1
|
El-Tanani M, Rabbani SA, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y, Aljabali AAA. Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies. Cancers (Basel) 2025; 17:382. [PMID: 39941751 PMCID: PMC11815874 DOI: 10.3390/cancers17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the tumor microenvironment (TME). Key signaling pathways, including Wnt, Notch, and Hedgehog, are discussed in detail to highlight their potential as therapeutic targets. Current methodologies for isolating CSCs are critically examined, addressing their advantages and limitations in advancing precision medicine. Emerging technologies, such as CRISPR/Cas9 and single-cell sequencing, are explored for their transformative potential in unraveling CSC heterogeneity and informing therapeutic strategies. The review also underscores the pivotal role of the TME in supporting CSC survival, promoting metastasis, and contributing to therapeutic resistance. Challenges arising from CSC-driven tumor heterogeneity and dormancy are analyzed, along with strategies to mitigate these barriers, including novel therapeutics and targeted approaches. Ethical considerations and the integration of artificial intelligence in designing CSC-specific therapies are discussed as essential elements of future research. The manuscript advocates for a multi-disciplinary approach that combines innovative technologies, advanced therapeutics, and collaborative research to address the complexities of CSCs. By bridging existing gaps in knowledge and fostering advancements in personalized medicine, this review aims to guide the development of more effective cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Adil Farooq Wali
- Department of Medicinal Chemistry, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
2
|
Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells. Sci Rep 2021; 11:13297. [PMID: 34168259 PMCID: PMC8225828 DOI: 10.1038/s41598-021-92752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.
Collapse
|
3
|
Liu H, Tao H, Wang H, Yang Y, Yang R, Dai X, Ding X, Wu H, Chen S, Sun T. Doxycycline Inhibits Cancer Stem Cell-Like Properties via PAR1/FAK/PI3K/AKT Pathway in Pancreatic Cancer. Front Oncol 2021; 10:619317. [PMID: 33643917 PMCID: PMC7905084 DOI: 10.3389/fonc.2020.619317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer stem cells (CSCs) play an important role in the promotion of invasion and metastasis of pancreatic cancer. Protease activation receptor 1 (PAR1) is closely related to malignant progression of tumors, however, its effects on pancreatic cancer stem cell-like (CSC-like) properties formation have not been reported. In this work, the effects of PAR1 on pancreatic cancer stem cell-like (CSC-like) properties formation were studied. PAR1 overexpression can induce CSC-like properties in Aspc-1 cells, whereas interference of PAR1 in Panc-1 cells showed the contrary results. Data on patients with pancreatic cancer obtained from TCGA showed that high PAR1 expression and focal adhesion kinase (FAK) protein considerably affect the prognosis of patients. Further experiments showed that PAR1 could regulate FAK, PI3K, and AKT phosphorylation and the epithelial-mesenchymal transformation (EMT) in Aspc-1 and Panc-1 cells. Doxycycline, as a PAR1 inhibitor, could effectively inhibit the CSC-like properties of pancreatic cancer cells and the FAK/PI3K/AKT pathway activation. Doxycycline inhibits the growth of pancreatic cancer and enhances the treatment effect of 5-fluorouracil (5-FU) in Panc-1 xenograft mouse model. In conclusion, PAR1 promotes the CSC-like properties and EMT of pancreatic cancer cells via the FAK/PI3K/AKT pathway. Doxycycline inhibits the pancreatic cancer through the PAR1/FAK/PI3K/AKT pathway and enhances the therapeutic effect of 5-FU.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuyan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ru Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Haidong Wu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| |
Collapse
|
4
|
Samonig L, Loipetzberger A, Blöchl C, Rurik M, Kohlbacher O, Aberger F, Huber CG. Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells 2020; 9:E1397. [PMID: 32503348 PMCID: PMC7349116 DOI: 10.3390/cells9061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs), a small subset of the tumor bulk with highly malignant properties, are deemed responsible for tumor initiation, growth, metastasis, and relapse. In order to reveal molecular markers and determinants of their tumor-initiating properties, we enriched rare stem-like pancreatic tumor-initiating cells (TICs) by harnessing their clonogenic growth capacity in three-dimensional multicellular spheroid cultures. We compared pancreatic TICs isolated from three-dimensional tumor spheroid cultures with nontumor-initiating cells (non-TICs) enriched in planar cultures. Employing differential proteomics (PTX), we identified more than 400 proteins with significantly different expression in pancreatic TICs and the non-TIC population. By combining the unbiased PTX with mRNA expression analysis and literature-based predictions of pro-malignant functions, we nominated the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14) as well as galactin-3-binding protein LGALS3BP (MAC-2-BP) as putative determinants of pancreatic TICs. In silico pathway analysis followed by candidate-based RNA interference mediated loss-of-function analysis revealed a critical role of S100A8, S100A9, and LGALS3BP as molecular determinants of TIC proliferation, migration, and in vivo tumor growth. Our study highlights the power of combining unbiased proteomics with focused gene expression and functional analyses for the identification of novel key regulators of TICs, an approach that warrants further application to identify proteins and pathways amenable to drug targeting.
