1
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
2
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Balasubramaniam M, Ganne A, Mainali N, Pahal S, Ayyadevara S, Shmookler Reis RJ. Alzheimer's-specific brain amyloid interactome: Neural-network analysis of intra-aggregate crosslinking identifies novel drug targets. iScience 2024; 27:108745. [PMID: 38274404 PMCID: PMC10809092 DOI: 10.1016/j.isci.2023.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibrillary tangles. These aggregates are identified by the immunodetection of "seed" proteins (Aβ1-42 and hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly. Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid "contactomes" in SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, from which neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate formation and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential proteins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggregation. This approach derives dynamic consensus models of aggregate growth and architecture, implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.
Collapse
Affiliation(s)
| | - Akshatha Ganne
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Renzone G, Arena S, Scaloni A. Cross-linking reactions in food proteins and proteomic approaches for their detection. MASS SPECTROMETRY REVIEWS 2022; 41:861-898. [PMID: 34250627 DOI: 10.1002/mas.21717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Various protein cross-linking reactions leading to molecular polymerization and covalent aggregates have been described in processed foods. They are an undesired side effect of processes designed to reduce bacterial load, extend shelf life, and modify technological properties, as well as being an expected result of treatments designed to modify raw material texture and function. Although the formation of these products is known to affect the sensory and technological properties of foods, the corresponding cross-linking reactions and resulting protein polymers have not yet undergone detailed molecular characterization. This is essential for describing how their generation can be related to food processing conditions and quality parameters. Due to the complex structure of cross-linked species, bottom-up proteomic procedures developed to characterize various amino acid modifications associated with food processing conditions currently offer a limited molecular description of bridged peptide structures. Recent progress in cross-linking mass spectrometry for the topological characterization of protein complexes has facilitated the development of various proteomic methods and bioinformatic tools for unveiling bridged species, which can now also be used for the detailed molecular characterization of polymeric cross-linked products in processed foods. We here examine their benefits and limitations in terms of evaluating cross-linked food proteins and propose future scenarios for application in foodomics. They offer potential for understanding the protein cross-linking formation mechanisms in processed foods, and how the inherent beneficial properties of treated foodstuffs can be preserved or enhanced.
Collapse
Affiliation(s)
- Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| |
Collapse
|
5
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Shmookler Reis RJ, Atluri R, Balasubramaniam M, Johnson J, Ganne A, Ayyadevara S. "Protein aggregates" contain RNA and DNA, entrapped by misfolded proteins but largely rescued by slowing translational elongation. Aging Cell 2021; 20:e13326. [PMID: 33788386 PMCID: PMC8135009 DOI: 10.1111/acel.13326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
All neurodegenerative diseases feature aggregates, which usually contain disease-specific diagnostic proteins; non-protein constituents, however, have rarely been explored. Aggregates from SY5Y-APPSw neuroblastoma, a cell model of familial Alzheimer's disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized "contactome" comprising 11 subnetworks, centered on 24 high-connectivity hubs. Remarkably, all 24 are nucleic acid-binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer's and control aggregates. RNA fragments were mapped to the human genome by RNA-seq and DNA by ChIP-seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5-to 2.5-fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y-APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E-box/CLEAR motifs. We identified many G-quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid-binding proteins. After RNA-interference knockdown of the translational-procession factor EEF2 to suppress translation in SY5Y-APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.
Collapse
Affiliation(s)
- Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Ramani Atluri
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | | | - Jay Johnson
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Akshatha Ganne
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
7
|
Kukačka Z, Rosůlek M, Jelínek J, Slavata L, Kavan D, Novák P. LinX: A Software Tool for Uncommon Cross-Linking Chemistry. J Proteome Res 2021; 20:2021-2027. [PMID: 33657806 DOI: 10.1021/acs.jproteome.0c00858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.
Collapse
Affiliation(s)
- Zdeněk Kukačka
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Jan Jelínek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12000 Prague 2, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| |
Collapse
|
8
|
Matzinger M, Mechtler K. Cleavable Cross-Linkers and Mass Spectrometry for the Ultimate Task of Profiling Protein-Protein Interaction Networks in Vivo. J Proteome Res 2021; 20:78-93. [PMID: 33151691 PMCID: PMC7786381 DOI: 10.1021/acs.jproteome.0c00583] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) has matured into a potent tool to identify protein-protein interactions or to uncover protein structures in living cells, tissues, or organelles. The unique ability to investigate the interplay of proteins within their native environment delivers valuable complementary information to other advanced structural biology techniques. This Review gives a comprehensive overview of the current possible applications as well as the remaining limitations of the technique, focusing on cross-linking in highly complex biological systems like cells, organelles, or tissues. Thanks to the commercial availability of most reagents and advances in user-friendly data analysis, validation, and visualization tools, studies using XL-MS can, in theory, now also be utilized by nonexpert laboratories.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Karl Mechtler
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| |
Collapse
|
9
|
Cardon T, Franck J, Coyaud E, Laurent EMN, Damato M, Maffia M, Vergara D, Fournier I, Salzet M. Alternative proteins are functional regulators in cell reprogramming by PKA activation. Nucleic Acids Res 2020; 48:7864-7882. [PMID: 32324228 PMCID: PMC7641301 DOI: 10.1093/nar/gkaa277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial–mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.
