries spend most of their time indoors, the effects of indoor contaminants such as volatile organic compounds become more and more relevant. Benzene and toluene are among the most abundant compounds in the highly heterogeneous group of indoor volatile organic compounds. In order to understand their effects on lung epithelial cells (A549) representing lung's first line of defense, we chose a global proteome and a targeted metabolome approach in order to detect adverse outcome pathways caused by exposure to benzene and toluene. Using a DIGE approach, 93 of 469 detected protein spots were found to be differentially expressed after exposure to benzene, and 79 of these spots were identified by MS. Pathway analysis revealed an enrichment of proteins involved in Nrf2-mediated and oxidative stress response glycolysis/gluconeogenesis. The occurrence of oxidative stress at nonacute toxic concentrations of benzene and toluene was confirmed by the upregulation of the stress related proteins NQO1 and SOD1. The changes in metabolism were validated by ion chromatography MS/MS analysis revealing significant changes of glucose-6-phosphate, fructose-6-phosphate, 3-phosphoglycerate, and NADPH. The molecular alterations identified as a result of benzene and toluene exposure demonstrate the detrimental effect of nonacute toxic concentrations on lung epithelial cells. The data provided here will allow for a targeted validation in in vivo models.
Collapse
Affiliation(s)
- Kalaimathi Murugesan
- Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Murugaiyan J, Rockstroh M, Wagner J, Baumann S, Schorsch K, Trump S, Lehmann I, Bergen MV, Tomm JM. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism. Toxicol Appl Pharmacol 2013; 269:307-16. [DOI: 10.1016/j.taap.2013.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 02/01/2023]
|
38
|
Abstract
Recent proteomic analyses of snake venoms show that metalloproteinases represent major components in most of the Crotalid and Viperid venoms. In this chapter we discuss the multiple activities of the SVMPs. In addition to hemorrhagic activity, members of the SVMP family also have fibrin(ogen)olytic activity, act as prothrombin activators, activate blood coagulation factor X, possess apoptotic activity, inhibit platelet aggregation, are pro-inflammatory and inactivate blood serine proteinase inhibitors. Clearly the SVMPs have multiple functions in addition to their well-known hemorrhagic activity. The realization that there are structural variations in the SVMPs and the early studies that led to their classification represents an important event in our understanding of the structural forms of the SVMPs. The SVMPs were subdivided into the P-I, P-II and P-III protein classes. The noticeable characteristic that distinguished the different classes was their size (molecular weight) differences and domain structure: Class I (P-I), the small SVMPs, have molecular masses of 20-30 kDa, contain only a pro domain and the proteinase domain; Class II (P-II), the medium size SVMPs, molecular masses of 30-60 kDa, contain the pro domain, proteinase domain and disintegrin domain; Class III (P-III), the large SVMPs, have molecular masses of 60-100 kDa, contain pro, proteinase, disintegrin-like and cysteine-rich domain structure. Another significant advance in the SVMP field was the characterization of the crystal structure of the first P-I class SVMP. The structures of other P-I SVMPs soon followed and the structures of P-III SVMPs have also been determined. The active site of the metalloproteinase domain has a consensus HEXXHXXGXXHD sequence and a Met-turn. The "Met-turn" structure contains a conserved Met residue that forms a hydrophobic basement for the three zinc-binding histidines in the consensus sequence.
Collapse
Affiliation(s)
- Francis S Markland
- University of Southern California, Keck School of Medicine, Cancer Research Laboratory #106, 1303 N. Mission Rd., Los Angeles, CA 90033, USA.