Collapse
Affiliation(s)
- Lisa Samonig
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Andrea Loipetzberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
| | - Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
5
|
Khosla R, Hemati H, Rastogi A, Ramakrishna G, Sarin SK, Trehanpati N. miR-26b-5p helps in EpCAM+cancer stem cells maintenance via HSC71/HSPA8 and augments malignant features in HCC. Liver Int 2019; 39:1692-1703. [PMID: 31276277 DOI: 10.1111/liv.14188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Targeting cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) is difficult because of their similarities with normal stem cells (NSCs). EpCAM can identify CSCs from EpCAM+AFP+HCC cases, but is also expressed on NSCs. We aimed to distinguish the two using integrated protein, mRNA and miRNA profiling. METHODS iTRAQ based protein profiling and Next Generation Sequencing (NGS) was performed on EpCAM+/EpCAM- cells isolated from HCC (Ep+CSC, Ep- HCC) and EpCAM+ cells from non-cancerous/non-cirrhotic control liver tissues (Ep+NSC). Validations were done using qRT-PCR, flowcytometry and western blotting followed by in vitro and in vivo functional studies. RESULTS 11 proteins were overexpressed (>3 fold) in Ep+CSCs compared to Ep- HCC and Ep+NSC cells. However, RNA-sequencing confirmed the Ep+CSC specific up-regulation of only HSPA8, HNRNPC, MPST and GAPDH mRNAs among these. Database search combined with miRNA profiling revealed Ep+ CSC specific down-regulation of 29 miRNAs targeting these four genes. Of these, only miR-26b-5p was found to target both HSPA8 and EpCAM. Validation of HSPA8 overexpression and miR-26b-5p down-regulation followed by linear regression analysis established a negative correlation between the two. Functional studies demonstrated that reduced miR-26b-5p expression increased the spheroid formation, migration, invasion and tumourigenicity of Ep+ CSCs. Furthermore, anti-miR-26b-5p increased the number of Ep+ CSCs with a concomitant overexpression of stemness genes and reduction of proapoptotic protein BBC3, which is a known substrate of HSPA8. CONCLUSION miR-26b-5p imparts metastatic properties and helps in maintenance of Ep+ CSCs via HSPA8. Thus, miR-26b-5p and HSPA8 could serve as molecular targets for selectively eliminating the Ep+ CSC population in human HCCs.
Collapse
Affiliation(s)
- Ritu Khosla
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Hamed Hemati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India.,Department of Biotechnology, Punjab University, Chandigarh, India
| | | | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, ILBS, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
6
|
Park J, Choi Y, Namkung J, Yi SG, Kim H, Yu J, Kim Y, Kwon MS, Kwon W, Oh DY, Kim SW, Jeong SY, Han W, Lee KE, Heo JS, Park JO, Park JK, Kim SC, Kang CM, Lee WJ, Lee S, Han S, Park T, Jang JY, Kim Y. Diagnostic performance enhancement of pancreatic cancer using proteomic multimarker panel. Oncotarget 2017; 8:93117-93130. [PMID: 29190982 PMCID: PMC5696248 DOI: 10.18632/oncotarget.21861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Due to its high mortality rate and asymptomatic nature, early detection rates of pancreatic ductal adenocarcinoma (PDAC) remain poor. We measured 1000 biomarker candidates in 134 clinical plasma samples by multiple reaction monitoring-mass spectrometry (MRM-MS). Differentially abundant proteins were assembled into a multimarker panel from a training set (n=684) and validated in independent set (n=318) from five centers. The level of panel proteins was also confirmed by immunoassays. The panel including leucine-rich alpha-2 glycoprotein (LRG1), transthyretin (TTR), and CA19-9 had a sensitivity of 82.5% and a specificity of 92.1%. The triple-marker panel exceeded the diagnostic performance of CA19-9 by more than 10% (AUCCA19-9 = 0.826, AUCpanel= 0.931, P < 0.01) in all PDAC samples and by more than 30% (AUCCA19-9 = 0.520, AUCpanel = 0.830, P < 0.001) in patients with normal range of CA19-9 (<37U/mL). Further, it differentiated PDAC from benign pancreatic disease (AUCCA19-9 = 0.812, AUCpanel = 0.892, P < 0.01) and other cancers (AUCCA19-9 = 0.796, AUCpanel = 0.899, P < 0.001). Overall, the multimarker panel that we have developed and validated in large-scale samples by MRM-MS and immunoassay has clinical applicability in the early detection of PDAC.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yonghwan Choi
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Junghyun Namkung
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Sung Gon Yi
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Hyunsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Jiyoung Yu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Min-Seok Kwon
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine and Cancer Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Eun Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Kyung Park
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Chang Moo Kang
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Jin Lee
- Center for Liver Cancer, National Cancer Center, Seoul, Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, Korea
| | - Sangjo Han
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Kasuga K, Katoh Y, Nagase K, Igarashi K. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells. Proteomics 2017; 17. [PMID: 28556466 PMCID: PMC5600086 DOI: 10.1002/pmic.201600420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