Collapse
Affiliation(s)
- Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Estelle M N Laurent
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marina Damato
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| |
Collapse
|
10
|
Na S, Paek E. Computational methods in mass spectrometry-based structural proteomics for studying protein structure, dynamics, and interactions. Comput Struct Biotechnol J 2020; 18:1391-1402. [PMID: 32637038 PMCID: PMC7322682 DOI: 10.1016/j.csbj.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry (MS) has made enormous contributions to comprehensive protein identification and quantification in proteomics. MS is also gaining momentum for structural biology in a variety of ways, complementing conventional structural biology techniques. Here, we will review how MS-based techniques, such as hydrogen/deuterium exchange, covalent labeling, and chemical cross-linking, enable the characterization of protein structure, dynamics, and interactions, especially from a perspective of their data analyses. Structural information encoded by chemical probes in intact proteins is decoded by interpreting MS data at a peptide level, i.e., revealing conformational and dynamic changes in local regions of proteins. The structural MS data are not amenable to data analyses in traditional proteomics workflow, requiring dedicated software for each type of data. We first provide basic principles of data interpretation, including isotopic distribution and peptide sequencing. We then focus particularly on computational methods for structural MS data analyses and discuss outstanding challenges in a proteome-wide large scale analysis.
Collapse
Affiliation(s)
- Seungjin Na
- Dept. of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunok Paek
- Dept. of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
11
|
Zhao B, Zhuang J, Xu M, Liu T, Limpikirati P, Thayumanavan S, Vachet RW. Covalent Labeling with an α,β-Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Anal Chem 2020; 92:6637-6644. [PMID: 32250591 PMCID: PMC7207043 DOI: 10.1021/acs.analchem.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new covalent labeling (CL) reagent based on an α,β-unsaturated carbonyl scaffold has been developed for studying protein structure and protein-protein interactions when coupled with mass spectrometry. We show that this new reagent scaffold can react with up to 13 different types of residues on protein surfaces, thereby providing excellent structural resolution. To illustrate the value of this reagent scaffold, it is used to identify the residues involved in the protein-protein interface that is formed upon Zn(II) binding to the protein β-2-microglobulin. The modular design of the α,β-unsaturated carbonyl scaffold allows facile variation of the functional groups, enabling labeling kinetics and selectivity to be tuned. Moreover, by introducing isotopically enriched functional groups into the reagent structure, labeling sites can be more easily identified by MS and MS/MS. Overall, this reagent scaffold should be a valuable CL reagent for protein higher order structure characterization by MS.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Miaowei Xu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
12
|
Chakrabarty JK, Sadananda SC, Bhat A, Naik AJ, Ostwal DV, Chowdhury SM. High Confidence Identification of Cross-Linked Peptides by an Enrichment-Based Dual Cleavable Cross-Linking Technology and Data Analysis tool Cleave-XL. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:173-182. [PMID: 32031390 DOI: 10.1021/jasms.9b00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cleavable cross-linking technology requires further MS/MS of the cleavable fragments for unambiguous identification of cross-linked peptides. These spectra are sometimes very ambiguous due to the sensitivity and complex fragmentation pattern of the peptides with the cross-linked residues. We recently reported a dual cleavable cross-linking technology (DUCCT), which can enhance the confidence in the identification of cross-linked peptides. The heart of this strategy is a novel dual mass spectrometry cleavable cross linker that can be cleaved preferentially by two differential tandem mass spectrometry methods, collision induced dissociation and electron transfer dissociation (CID and ETD). Different signature ions from two different mass spectra for the same cross-linked peptide helped identify the cross-linked peptides with high confidence. In this study, we developed an enrichment-based photocleavable DUCCT (PC-DUCCT-biotin), where cross-linked products were enriched from biological samples using affinity purification, and subsequently, two sequential tandem (CID and ETD) mass spectrometry processes were utilized. Furthermore, we developed a prototype software called Cleave-XL to analyze cross-linked products generated by DUCCT. Photocleavable DUCCT was demonstrated in standard peptides and proteins. Efficiency of the software tools to search and compare CID and ETD data of photocleavable DUCCT biotin in standard peptides and proteins as well as regular DUCCT in protein complexes from immune cells were tested. The software is efficient in pinpointing cross-linked sites using CID and ETD cross-linking data. We believe this new DUCCT and associated software tool Cleave-XL will advance high confidence identification of protein cross-linking sites and automated identification of low-resolution protein structures.
Collapse
Affiliation(s)
- Jayanta K Chakrabarty
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sandhya C Sadananda
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Apeksha Bhat
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Aishwarya J Naik
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Dhanashri V Ostwal
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
13
|
Balasubramaniam M, Ayyadevara S, Ganne A, Kakraba S, Penthala NR, Du X, Crooks PA, Griffin ST, Shmookler Reis RJ. Aggregate Interactome Based on Protein Cross-linking Interfaces Predicts Drug Targets to Limit Aggregation in Neurodegenerative Diseases. iScience 2019; 20:248-264. [PMID: 31593839 PMCID: PMC6817627 DOI: 10.1016/j.isci.2019.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Diagnosis of neurodegenerative diseases hinges on "seed" proteins detected in disease-specific aggregates. These inclusions contain diverse constituents, adhering through aberrant interactions that our prior data indicate are nonrandom. To define preferential protein-protein contacts mediating aggregate coalescence, we created click-chemistry reagents that cross-link neighboring proteins within human, APPSw-driven, neuroblastoma-cell aggregates. These reagents incorporate a biotinyl group to efficiently recover linked tryptic-peptide pairs. Mass-spectroscopy outputs were screened for all possible peptide pairs in the aggregate proteome. These empirical linkages, ranked by abundance, implicate a protein-adherence network termed the "aggregate contactome." Critical hubs and hub-hub interactions were assessed by RNAi-mediated rescue of chemotaxis in aging nematodes, and aggregation-driving properties were inferred by multivariate regression and neural-network approaches. Aspirin, while disrupting aggregation, greatly simplified the aggregate contactome. This approach, and the dynamic model of aggregate accrual it implies, reveals the architecture of insoluble-aggregate networks and may reveal targets susceptible to interventions to ameliorate protein-aggregation diseases.