| | | |
Collapse
|
39
|
Proteomic profiling of dog urine after European adder (Vipera berus berus) envenomation by two-dimensional difference gel electrophoresis. Toxicon 2012; 60:1228-34. [PMID: 22975087 DOI: 10.1016/j.toxicon.2012.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Between April and September every year, many dogs in Finland are bitten by Vipera berus berus, also known as the European adder, the only venomous snake in the area. Exposure to snake bite venom causes local and systemic symptoms and in severe cases can lead to death. Urine samples were collected from four dogs bitten by V. berus berus and treated in the intensive care unit of the Veterinary Teaching Hospital at the University of Helsinki. The inclusion criteria were a strong suspicion of an adder bite no more than two days before admission and clinical signs of an adder bite. Exclusion criteria were defined as ongoing treatment with glucocorticoids or a known history of liver or kidney diseases. Six privately owned, healthy dogs were obtained as controls. Samples were subjected to 2D-DIGE analysis. Image analysis was performed with DeCyder 7.0 2D software, and protein spots demonstrating a minimum 1.5-fold difference in average spot volume ratios between envenomed and control dogs with a Student's t-test p-value of less than 0.05 were picked and identified using LC-MS/MS. In 2D-DIGE analysis, seven proteins were significantly (p < 0.05) over-expressed in the urine of dogs bitten by V. berus berus compared to the control group. From these, five proteins were identified: beta-2-microglobulin (b2MG), alpha-1-antitrypsin (AAT), albumin, fetuin-B and superoxide dismutase (SOD1). Results indicate that envenomation by V. berus berus alter the urinary protein profile in dogs.
Collapse
|
40
|
Stoyanova V, Aleksandrov R, Lukarska M, Duhalov D, Atanasov V, Petrova S. Recognition of Vipera ammodytes meridionalis neurotoxin vipoxin and its components using phage-displayed scFv and polyclonal antivenom sera. Toxicon 2012; 60:802-9. [PMID: 22750218 DOI: 10.1016/j.toxicon.2012.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/03/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023]
Abstract
Vipoxin is a potent postsynaptic heterodimeric neurotoxin isolated from the venom of the Bulgarian snake Vipera ammodytes meridionalis, whose snakebites cause different and strongly manifested pathophysiological effects (neurotoxic, hemolytic, anticoagulant, convulsant, hypotensive, hyperglycemic etc.). The neutralization of snake toxins calls for extensive research through the application of different approaches: antibodies, non-immunologic inhibitors, natural products derived from plants and animals, as well as synthetic drugs. In this study, we applied naive Tomlinson I + J (Cambridge, UK) libraries to obtain recombinant human scFv antibodies against the vipoxin's two subunits--basic and toxic phospholipase A₂ (PLA₂) and acidic, non-toxic component. We found that 33 of more than hundred tested clones were positive and recognized vipoxin and its subunits. Enriched scFv-phage samples (1.2 × 10⁹ pfu/ml) were analyzed for their binding (ELISA) and enzyme-inhibiting abilities. Single chain Fv-phage clones--D₁₂, E₃, F₆, D₁₀ and G₅ exhihest binding affinity for the toxic component. Clones A₁, D₁₂ and C₁₂ recognized preferentially vipoxin's acidic component. Clones E₃, G₅ and H₄ inhibited the enzymatic activity of both vipoxin and its purified and separated toxic subunit to the highest extent. Six of the selected clones (E₃, G₅, H₄, C₁₂, D₁₀ and A₁₁) inhibited direct hemolytic activity of vipoxin and its pure PLA₂ subunit. The obtained specific scFv antibodies will be used for epitope mapping studies required to shed light on the role of the phospholipase A₂ activity for the vipoxin toxicity and its effective neutralization.
Collapse
Affiliation(s)
- Vishnya Stoyanova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Department of Biochemistry, Laboratory of Enzymology, 8 "Dragan Tsankov" Blvd., 1164 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
41
|
Kurtović T, Leonardi A, Lang Balija M, Brgles M, Habjanec L, Križaj I, Halassy B. The standard mouse assay of anti-venom quality does not measure antibodies neutralising the haemorrhagic activity of Vipera ammodytes venom. Toxicon 2012; 59:709-17. [DOI: 10.1016/j.toxicon.2012.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
42
|
Utkin YN, Weise C, Hoang NA, Kasheverov IE, Starkov VG, Tsetlin VI. The new peptide from the Fea's viper Azemiops feae venom interacts with nicotinic acetylcholine receptors. DOKL BIOCHEM BIOPHYS 2012; 442:33-5. [PMID: 22419091 DOI: 10.1134/s1607672912010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 11/22/2022]
Affiliation(s)
- Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | | | | | | | | | | |
Collapse
|
43
|
Georgieva D, Coronado M, Oberthür D, Buck F, Duhalov D, Arni RK, Betzel C. Crystal structure of a dimeric Ser49 PLA2-like myotoxic component of the Vipera ammodytes meridionalis venomics reveals determinants of myotoxicity and membrane damaging activity. MOLECULAR BIOSYSTEMS 2012; 8:1405-11. [DOI: 10.1039/c2mb05490f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Munawar A, Trusch M, Georgieva D, Spencer P, Frochaux V, Harder S, Arni RK, Duhalov D, Genov N, Schlüter H, Betzel C. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae. MOLECULAR BIOSYSTEMS 2011; 7:3298-307. [PMID: 21959992 DOI: 10.1039/c1mb05309d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.