Abstract
Ultimately, cell biology seeks to define molecular mechanisms underlying cellular functions. However, heterogeneity within cell populations must be considered for optimal assay design and data interpretation. Although single-cell analyses are desirable for addressing this issue, practical considerations, including assay sensitivity, limit their broad application. Therefore, omics studies on small numbers of cells in defined subpopulations represent a viable alternative for elucidating cell functions at the molecular level. MS-based proteomics allows in-depth proteome exploration, although analyses of small numbers of cells have not been pursued due to loss during the multistep procedure involved. Thus, optimization of the proteomics workflow to facilitate the analysis of rare cells would be useful. Here, we report a microproteomics workflow for limited numbers of immune cells using non-damaging, microfluidic chip-based cell sorting and MS-based proteomics. Samples of 1000 or 100 THP-1 cells were sorted, and after enzymatic digestion, peptide mixtures were subjected to nano-LC-MS analysis. We achieved reasonable proteome coverage from as few as 100-sorted cells, and the data obtained from 1000-sorted cells were as comprehensive as those obtained using 1 μg of whole cell lysate. With further refinement, our approach could be useful for studying cell subpopulations or limited samples, such as clinical specimens.
Collapse
Affiliation(s)
- Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.,Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasutake Katoh
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Nagase
- Division of Medical Sciences, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
8
|
Gruber W, Scheidt T, Aberger F, Huber CG. Understanding cell signaling in cancer stem cells for targeted therapy - can phosphoproteomics help to reveal the secrets? Cell Commun Signal 2017; 15:12. [PMID: 28356110 PMCID: PMC5372284 DOI: 10.1186/s12964-017-0166-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cancer represents heterogeneous and aberrantly proliferative manifestations composed of (epi)genetically and phenotypically distinct cells with a common clonal origin. Cancer stem cells (CSC) make up a rare subpopulation with the remarkable capacity to initiate, propagate and spread a malignant disease. Furthermore, CSC show increased therapy resistance, thereby contributing to disease relapse. Elimination of CSC, therefore, is a crucial aim to design efficacious treatments for long-term survival of cancer patients. In this article, we highlight the nature of CSC and propose that phosphoproteomics based on unbiased high-performance liquid chromatography-mass spectrometry provides a powerful tool to decipher the molecular CSC programs. Detailed knowledge about the regulation of signaling processes in CSC is a prerequisite for the development of patient-tailored multi-modal treatments including the elimination of rare CSC. Main body Phosphorylation is a crucial post-translational modification regulating a plethora of both intra- and intercellular communication processes in normal and malignant cells. Small-molecule targeting of kinases has proven successful in the therapy, but the high rates of relapse and failure to stem malignant spread suggest that these kinase inhibitors largely spare CSC. Studying the kinetics of global phosphorylation patterns in an unbiased manner is, therefore, required to improve strategies and successful treatments within multi-modal therapeutic regimens by targeting the malignant behavior of CSC. The phosphoproteome comprises all phosphoproteins within a cell population that can be analyzed by phosphoproteomics, allowing the investigation of thousands of phosphorylation events. One major aspect is the perception of events underlying the activation and deactivation of kinases and phosphatases in oncogenic signaling pathways. Thus, not only can this tool be harnessed to better understand cellular processes such as those controlling CSC, but also applied to identify novel drug targets for targeted anti-CSC therapy. Conclusion State-of-the-art phosphoproteomics approaches focusing on single cell analysis have the potential to better understand oncogenic signaling in heterogeneous cell populations including rare, yet highly malignant CSC. By eliminating the influence of heterogeneity of populations, single-cell studies will reveal novel insights also into the inter- and intratumoral communication processes controlling malignant CSC and disease progression, laying the basis for improved rational combination treatments.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Tamara Scheidt
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| | - Christian G Huber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
9
|