Collapse
Affiliation(s)
- Meenakshisundaram Balasubramaniam
- McClellan Veterans Medical Ctr., Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Srinivas Ayyadevara
- McClellan Veterans Medical Ctr., Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Akshatha Ganne
- Bioinformatics Program, University of Arkansas for Medical Sciences, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Samuel Kakraba
- Bioinformatics Program, University of Arkansas for Medical Sciences, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sue T Griffin
- McClellan Veterans Medical Ctr., Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J Shmookler Reis
- McClellan Veterans Medical Ctr., Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
14
|
Jones AX, Cao Y, Tang YL, Wang JH, Ding YH, Tan H, Chen ZL, Fang RQ, Yin J, Chen RC, Zhu X, She Y, Huang N, Shao F, Ye K, Sun RX, He SM, Lei X, Dong MQ. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat Commun 2019; 10:3911. [PMID: 31477730 PMCID: PMC6718413 DOI: 10.1038/s41467-019-11917-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially. Cross-linking mass spectrometry can provide insights into protein structures and interactions but its scope depends on the reactivity of the cross-linker. Here, the authors develop Arg-Arg and Lys-Arg cross-linkers, which provide structural information elusive to the widely used Lys-Lys cross-linkers.
Collapse
Affiliation(s)
- Alexander X Jones
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yong Cao
- School of Life Sciences, Peking University, 100871, Beijing, China.,National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yu-Liang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Hui Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zhen-Lin Chen
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Run-Qian Fang
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jili Yin
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rong-Chang Chen
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xing Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang She
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
15
|
Fang Z, Baghdady YZ, Schug KA, Chowdhury SM. Evaluation of Different Stationary Phases in the Separation of Inter-Cross-Linked Peptides. J Proteome Res 2019; 18:1916-1925. [PMID: 30786713 DOI: 10.1021/acs.jproteome.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry (MS) is becoming a routinely and widely used technique for depicting and constructing protein structures and protein interaction networks. One major challenge for cross-linking/MS is the determination of informative low-abundant inter-cross-linked products, generated within a sample of high complexity. A C18 stationary phase is the conventional means for reversed-phase (RP) separation of inter-cross-linked peptides. Various RP stationary phases, which provide different selectivities and retentions, have been developed as alternatives to C18 stationary phases. In this study, two phenyl-based columns, biphenyl and fluorophenyl, were investigated and compared with a C18 phase for separating BS3 (bis(sulfosuccinimidyl)suberate) cross-linked bovine serum albumin (BSA) and myoglobin by bottom-up proteomics. Fractions from the three columns were collected and analyzed in a linear ion trap (LIT) mass spectrometer for improving detection of low abundant inter-cross-linked peptides. Among these three columns, the fluorophenyl column provides additional ion-exchange interaction and exhibits unique retention in separating the cross-linked peptides. The fractioned data was analyzed in pLink, showing the fluorophenyl column consistently obtained more inter-cross-linked peptide identifications than both C18 and biphenyl columns. For the BSA cross-linked sample, the identified inter-cross-linked peptide numbers of the fluorophenyl to C18 column are 136 to 102 in "low confident" results and 11 to 6 in "high confident" results. The fluorophenyl column could potentially be a better alternative for targeting the low stoichiometric inter-cross-linked peptides.
Collapse
Affiliation(s)
- Zixiang Fang
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Yehia Z Baghdady
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Kevin A Schug
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
16
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat Struct Mol Biol 2018; 25:1000-1008. [PMID: 30374081 DOI: 10.1038/s41594-018-0147-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 01/11/2023]
Abstract
Over the past decade, cross-linking mass spectrometry (CLMS) has developed into a robust and flexible tool that provides medium-resolution structural information. CLMS data provide a measure of the proximity of amino acid residues and thus offer information on the folds of proteins and the topology of their complexes. Here, we highlight notable successes of this technique as well as common pipelines. Novel CLMS applications, such as in-cell cross-linking, probing conformational changes and tertiary-structure determination, are now beginning to make contributions to molecular biology and the emerging fields of structural systems biology and interactomics.
Collapse
|
18
|
Lu L, Millikin RJ, Solntsev SK, Rolfs Z, Scalf M, Shortreed MR, Smith LM. Identification of MS-Cleavable and Noncleavable Chemically Cross-Linked Peptides with MetaMorpheus. J Proteome Res 2018; 17:2370-2376. [PMID: 29793340 DOI: 10.1021/acs.jproteome.8b00141] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein chemical cross-linking combined with mass spectrometry has become an important technique for the analysis of protein structure and protein-protein interactions. A variety of cross-linkers are well developed, but reliable, rapid, and user-friendly tools for large-scale analysis of cross-linked proteins are still in need. Here we report MetaMorpheusXL, a new search module within the MetaMorpheus software suite that identifies both MS-cleavable and noncleavable cross-linked peptides in MS data. MetaMorpheusXL identifies MS-cleavable cross-linked peptides with an ion-indexing algorithm, which enables an efficient large database search. The identification does not require the presence of signature fragment ions, an advantage compared with similar programs such as XlinkX. One complication associated with the need for signature ions from cleavable cross-linkers such as DSSO (disuccinimidyl sulfoxide) is the requirement for multiple fragmentation types and energy combinations, which is not necessary for MetaMorpheusXL. The ability to perform proteome-wide analysis is another advantage of MetaMorpheusXL compared with programs such as MeroX and DXMSMS. MetaMorpheusXL is also faster than other currently available MS-cleavable cross-link search software programs. It is imbedded in MetaMorpheus, an open-source and freely available software suite that provides a reliable, fast, user-friendly graphical user interface that is readily accessible to researchers.