Collapse
Affiliation(s)
- Aisha Munawar
- Laboratory of Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Notkestr 85, Build 22a, 22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Križaj I. Ammodytoxin: a window into understanding presynaptic toxicity of secreted phospholipases A(2) and more. Toxicon 2011; 58:219-29. [PMID: 21726572 DOI: 10.1016/j.toxicon.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
46
|
Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O'Shea M, Jensen SD, Winkel KD, Warrell DA. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 2011; 74:1735-67. [PMID: 21640209 DOI: 10.1016/j.jprot.2011.05.027] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/30/2011] [Accepted: 05/11/2011] [Indexed: 01/13/2023]
Abstract
The development of snake antivenoms more than a century ago should have heralded effective treatment of the scourge of snakebite envenoming in impoverished, mostly rural populations around the world. That snakebite still exists today, as a widely untreated illness that maims, kills and terrifies men, women and children in vulnerable communities, is a cruel anachronism. Antivenom can be an effective, safe and affordable treatment for snakebites, but apathy, inaction and the politicisation of public health have marginalised both the problem (making snakebite arguably the most neglected of all neglected tropical diseases) and its solution. For lack of any coordinated approach, provision of antivenoms has been pushed off the public health agenda, leading to an incongruous decline in demand for these crucial antidotes, excused and fed by new priorities, an absence of epidemiological data, and a poor regulatory framework. These factors facilitated the infiltration of poor quality products that degrade user confidence and undermine legitimate producers. The result is that tens of thousands are denied an essential life-saving medicine, allowing a toll of human suffering that is a summation of many individual catastrophes. No strategy has been developed to address this problem and to overcome the intransigence and inaction responsible for the global tragedy of snakebite. Attempts to engage with the broader public health community through the World Health Organisation (WHO), GAVI, and other agencies have failed. Consequently, the toxinology community has taken on a leadership role in a new approach, the Global Snakebite Initiative, which seeks to mobilise the resources, skills and experience of scientists and clinicians for whom venoms, toxins, antivenoms, snakes and snakebites are already fields of interest. Proteomics is one such discipline, which has embraced the potential of using venoms in bio-discovery and systems biology. The fields of venomics and antivenomics have recently evolved from this discipline, offering fresh hope for the victims of snakebites by providing an exciting insight into the complexities, nature, fundamental properties and significance of venom constituents. Such a rational approach brings with it the potential to design new immunising mixtures from which to raise potent antivenoms with wider therapeutic ranges. This addresses a major practical limitation in antivenom use recognised since the beginning of the 20th century: the restriction of therapeutic effectiveness to the specific venom immunogen used in production. Antivenomic techniques enable the interactions between venoms and antivenoms to be examined in detail, and if combined with functional assays of specific activity and followed up by clinical trials of effectiveness and safety, can be powerful tools with which to evaluate the suitability of current and new antivenoms for meeting urgent regional needs. We propose two mechanisms through which the Global Snakebite Initiative might seek to end the antivenom drought in Africa and Asia: first by establishing a multidisciplinary, multicentre, international collaboration to evaluate currently available antivenoms against the venoms of medically important snakes from specific nations in Africa and Asia using a combination of proteomic, antivenomic and WHO-endorsed preclinical assessment protocols, to provide a validated evidence base for either recommending or rejecting individual products; and secondly by bringing the power of proteomics to bear on the design of new immunising mixtures to raise Pan-African and Pan-Asian polyvalent antivenoms of improved potency and quality. These products will be subject to rigorous clinical assessment. We propose radically to change the basis upon which antivenoms are produced and supplied for the developing world. Donor funding and strategic public health alliances will be sought to make it possible not only to sustain the financial viability of antivenom production partnerships, but also to ensure that patients are relieved of the costs of antivenom so that poverty is no longer a barrier to the treatment of this important, but grossly neglected public health emergency.