Stidham RW, Wu J, Shi J, Lubman DM, Higgins PDR. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn's Disease. PLoS One 2017; 12:e0170506. [PMID: 28114331 PMCID: PMC5256928 DOI: 10.1371/journal.pone.0170506] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Reliable identification and quantitation of intestinal fibrosis in the setting of co-existing inflammation due to Crohn's disease (CD) is difficult. We aimed to identify serum biomarkers which distinguish inflammatory from fibrostenotic phenotypes of CD using serum glycoproteome profiles. METHODS Subjects with fibrostenotic and inflammation-predominant CD phenotypes (n = 20 per group) underwent comparison by quantitative serum glycoproteome profiles as part of a single tertiary care center cohort study. Following lectin elution, glycoproteins underwent liquid chromatography followed by tandem mass spectrometry. Identified candidate biomarkers of fibrosis were also measured by serum ELISA, a widely available technique. RESULTS Five (5) glycoproteins demonstrated a ≥20% relative abundance change in ≥80% of subjects, including cartilage oligomeric matrix protein (COMP) and hepatocyte growth factor activator (HGFA). COMP (431.7±112.7 vs. 348.7±90.5 ng/mL, p = 0.012) and HGFA (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.031) serum levels were elevated in the fibrostenotic vs. inflammatory CD groups using ELISA. Within the fibrostenotic group, intra-individual changes of candidate biomarkers revealed HGFA levels significantly declined following the resection of all diseased intestine (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.015); COMP levels were unchanged. Immunohistochemical staining confirmed the presence of COMP in the submucosa and muscularis of resected fibrostenotic tissue. CONCLUSIONS In this biomarker discovery study, several serum glycoproteins, specifically COMP and HGFA, differ between between predominately inflammatory and fibrostenotic CD phenotypes. The development of blood-based biomarkers of fibrosis would provide an important complement to existing prognostic tools in IBD, aiding decisions on therapeutic intensity and mechanism selection, surgery, and the monitoring of future anti-fibrotic therapies for CD.
Collapse
Affiliation(s)
- Ryan W. Stidham
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jing Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Jiaqi Shi
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - David M. Lubman
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Peter D. R. Higgins
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
10
|
Brandi J, Dalla Pozza E, Dando I, Biondani G, Robotti E, Jenkins R, Elliott V, Park K, Marengo E, Costello E, Scarpa A, Palmieri M, Cecconi D. Secretome protein signature of human pancreatic cancer stem-like cells. J Proteomics 2016; 136:1-12. [PMID: 26850699 DOI: 10.1016/j.jprot.2016.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/04/2016] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED Emerging research has demonstrated that pancreatic ductal adenocarcinoma (PDAC) contains a sub-population of cancer stem cells (CSCs) characterized by self-renewal, anchorage-independent-growth, long-term proliferation and chemoresistance. The secretome analysis of pancreatic CSCs has not yet been performed, although it may provide insight into tumour/microenvironment interactions and intracellular processes, as well as to identify potential biomarkers. To characterize the secreted proteins of pancreatic CSCs, we performed an iTRAQ-based proteomic analysis to compare the secretomes of Panc1 cancer stem-like cells (Panc1 CSCs) and parental cell line. A total of 72 proteins were found up-/down-regulated in the conditioned medium of Panc1 CSCs. The pathway analysis revealed modulation of vital physiological pathways including glycolysis, gluconeogenesis and pentose phosphate. Through ELISA immunoassays we analysed the presence of the three proteins most highly secreted by Panc1 CSCs (ceruloplasmin, galectin-3, and MARCKS) in sera of PDAC patient. ROC curve analysis suggests ceruloplasmin as promising marker for patients negative for CA19-9. Overall, our study provides a systemic secretome analysis of pancreatic CSCs revealing a number of secreted proteins which participate in pathological conditions including cancer differentiation, invasion and metastasis. They may serve as a valuable pool of proteins from which biomarkers and therapeutic targets can be identified. BIOLOGICAL SIGNIFICANCE The secretome of CSCs is a rich reservoir of biomarkers of cancer progression and molecular therapeutic targets, and thus is a topic of great interest for cancer research. The secretome analysis of pancreatic CSCs has not yet been performed. Recently, our group has demonstrated that Panc-1 CSCs isolated from parental cell line by using the CSC selective medium, represent a model of great importance to deepen the understanding of the biology of pancreatic adenocarcinoma. To our knowledge, this is the first proteomic study of pancreatic CSC secretome. We performed an iTRAQ-based analysis to compare the secretomes of Panc1 CSCs and Panc1 parental cell line and identified a total of 43 proteins secreted at higher level by pancreatic cancer stem cells. We found modulation of different vital physiological pathways (such as glycolysis and gluconeogenesis, pentose phosphate pathway) and the involvement of CSC secreted proteins (for example 72kDa type IV collagenase, galectin-3, alpha-actinin-4, and MARCKS) in pathological conditions including cancer differentiation, invasion and metastasis. By ELISA verification we found that MARCKS and ceruloplasmin discriminate between controls and PDAC patients; in addition ROC curve analyses indicate that MARCKS does not have diagnostic accuracy, while ceruloplasmin could be a promising marker only for patients negative for CA19-9. We think that the findings reported in our manuscript advance the understanding of the pathways implicated in tumourigenesis, metastasis and chemoresistance of pancreatic cancer, and also identify a pool of proteins from which novel candidate diagnostic and therapeutic biomarkers could be discovered.