Collapse
|
19
|
Chu F, Thornton DT, Nguyen HT. Chemical cross-linking in the structural analysis of protein assemblies. Methods 2018; 144:53-63. [PMID: 29857191 DOI: 10.1016/j.ymeth.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, United States.
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
20
|
Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat Protoc 2018; 13:431-458. [PMID: 29388937 DOI: 10.1038/nprot.2017.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cross-linking coupled with mass spectrometry (XL-MS) has emerged as a powerful strategy for the identification of protein-protein interactions, characterization of interaction regions, and obtainment of structural information on proteins and protein complexes. In XL-MS, proteins or complexes are covalently stabilized with cross-linkers and digested, followed by identification of the cross-linked peptides by tandem mass spectrometry (MS/MS). This provides spatial constraints that enable modeling of protein (complex) structures and regions of interaction. However, most XL-MS approaches are not capable of differentiating intramolecular from intermolecular links in multimeric complexes, and therefore they cannot be used to study homodimer interfaces. We have recently developed an approach that overcomes this limitation by stable isotope-labeling of one of the two monomers, thereby creating a homodimer with one 'light' and one 'heavy' monomer. Here, we describe a step-by-step protocol for stable isotope-labeling, followed by controlled denaturation and refolding in the presence of the wild-type protein. The resulting light-heavy dimers are cross-linked, digested, and analyzed by mass spectrometry. We show how to quantitatively analyze the corresponding data with SIM-XL, an XL-MS software with a module tailored toward the MS/MS data from homodimers. In addition, we provide a video tutorial of the data analysis with this protocol. This protocol can be performed in ∼14 d, and requires basic biochemical and mass spectrometry skills.
Collapse
|
21
|
Piotrowski C, Sinz A. Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:101-121. [PMID: 30617826 DOI: 10.1007/978-981-13-2200-6_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the last two decades, cross-linking combined with mass spectrometry (MS) has evolved as a valuable tool to gain structural insights into proteins and protein assemblies. Structural information is obtained by introducing covalent connections between amino acids that are in spatial proximity in proteins and protein complexes. The distance constraints imposed by the cross-linking reagent provide information on the three-dimensional arrangement of the covalently connected amino acid residues and serve as basis for de-novo or homology modeling approaches. As cross-linking/MS allows investigating protein 3D-structures and protein-protein interactions not only in-vitro, but also in-vivo, it is especially appealing for studying protein systems in their native environment. In this chapter, we describe the principles of cross-linking/MS and illustrate its value for investigating protein 3D-structures and for unraveling protein interaction networks.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
22
|
Yu F, Li N, Yu W. Exhaustively Identifying Cross-Linked Peptides with a Linear Computational Complexity. J Proteome Res 2017; 16:3942-3952. [PMID: 28825304 DOI: 10.1021/acs.jproteome.7b00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemical cross-linking coupled to mass spectrometry is a powerful tool to study protein-protein interactions and protein conformations. Two linked peptides are ionized and fragmented to produce a tandem mass spectrum. In such an experiment, a tandem mass spectrum contains ions from two peptides. The peptide identification problem becomes a peptide-peptide pair identification problem. Currently, most tools do not search all possible pairs due to the quadratic time complexity. Consequently, missed findings are unavoidable. In our previous work, we developed a tool named ECL to search all pairs of peptides exhaustively. Unfortunately, it is very slow due to the quadratic computational complexity, especially when the database is large. Furthermore, ECL uses a score function without statistical calibration, while researchers1-3 have proposed that it is inappropriate to directly compare uncalibrated scores because different spectra have different random score distributions. Here we propose an advanced version of ECL, named ECL2. It achieves a linear time and space complexity by taking advantage of the additive property of a score function. It can search a data set containing tens of thousands of spectra against a database containing thousands of proteins in a few hours. Comparison with other five state-of-the-art tools shows that ECL2 is much faster than pLink, StavroX, ProteinProspector, and ECL. Kojak is the only one that is faster than ECL2, but Kojak does not exhaustively search all possible peptide pairs. The comparison shows that ECL2 has the highest sensitivity among the state-of-the-art tools. The experiment using a large-scale in vivo cross-linking data set demonstrates that ECL2 is the only tool that can find the peptide-spectrum matches (PSMs) passing the false discovery rate/q-value threshold. The result illustrates that the exhaustive search and a well-calibrated score function are useful to find PSMs from a huge search space.