Collapse
Affiliation(s)
- David J Williams
- Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic, 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Georgieva D, Murakami M, Perband M, Arni R, Betzel C. The structure of a nativel-amino acid oxidase, the major component of the Vipera ammodytes ammodytes venomic, reveals dynamic active site and quaternary structure stabilization by divalent ions. ACTA ACUST UNITED AC 2011; 7:379-84. [DOI: 10.1039/c0mb00101e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Mörbt N, Tomm J, Feltens R, Mögel I, Kalkhof S, Murugesan K, Wirth H, Vogt C, Binder H, Lehmann I, von Bergen M. Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations. J Proteome Res 2010; 10:363-78. [PMID: 21171652 DOI: 10.1021/pr1005718] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dautel F, Kalkhof S, Trump S, Michaelson J, Beyer A, Lehmann I, von Bergen M. DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress response including alterations in oxidative stress, cell cycle control, and cytoskeleton motility at toxic and subacute concentrations. J Proteome Res 2010; 10:379-93. [PMID: 21171653 DOI: 10.1021/pr100723d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the effects of high concentrations of the carcinogen benzo[a]pyrene (B[a]P) have been studied extensively, little is known about its effects at subacute toxic concentrations, which are typical for environmental pollutants. We exposed murine Hepa1c1c7 cells to a toxic concentration (5 μM) and a subacute concentration (50 nM) of B[a]P over a period of 2-24 h to differentiate between acute and pseudochronic effects and conducted a time-course analysis of B[a]P-influenced protein expression by DIGE. In total, a set of 120 spots were found to be significantly altered due to B[a]P exposure of which 112 were subsequently identified by mass spectrometry. Clustering and principal component analysis were conducted to identify sets of proteins responding in a concerted manner to the exposure. Our results indicate an immediate response to the contaminant at the protein level and demonstrate that B[a]P exposure alters the cellular response by disturbing proteins involved in oxidative stress, cell cycle regulation, apoptosis, and cytoskeleton organization. Furthermore, network analysis of protein-protein interactions revealed a complex network of interacting, B[a]P-regulated proteins mostly belonging to the cytoskeleton organization and several signal transduction pathways.
Collapse
Affiliation(s)
- Franziska Dautel
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Mörbt N, Mögel I, Kalkhof S, Feltens R, Röder-Stolinski C, Zheng J, Vogt C, Lehmann I, von Bergen M. Proteome changes in human bronchoalveolar cells following styrene exposure indicate involvement of oxidative stress in the molecular-response mechanism. Proteomics 2009; 9:4920-33. [PMID: 19862763 DOI: 10.1002/pmic.200800836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Styrene is a volatile organic compound that is widely used as an intermediate in many industrial settings. There are known adverse health effects at environmentally significant concentrations, but little is known about the molecular effect of exposure to styrene at sub-acute toxic concentrations. We exposed human lung epithelial cells, at a wide range of concentrations (1 mg/m(3)-10 g/m(3)), to styrene and analyzed the effects on the proteome level by 2-DE, where 1380 proteins spots were detected and 266 were identified unambiguously by MS. A set of 16 protein spots were found to be significantly altered due to exposure to styrene at environmentally significant concentrations of 1-10 mg/m(3) (0.2-2.3 ppm). Among these, superoxide dismutase as well as biliverdin reductase A could be correlated with the molecular pathway of oxidative stress, while eukaryotic translation initiation factor 5A-1, ezrin, lamin B2 and voltage-dependent anion channel 2 have been reported to be involved in apoptosis. Treatment with styrene also caused the formation of styrene oxide-protein adducts, specifically for thioredoxin reductase 1. These results underline the relevance of oxidative stress as a primary molecular response mechanism of lung epithelial cells to styrene exposure at indoor-relevant concentrations.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|