Collapse
Affiliation(s)
- Jessica Brandi
- University of Verona, Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, Verona 37134, Italy
| | - Elisa Dalla Pozza
- University of Verona, Department of Life and Reproduction Sciences, Verona 37134, Italy
| | - Ilaria Dando
- University of Verona, Department of Life and Reproduction Sciences, Verona 37134, Italy
| | - Giulia Biondani
- University of Verona, Department of Life and Reproduction Sciences, Verona 37134, Italy
| | - Elisa Robotti
- University of Piemonte Orientale, Department of Sciences and Technological Innovation, Alessandria 15121, Italy
| | - Rosalind Jenkins
- University of Liverpool, MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Liverpool L69 3GE, United Kingdom
| | - Victoria Elliott
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Therapeutic Cancer Medicine, Liverpool L69 3GA, United Kingdom
| | - Kevin Park
- University of Liverpool, MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Liverpool L69 3GE, United Kingdom
| | - Emilio Marengo
- University of Piemonte Orientale, Department of Sciences and Technological Innovation, Alessandria 15121, Italy
| | - Eithne Costello
- NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Therapeutic Cancer Medicine, Liverpool L69 3GA, United Kingdom
| | - Aldo Scarpa
- University and Hospital Trust of Verona, Applied Research on Cancer Network (ARC-NET) and Department of Pathology and Diagnostics, Verona 37134, Italy
| | - Marta Palmieri
- University of Verona, Department of Life and Reproduction Sciences, Verona 37134, Italy.
| | - Daniela Cecconi
- University of Verona, Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, Verona 37134, Italy
| |
Collapse
|
11
|
Kim Y, Kang M, Han D, Kim H, Lee K, Kim SW, Kim Y, Park T, Jang JY, Kim Y. Biomarker Development for Intraductal Papillary Mucinous Neoplasms Using Multiple Reaction Monitoring Mass Spectrometry. J Proteome Res 2015; 15:100-13. [PMID: 26561977 DOI: 10.1021/acs.jproteome.5b00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a common precursor of pancreatic cancer (PC). Much clinical attention has been directed toward IPMNs due to the increase in the prevalence of PC. The diagnosis of IPMN depends primarily on a radiological examination, but the diagnostic accuracy of this tool is not satisfactory, necessitating the development of accurate diagnostic biomarkers for IPMN to prevent PC. Recently, high-throughput targeted proteomic quantification methods have accelerated the discovery of biomarkers, rendering them powerful platforms for the evolution of IPMN diagnostic biomarkers. In this study, a robust multiple reaction monitoring (MRM) pipeline was applied to discovery and verify IPMN biomarker candidates in a large cohort of plasma samples. Through highly reproducible MRM assays and a stringent statistical analysis, 11 proteins were selected as IPMN marker candidates with high confidence in 184 plasma samples, comprising a training (n = 84) and test set (n = 100). To improve the discriminatory power, we constructed a six-protein panel by combining marker candidates. The multimarker panel had high discriminatory power in distinguishing between IPMN and controls, including other benign diseases. Consequently, the diagnostic accuracy of IPMN can be improved dramatically with this novel plasma-based panel in combination with a radiological examination.