Collapse
Affiliation(s)
- Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology , Hong Kong, China.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Hong Kong, China.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Hong Kong, China
| |
Collapse
|
23
|
Chakrabarty JK, Naik AG, Fessler MB, Munske GR, Chowdhury SM. Differential Tandem Mass Spectrometry-Based Cross-Linker: A New Approach for High Confidence in Identifying Protein Cross-Linking. Anal Chem 2016; 88:10215-10222. [PMID: 27649375 DOI: 10.1021/acs.analchem.6b02886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemical cross-linking and mass spectrometry are now widely used to analyze large-scale protein-protein interactions. The major challenge in cross-linking approaches is the complexity of the mass spectrometric data. New approaches are required that can identify cross-linked peptides with high-confidence and establish a user-friendly analysis protocol for the biomedical scientific community. Here, we introduce a novel cross-linker that can be selectively cleaved in the gas phase using two differential tandem mass-spectrometric fragmentation methods, such as collision-induced or electron transfer dissociation (CID and ETD). This technique produces two signature mass spectra of the same cross-linked peptide, thereby producing high confidence in identifying the sites of interaction. Further tandem mass spectrometry can also give additional confidence on the peptide sequences. We demonstrate a proof-of-concept for this method using standard peptides and proteins. Peptides and proteins were cross-linked and their fragmentation characteristics were analyzed using CID and ETD tandem mass spectrometry. Two sequential cleavages unambiguously identified cross-linked peptides. In addition, the labeling efficiency of the new cross-linker was evaluated in macrophage immune cells after stimulation with the microbial ligand lipopolysaccharide and subsequent pulldown experiments with biotin-avidin affinity chromatography. We believe this strategy will help advance insights into the structural biology and systems biology of cell signaling.
Collapse
Affiliation(s)
| | | | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH , Research Triangle Park, North Carolina 27709, United States
| | - Gerhard R Munske
- Laboratory of Bioanalysis, Washington State University , Pullman, Washington 98195, United States
| | | |
Collapse
|
24
|
Yu F, Li N, Yu W. ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database. BMC Bioinformatics 2016; 17:217. [PMID: 27206479 PMCID: PMC4874008 DOI: 10.1186/s12859-016-1073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/07/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemical cross-linking combined with mass spectrometry (CX-MS) is a high-throughput approach to studying protein-protein interactions. The number of peptide-peptide combinations grows quadratically with respect to the number of proteins, resulting in a high computational complexity. Widely used methods including xQuest (Rinner et al., Nat Methods 5(4):315-8, 2008; Walzthoeni et al., Nat Methods 9(9):901-3, 2012), pLink (Yang et al., Nat Methods 9(9):904-6, 2012), ProteinProspector (Chu et al., Mol Cell Proteomics 9:25-31, 2010; Trnka et al., 13(2):420-34, 2014) and Kojak (Hoopmann et al., J Proteome Res 14(5):2190-198, 2015) avoid searching all peptide-peptide combinations by pre-selecting peptides with heuristic approaches. However, pre-selection procedures may cause missing findings. The most intuitive approach is searching all possible candidates. A tool that can exhaustively search a whole database without any heuristic pre-selection procedure is therefore desirable. RESULTS We have developed a cross-linked peptides identification tool named ECL. It can exhaustively search a whole database in a reasonable period of time without any heuristic pre-selection procedure. Tests showed that searching a database containing 5200 proteins took 7 h. ECL identified more non-redundant cross-linked peptides than xQuest, pLink, and ProteinProspector. Experiments showed that about 30 % of these additional identified peptides were not pre-selected by Kojak. We used protein crystal structures from the protein data bank to check the intra-protein cross-linked peptides. Most of the distances between cross-linking sites were smaller than 30 Å. CONCLUSIONS To the best of our knowledge, ECL is the first tool that can exhaustively search all candidates in cross-linked peptides identification. The experiments showed that ECL could identify more peptides than xQuest, pLink, and ProteinProspector. A further analysis indicated that some of the additional identified results were thanks to the exhaustive search.
Collapse
Affiliation(s)
- Fengchao Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Weichuan Yu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
25
|
Giese SH, Fischer L, Rappsilber J. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides. Mol Cell Proteomics 2016; 15:1094-104. [PMID: 26719564 PMCID: PMC4813691 DOI: 10.1074/mcp.m115.049296] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Cross-linking/mass spectrometry resolves protein-protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers.
Collapse
Affiliation(s)
- Sven H Giese
- From the ‡Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Lutz Fischer
- §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- From the ‡Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; §Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
26
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
27
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
28
|
Tran BQ, Goodlett DR, Goo YA. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:123-9. [PMID: 26025770 DOI: 10.1016/j.bbapap.2015.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 01/12/2023]
Abstract
For the analysis of protein-protein interactions and protein conformations, cross-linking coupled with mass spectrometry (CXMS) has become an essential tool in recent years. A variety of cross-linking reagents are used to covalently link interacting amino acids to identify protein-binding partners. The spatial proximity of cross-linked amino acid residues is used to elucidate structural models of protein complexes. The main challenges for mapping protein-protein interaction are low stoichiometry and low frequency of cross-linked peptides relative to unmodified linear peptides as well as accurate and efficient matches to corresponding peptide sequences with low false discovery rates for identifying the site of cross-link. We evaluate the current state of chemical cross-linking and mass spectrometry applications with the special emphasis on the recent development of informatics data processing and analysis tools that help complexity of interpreting CXMS data. This article is part of a Special Issue entitled:Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Bao Quoc Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
29
|
Hoopmann MR, Zelter A, Johnson RS, Riffle M, MacCoss MJ, Davis TN, Moritz RL. Kojak: efficient analysis of chemically cross-linked protein complexes. J Proteome Res 2015; 14:2190-8. [PMID: 25812159 DOI: 10.1021/pr501321h] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies; however, complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms and can identify cross-linked peptides using many different chemical cross-linkers with or without heavy isotope labels. Kojak was used to analyze both novel and existing data sets and was compared to existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms and, equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing data sets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.
Collapse
Affiliation(s)
- Michael R Hoopmann
- †Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Alex Zelter
- ‡Department of Biochemistry, University of Washington, 1705 North East Pacific Street, Seattle, Washington 98195, United States
| | - Richard S Johnson
- §Department of Genome Sciences, University of Washington, 3720 15th Avenue North East, Seattle, Washington 98195, United States
| | - Michael Riffle
- ‡Department of Biochemistry, University of Washington, 1705 North East Pacific Street, Seattle, Washington 98195, United States
| | - Michael J MacCoss
- §Department of Genome Sciences, University of Washington, 3720 15th Avenue North East, Seattle, Washington 98195, United States
| | - Trisha N Davis
- ‡Department of Biochemistry, University of Washington, 1705 North East Pacific Street, Seattle, Washington 98195, United States
| | - Robert L Moritz
- †Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
30
|
Fan SB, Meng JM, Lu S, Zhang K, Yang H, Chi H, Sun RX, Dong MQ, He SM. Using pLink to Analyze Cross-Linked Peptides. ACTA ACUST UNITED AC 2015; 49:8.21.1-8.21.19. [PMID: 25754995 DOI: 10.1002/0471250953.bi0821s49] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
pLink is a search engine for high-throughput identification of cross-linked peptides from their tandem mass spectra, which is the data-analysis step in chemical cross-linking of proteins coupled with mass spectrometry analysis. pLink has accumulated more than 200 registered users from all over the world since its first release in 2012. After 2 years of continual development, a new version of pLink has been released, which is at least 40 times faster, more versatile, and more user-friendly. Also, the function of the new pLink has been expanded to identifying endogenous protein cross-linking sites such as disulfide bonds and SUMO (Small Ubiquitin-like MOdifier) modification sites. Integrated into the new version are two accessory tools: pLabel, to annotate spectra of cross-linked peptides for visual inspection and publication, and pConfig, to assist users in setting up search parameters. Here, we provide detailed guidance on running a database search for identification of protein cross-links using the 2014 version of pLink.
Collapse
Affiliation(s)
- Sheng-Bo Fan
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jia-Ming Meng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, China
| | - Kun Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Rui-Xiang Sun
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| |
Collapse
|
31
|
Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schäfer M, Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:83-97. [PMID: 25261217 DOI: 10.1007/s13361-014-1001-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/03/2023]
Abstract
CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at www.StavroX.com .
Collapse
Affiliation(s)
- Michael Götze
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany,
| | | | | | | | | | | |
Collapse
|
32
|
Petrotchenko EV, Makepeace KA, Borchers CH. DXMSMS Match Program for Automated Analysis of LC‐MS/MS Data Obtained Using Isotopically Coded CID‐Cleavable Cross‐Linking Reagents. ACTA ACUST UNITED AC 2014; 48:8.18.1-8.18.19. [DOI: 10.1002/0471250953.bi0818s48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Evgeniy V. Petrotchenko
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
| | - Karl A.T. Makepeace
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
| | - Christoph H. Borchers
- University of Victoria – Genome British Columbia Proteomics Centre, University of Victoria Victoria Canada
- Department of Biochemistry & Microbiology, University of Victoria, University of Victoria Victoria Canada
| |
Collapse
|
33
|
Pereira MBM, Santos AM, Gonçalves DC, Cardoso AC, Consonni SR, Gozzo FC, Oliveira PS, Pereira AHM, Figueiredo AR, Tiroli-Cepeda AO, Ramos CHI, de Thomaz AA, Cesar CL, Franchini KG. αB-crystallin interacts with and prevents stress-activated proteolysis of focal adhesion kinase by calpain in cardiomyocytes. Nat Commun 2014; 5:5159. [PMID: 25319025 DOI: 10.1038/ncomms6159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022] Open
Abstract
Focal adhesion kinase (FAK) contributes to cellular homeostasis under stress conditions. Here we show that αB-crystallin interacts with and confers protection to FAK against calpain-mediated proteolysis in cardiomyocytes. A hydrophobic patch mapped between helices 1 and 4 of the FAK FAT domain was found to bind to the β4-β8 groove of αB-crystallin. Such an interaction requires FAK tyrosine 925 and is enhanced following its phosphorylation by Src, which occurs upon FAK stimulation. αB-crystallin silencing results in calpain-dependent FAK depletion and in the increased apoptosis of cardiomyocytes in response to mechanical stress. FAK overexpression protects cardiomyocytes depleted of αB-crystallin against the stretch-induced apoptosis. Consistently, load-induced apoptosis is blunted in the hearts from cardiac-specific FAK transgenic mice transiently depleted of αB-crystallin by RNA interference. These studies define a role for αB-crystallin in controlling FAK function and cardiomyocyte survival through the prevention of calpain-mediated degradation of FAK.