Collapse
Affiliation(s)
- Yikwon Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - MeeJoo Kang
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Dohyun Han
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Hyunsoo Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - KyoungBun Lee
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Sun-Whe Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Yongkang Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Taesung Park
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Jin-Young Jang
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Youngsoo Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| |
Collapse
|
12
|
Terp MG, Ditzel HJ. Application of proteomics in the study of rodent models of cancer. Proteomics Clin Appl 2014; 8:640-52. [DOI: 10.1002/prca.201300084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
13
|
Pan S, Chen R, Brentnall TA. Proteomics in Pancreatic Cancer Translational Research. MOLECULAR DIAGNOSTICS AND TREATMENT OF PANCREATIC CANCER 2014:197-219. [DOI: 10.1016/b978-0-12-408103-1.00009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1029] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
16
|
Kranenburg O, Emmink BL, Knol J, van Houdt WJ, Rinkes IHMB, Jimenez CR. Proteomics in studying cancer stem cell biology. Expert Rev Proteomics 2013; 9:325-36. [PMID: 22809210 DOI: 10.1586/epr.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J Proteomics 2012; 77:561-76. [PMID: 23043969 DOI: 10.1016/j.jprot.2012.09.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
In this study, a Veterinary Department repository composed by paired formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FrFr) sets of the same tissues, routinely archived in the typical conditions of a clinical setting, was exploited to perform a comparative evaluation of the results generated by GeLC-MS/MS (1-DE followed by in-gel digestion and LC-MS/MS) and spectral counting with the two types of archival samples. Therefore, two parallel differential proteomic studies were performed using 3 canine mammary carcinomas and 3 normal controls in a paired fashion (6 FrFr and 6 FFPE in total). As a result, the FrFr and FFPE differential proteomic datasets exhibited fair consistency in differential expression trends, according to protein molecular function, cellular localization, networks, and pathways. However, FFPE samples were globally slightly less informative, especially concerning the high-MW subproteome. As a further investigation, new insights into the molecular aspects of protein fixation and retrieval were obtained. In conclusion, archival FFPE samples can be reliably used for differential proteomics studies employing a spectral counting GeLC-MS/MS approach, although some typical biases need to be taken into account, and FrFr specimens (when available) should still be considered as the gold standard for clinical proteomics.
Collapse
|
18
|
Duan X, Li H, Chen H, Wang Q. Discrimination of colon cancer stem cells using noncanonical amino acid. Chem Commun (Camb) 2012; 48:9035-7. [PMID: 22842824 PMCID: PMC4821495 DOI: 10.1039/c2cc33776b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) may be responsible for tumor recurrence. Metabolic labelling of newly synthesized proteins with non-canonical amino acids allows us to discriminate CSCs in mixed populations due to the quiescent nature of these cells.
Collapse
Affiliation(s)
- Xinrui Duan
- Department of Chemistry and Biochemistry & Nanocenter, University of South Carolina, Columbia, SC 29208 (USA)
| | - Honglin Li
- Department of Chemistry and Biochemistry & Nanocenter, University of South Carolina, Columbia, SC 29208 (USA)
| | - Hexin Chen
- Department of Biology, University of South Carolina, Columbia, SC 29208 (USA)
| | - Qian Wang
- Department of Chemistry and Biochemistry & Nanocenter, University of South Carolina, Columbia, SC 29208 (USA)
| |
Collapse
|
19
|
Jaiswal KR, Xin HW, Anderson A, Wiegand G, Kim B, Miller T, Hari D, Ray S, Koizumi T, Rudloff U, Thorgeirsson SS, Avital I. Comparative testing of various pancreatic cancer stem cells results in a novel class of pancreatic-cancer-initiating cells. Stem Cell Res 2012; 9:249-60. [PMID: 22963768 DOI: 10.1016/j.scr.2012.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/08/2012] [Accepted: 08/06/2012] [Indexed: 12/18/2022] Open
Abstract
No systemic therapy is effective against pancreatic cancer (PC). Pancreatic cancer stem cells (PCSC) are hypothesized to account for therapeutic resistance. Several PCSC subpopulations were reported, each characterized by different markers. To be able to target PCSC, we sought to better define this putative heterogeneity. Therefore, we tested most of the known putative PCSC markers in established and fresh tumor cell lines. CD20, CD24, CD44, CD133, CD184 (CXCR4), CD326 (EpCam, ESA), Sox-2, OCT 3/4, and the side-population (SP) were tested in five PC cell lines, and the effects of confluency, hypoxia, radiation, and gemcitabine on the SP. The testing phase suggested several putative PCSC populations that were further tested and validated for their tumor-initiating capacity against known PCSC in 3 established and 1 fresh PC cell lines. Cell surface and intracellular markers showed significant variability among cell lines. SP was the only common marker in all cell lines and consistently less than 1%. SP response to confluence, hypoxia, radiation, and gemcitabine was inconsistent between cell lines. The initial testing phase suggested that SP/CD44-CD24-CD326+ cells might be a novel PCSC subpopulation. Tumor initiation capacity tests in nude mice confirmed their increased tumorigenicity over previously reported PCSC. Our data better define the heterogeneity of reported PCSC in cell lines tested in this study. We propose that prior to targeting PC via PCSC, one will need to gain more insight into this heterogeneity. Finally, we show that SP/CD44-CD24-CD326+ cells are a novel subpopulation of pancreatic cancer tumor initiating cells. Further mechanistic studies may lead to better targeting of PC via targeting this novel PCSC.