Collapse
Affiliation(s)
- Michelle B M Pereira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Aline M Santos
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Danieli C Gonçalves
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Alisson C Cardoso
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Sílvio R Consonni
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Fabio C Gozzo
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Paulo S Oliveira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Ana Helena M Pereira
- Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil
| | - Alana R Figueiredo
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ana O Tiroli-Cepeda
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Carlos H I Ramos
- Chemistry Institute, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - André A de Thomaz
- Gleb Wataghin Physics Institute, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Carlos L Cesar
- Gleb Wataghin Physics Institute, University of Campinas, Campinas, São Paulo 13083-859, Brazil
| | - Kleber G Franchini
- 1] Brazilian National Laboratory for Biosciences, Center for Research in Energy and Materials, Campinas, São Paulo 13084-971, Brazil [2] Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, São Paulo 13081-970, Brazil
| |
Collapse
|
34
|
Pettelkau J, Ihling CH, Frohberg P, van Werven L, Jahn O, Sinz A. Reliable identification of cross-linked products in protein interaction studies by 13C-labeled p-benzoylphenylalanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1628-1641. [PMID: 25031183 DOI: 10.1007/s13361-014-0944-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
We describe the use of the (13)C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a (13)C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.
Collapse
Affiliation(s)
- Jens Pettelkau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
35
|
Clavier S, Du X, Sagan S, Bolbach G, Sachon E. An integrated cross-linking-MS approach to investigate cell penetrating peptides interacting partners. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Street TO, Zeng X, Pellarin R, Bonomi M, Sali A, Kelly MJS, Chu F, Agard DA. Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone. J Mol Biol 2014; 426:2393-404. [PMID: 24726919 PMCID: PMC5322795 DOI: 10.1016/j.jmb.2014.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022]
Abstract
Hsp90 is a conformationally dynamic molecular chaperone known to promote the folding and activation of a broad array of protein substrates ("clients"). Hsp90 is believed to preferentially interact with partially folded substrates, and it has been hypothesized that the chaperone can significantly alter substrate structure as a mechanism to alter the substrate functional state. However, critically testing the mechanism of substrate recognition and remodeling by Hsp90 has been challenging. Using a partially folded protein as a model system, we find that the bacterial Hsp90 adapts its conformation to the substrate, forming a binding site that spans the middle and C-terminal domains of the chaperone. Cross-linking and NMR measurements indicate that Hsp90 binds to a large partially folded region of the substrate and significantly alters both its local and long-range structure. These findings implicate Hsp90's conformational dynamics in its ability to bind and remodel partially folded proteins. Moreover, native-state hydrogen exchange indicates that Hsp90 can also interact with partially folded states only transiently populated from within a thermodynamically stable, native-state ensemble. These results suggest a general mechanism by which Hsp90 can recognize and remodel native proteins by binding and remodeling partially folded states that are transiently sampled from within the native ensemble.
Collapse
Affiliation(s)
- Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA.
| | - Xiaohui Zeng
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Bonomi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
37
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
38
|
Holding AN, Lamers MH, Stephens E, Skehel JM. Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples. J Proteome Res 2013; 12:5923-33. [PMID: 24010795 PMCID: PMC3859183 DOI: 10.1021/pr4003867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Chemical cross-linking
of proteins combined with mass spectrometry
provides an attractive and novel method for the analysis of native
protein structures and protein complexes. Analysis of the data however
is complex. Only a small number of cross-linked peptides are produced
during sample preparation and must be identified against a background
of more abundant native peptides. To facilitate the search and identification
of cross-linked peptides, we have developed a novel software suite,
named Hekate. Hekate is a suite of tools that address the challenges
involved in analyzing protein cross-linking experiments when combined
with mass spectrometry. The software is an integrated pipeline for
the automation of the data analysis workflow and provides a novel
scoring system based on principles of linear peptide analysis. In
addition, it provides a tool for the visualization of identified cross-links
using three-dimensional models, which is particularly useful when
combining chemical cross-linking with other structural techniques.
Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural
elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight
into the previously uncharacterized C-terminal domain of the protein.
Collapse
Affiliation(s)
- Andrew N Holding
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
39
|
da Silva VCH, Cagliari TC, Lima TB, Gozzo FC, Ramos CHI. Conformational and functional studies of a cytosolic 90 kDa heat shock protein Hsp90 from sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:16-22. [PMID: 23619240 DOI: 10.1016/j.plaphy.2013.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Hsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The in vivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and in vitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
40
|
Liu M, Zhang Z, Zang T, Spahr C, Cheetham J, Ren D, Sunny Zhou Z. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry. Anal Chem 2013; 85:5900-8. [PMID: 23634697 PMCID: PMC3691076 DOI: 10.1021/ac400666p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterization of protein cross-linking, particularly without prior knowledge of the chemical nature and site of cross-linking, poses a significant challenge, because of their intrinsic structural complexity and the lack of a comprehensive analytical approach. Toward this end, we have developed a generally applicable workflow-XChem-Finder-that involves four stages: (1) detection of cross-linked peptides via (18)O-labeling at C-termini; (2) determination of the putative partial sequences of each cross-linked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search; (3) extension to full sequences based on protease specificity, the unique combination of mass, and other constraints; and (4) deduction of cross-linking chemistry and site. The mass difference between the sum of two putative full-length peptides and the cross-linked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross-linking. Combined with sequence restraint from MS/MS data, plausible cross-linking chemistry and site were inferred, and ultimately confirmed, by matching with all data. Applying our approach to a stressed IgG2 antibody, 10 cross-linked peptides were discovered and found to be connected via thioethers originating from disulfides at locations that had not been previously recognized. Furthermore, once the cross-link chemistry was revealed, a targeted cross-link search yielded 4 additional cross-linked peptides that all contain the C-terminus of the light chain.
Collapse
Affiliation(s)
- Min Liu
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Zhongqi Zhang
- Process and Product Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Chris Spahr
- Biologic Optimization, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Janet Cheetham
- Analytical Research and Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Da Ren
- Process and Product Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
41
|
Zybailov BL, Glazko GV, Jaiswal M, Raney KD. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives. ACTA ACUST UNITED AC 2013; 6:001. [PMID: 25045217 PMCID: PMC4101816 DOI: 10.4172/jpb.s2-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make such a leap.
Collapse
Affiliation(s)
- Boris L Zybailov
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Galina V Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mihir Jaiswal
- UALR/UAMS Joint Bioinformatics Program, University of Arkansas Little Rock, Little Rock, AR, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
42
|
Abstract
Proteins are a remarkable class of molecules that exhibit wide diversity of shapes or topological features that underpin protein interactions and give rise to biological function. In addition to quantitation of abundance levels of proteins in biological systems under a variety of conditions, the field of proteome research has as a primary mission the assignment of function for proteins and if possible, illumination of factors that enable function. For many years, chemical cross-linking methods have been used to provide structural data on single purified proteins and purified protein complexes. However, these methods also offer the alluring possibility to extend capabilities to complex biological samples such as cell lysates or intact living cells where proteins may exhibit native topological features that do not exist in purified form. Recent efforts are beginning to provide glimpses of protein complexes and topologies in cells that suggest continued development will yield novel capabilities to view functional topological features of many proteins and complexes as they exist in cells, tissues, or other complex samples. This review will describe rationale, challenges, and a few success stories along the path of development of cross-linking technologies for measurement of in vivo protein interaction topologies.
Collapse
Affiliation(s)
- James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Watson AA, Mahajan P, Mertens HD, Deery MJ, Zhang W, Pham P, Du X, Bartke T, Zhang W, Edlich C, Berridge G, Chen Y, Burgess-Brown NA, Kouzarides T, Wiechens N, Owen-Hughes T, Svergun DI, Gileadi O, Laue ED. The PHD and chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4. J Mol Biol 2012; 422:3-17. [PMID: 22575888 PMCID: PMC3437443 DOI: 10.1016/j.jmb.2012.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 01/23/2023]
Abstract
The NuRD (nucleosome remodeling and deacetylase) complex serves as a crucial epigenetic regulator of cell differentiation, proliferation, and hematopoietic development by coupling the deacetylation and demethylation of histones, nucleosome mobilization, and the recruitment of transcription factors. The core nucleosome remodeling function of the mammalian NuRD complex is executed by the helicase-domain-containing ATPase CHD4 (Mi-2β) subunit, which also contains N-terminal plant homeodomain (PHD) and chromo domains. The mode of regulation of chromatin remodeling by CHD4 is not well understood, nor is the role of its PHD and chromo domains. Here, we use small-angle X-ray scattering, nucleosome binding ATPase and remodeling assays, limited proteolysis, cross-linking, and tandem mass spectrometry to propose a three-dimensional structural model describing the overall shape and domain interactions of CHD4 and discuss the relevance of these for regulating the remodeling of chromatin by the NuRD complex.
Collapse
Key Words
- chd, chromo domain helicase dna binding
- nurd, nucleosome remodeling and deacetylase
- phd, plant homeodomain
- saxs, small-angle x-ray scattering
- lc–ms/ms, liquid chromatography–tandem mass spectrometry
- duf, domain of unknown function
- tev, tobacco etch virus
- hrp, horseradish peroxidase
- bsa, bovine serum albumin
- bistris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol
- nurd complex
- chromatin remodeling
- chromo domain helicase dna-binding protein 4
- histone
- transcriptional regulation
Collapse
Affiliation(s)
| | - Pravin Mahajan
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Haydyn D.T. Mertens
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, Germany
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Wenchao Zhang
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28023, USA
| | - Peter Pham
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28023, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28023, USA
| | - Till Bartke
- The Gurdon Institute, Department of Pathology, Cambridge, UK
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Christian Edlich
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Georgina Berridge
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Yun Chen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicola A. Burgess-Brown
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Tony Kouzarides
- The Gurdon Institute, Department of Pathology, Cambridge, UK
| | - Nicola Wiechens
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, Germany
| | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
44
|
Klockenbusch C, O'Hara JE, Kast J. Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 2012; 404:1057-67. [PMID: 22610548 DOI: 10.1007/s00216-012-6065-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Formaldehyde is a key fixation reagent. This review explores its application in combination with qualitative and quantitative mass spectrometry (MS). Formalin-fixed and paraffin-embedded (FFPE) tissues form a large reservoir of biologically valuable samples and their investigation by MS has only recently started. Furthermore, formaldehyde can be used to stabilise protein-protein interactions in living cells. Because formaldehyde is able to modify proteins, performing MS analysis on these samples can pose a challenge. Here we discuss the chemistry of formaldehyde cross-linking, describe the problems of and progress in these two applications and their common aspects, and evaluate the potential of these methods for the future.
Collapse
Affiliation(s)
- Cordula Klockenbusch
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Götze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kühn U, Sinz A. StavroX--a software for analyzing crosslinked products in protein interaction studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:76-87. [PMID: 22038510 DOI: 10.1007/s13361-011-0261-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/03/2023]
Abstract
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
CrossWork: software-assisted identification of cross-linked peptides. J Proteomics 2011; 74:1871-83. [PMID: 21600323 DOI: 10.1016/j.jprot.2011.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/23/2022]
Abstract
The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. CrossWork searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show that the resulting distance constraints agree with the established structures. We further investigated the structure of the multi-domain ERp72, and combined the individual domains of ERp72 into a single structure.
Collapse
|