Collapse
Affiliation(s)
- Kshama R Jaiswal
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, Oyama M. Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome. PLoS One 2012; 7:e43398. [PMID: 22912867 PMCID: PMC3422224 DOI: 10.1371/journal.pone.0043398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome.
Collapse
Affiliation(s)
- Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyama-Nasu
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Ao-Kondo
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Cunningham R, Ma D, Li L. Mass Spectrometry-based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. FRONTIERS IN BIOLOGY 2012; 7:313-335. [PMID: 24504115 PMCID: PMC3913178 DOI: 10.1007/s11515-012-1218-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology. Proteomics technologies have evolved to produce large datasets of proteins or peptides involved in various biological and disease progression processes producing testable hypothesis for complex biological questions. This review provides an introduction and insight to relevant topics in proteomics and peptidomics including biological material selection, sample preparation, separation techniques, peptide fragmentation, post-translation modifications, quantification, bioinformatics, and biomarker discovery and validation. In addition, current literature and remaining challenges and emerging technologies for proteomics and peptidomics are presented.
Collapse
Affiliation(s)
- Robert Cunningham
- Department of Chemistry, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| | - Di Ma
- School of Pharmacy, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
- School of Pharmacy, University of Wisconsin-Madison, 777, Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
22
|
Sun C, Rosendahl AH, Ansari D, Andersson R. Proteome-based biomarkers in pancreatic cancer. World J Gastroenterol 2011; 17:4845-4852. [PMID: 22171124 PMCID: PMC3235626 DOI: 10.3748/wjg.v17.i44.4845] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, as a highly malignant cancer and the fourth cause of cancer-related death in world, is characterized by dismal prognosis, due to rapid disease progression, highly invasive tumour phenotype, and resistance to chemotherapy. Despite significant advances in treatment of the disease during the past decade, the survival rate is little improved. A contributory factor to the poor outcome is the lack of appropriate sensitive and specific biomarkers for early diagnosis. Furthermore, biomarkers for targeting, directing and assessing therapeutic intervention, as well as for detection of residual or recurrent cancer are also needed. Thus, the identification of adequate biomarkers in pancreatic cancer is of extreme importance. Recently, accompanying the development of proteomic technology and devices, more and more potential biomarkers have appeared and are being reported. In this review, we provide an overview of the role of proteome-based biomarkers in pancreatic cancer, including tissue, serum, juice, urine and cell lines. We also discuss the possible mechanism and prospects in the future. That information hopefully might be helpful for further research in the field.
Collapse
|
23
|
Pan S, Chen R, Stevens T, Bronner MP, May D, Tamura Y, McIntosh MW, Brentnall TA. Proteomics portrait of archival lesions of chronic pancreatitis. PLoS One 2011; 6:e27574. [PMID: 22132114 PMCID: PMC3223181 DOI: 10.1371/journal.pone.0027574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/19/2011] [Indexed: 12/11/2022] Open
Abstract
Chronic pancreatitis is a chronic inflammatory disorder of the pancreas. The etiology is multi-fold, but all lead to progressive scarring and loss of pancreatic function. Early diagnosis is difficult; and the understanding of the molecular events that underlie this progressive disease is limited. In this study, we investigated differential proteins associated with mild and severe chronic pancreatitis in comparison with normal pancreas and pancreatic cancer. Paraffin-embedded formalin-fixed tissues from five well-characterized specimens each of normal pancreas (NL), mild chronic pancreatitis (MCP), severe chronic pancreatitis (SCP) and pancreatic ductal adenocarcinoma (PDAC) were subjected to proteomic analysis using a “label-free” comparative approach. Our results show that the numbers of differential proteins increase substantially with the disease severity, from mild to severe chronic pancreatitis, while the number of dysregulated proteins is highest in pancreatic adenocarcinoma. Important functional groups and biological processes associated with chronic pancreatitis and cancer include acinar cell secretory proteins, pancreatic fibrosis/stellate cell activation, glycoproteins, and inflammatory proteins. Three differential proteins were selected for verification by immunohistochemistry, including collagen 14A1, lumican and versican. Further canonical pathway analysis revealed that acute phase response signal, prothrombin activation pathway, and pancreatic fibrosis/pancreatic stellate cell activation pathway were the most significant pathways involved in chronic pancreatitis, while pathways relating to metabolism were the most significant pathways in pancreatic adenocarcinoma. Our study reveals a group of differentially expressed proteins and the related pathways that may shed light on the pathogenesis of chronic pancreatitis and the common molecular events associated with chronic pancreatitis and pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SP); (TB)
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tyler Stevens
- Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Mary P. Bronner
- Department of Anatomic Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Damon May
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, Washington, United States of America
| | - Yasuko Tamura
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Martin W. McIntosh
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, Washington, United States of America
| | - Teresa A. Brentnall
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SP); (TB)
| |
Collapse
|
24
|
Dai L, He J, Liu Y, Byun J, Vivekanandan A, Pennathur S, Fan X, Lubman DM. Dose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor. Proteomics 2011; 11:4529-40. [PMID: 21932445 DOI: 10.1002/pmic.201000730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 11/11/2022]
Abstract
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation, a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation, as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data, possibly due to their crosstalk with Notch Signaling. Overall, this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs.
Collapse
Affiliation(s)
- Lan Dai
- Program of Bioinformatics, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Masuda T, Sugiyama N, Tomita M, Ishihama Y. Microscale Phosphoproteome Analysis of 10 000 Cells from Human Cancer Cell Lines. Anal Chem 2011; 83:7698-703. [DOI: 10.1021/ac201093g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Naoyuki Sugiyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yasushi Ishihama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Dai L, Liu Y, He J, Flack CG, Talsma CE, Crowley JG, Muraszko KM, Fan X, Lubman DM. Differential profiling studies of N-linked glycoproteins in glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor. Proteomics 2011; 11:4021-8. [PMID: 21898824 DOI: 10.1002/pmic.201100014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 07/20/2011] [Accepted: 07/29/2011] [Indexed: 12/28/2022]
Abstract
We have recently demonstrated that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post-translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N-linked glycoproteins from cell lysates using multi-lectin chromatography and label-free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC- and GSI-treated groups, respectively, filtered by a combination of decoy database searching and Trans-Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi-lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.
Collapse
Affiliation(s)
- Lan Dai
- Program of Bioinformatics, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Proteomics in pancreatic cancer research. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:365350. [PMID: 22084685 PMCID: PMC3200191 DOI: 10.1155/2011/365350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/13/2011] [Accepted: 06/29/2011] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer is a highly aggressive malignancy with a poor prognosis and deeply affects the life of people. Therefore, the earlier diagnosis and better treatments are urgently needed. In recent years, the proteomic technologies are well established and growing rapidly and have been widely applied in clinical applications, especially in pancreatic cancer research. In this paper, we attempt to discuss the development of current proteomic technologies and the application of proteomics to the field of pancreatic cancer research. This will explore the potential perspective in revealing pathogenesis, making the diagnosis earlier and treatment.
Collapse
|
28
|
Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K. Metastasis: new perspectives on an old problem. Mol Cancer 2011; 10:22. [PMID: 21342498 PMCID: PMC3052211 DOI: 10.1186/1476-4598-10-22] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 12/23/2022] Open
Abstract
Many hypotheses have been postulated to explain the intricate nature of the metastatic process, but none of them completely accounted for the actual biological and clinical observations. Consequently, metastasis still remains an open issue with only few metastasis-inducing proteins experimentally validated so far. Recently proposed novel metastatic model, where serial and parallel metastatic processes are adequately integrated, might help to bridge the current gap between experimental results and clinical observations. In addition, the identification, isolation and molecular characterization of cancer stem cells, a population of the cells within the tumour mass able to proliferate, self-renew and induce tumorigenesis, will shed new light on the complex molecular events mediating metastasis, invasion and resistance to therapy. Understanding the molecular basis of these tumour characteristics will usher in a new age of individualized cancer therapy. In this review article, we will provide a current overview of molecular mechanisms underpinning metastasis, and discuss recent findings in this field obtained by global molecular profiling strategies such as proteomics.
Collapse
|
29
|
Cancer stem cells in pancreatic cancer. Cancers (Basel) 2010; 2:1629-41. [PMID: 24281178 PMCID: PMC3837327 DOI: 10.3390/cancers2031629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/29/2010] [Accepted: 08/18/2010] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.
Collapse
|