1
|
Detection of Recombinant Proteins SOX2 and OCT4 Interacting in HEK293T Cells Using Real-Time Quantitative PCR. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010107. [PMID: 36676054 PMCID: PMC9862934 DOI: 10.3390/life13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
In vivo biotinylation using wild-type and mutants of biotin ligases is now widely applied for the study of cellular proteomes. The commercial availability of kits for the highly efficient purification of biotinylated proteins and their excellent compatibility with LC-MS/MS protocols are the main reasons for the choice of biotin ligases. Since they are all enzymes, however, just a very low expression in cells is required for experiments. Therefore, it can be difficult to perform the quantifications of these enzymes in various samples. Traditional methods, such as western blotting, are not always fit for the detection of the expression levels. Therefore, real-time qRT-PCR, a technology that is more sensitive, was used in this study to quantify the expression of BirA fusions. Using this method, we detected high expression levels of BirA fusions in models of interactions of pluripotency transcription factors to carry out their relative quantification. We also found the absence of the competing endogenous proteins SOX2 and OCT4, as well as no cross-reactivity between BAP/BirA and the endogenous biotinylation system in HEK293T cells. Thus, these data indicated that the high level of biotinylation is due to the in vivo interaction of BAP-X and BirA-Y (X,Y = SOX2, OCT4) in the cell rather than their random collision, a big difference in the expression level of BirA fusions across samples or endogenous biotinylation.
Collapse
|
2
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
3
|
Sakashita K, Tsumoto K, Tomita M. Advanced hybridoma technology for selective production of high-affinity monoclonal antibodies through B-cell receptors. J Immunol Methods 2022; 511:113384. [PMID: 36372268 DOI: 10.1016/j.jim.2022.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
In general, it is difficult to raise novel monoclonal antibodies against relatively low-molecular weight antigen, and particularly those with high homology for the mouse protein. The optimized B-cell targeting (BCT) technique can overcome this limitation. The point of this advanced technology is the selection of sensitized B lymphocytes by the antigen through B-cell receptors (BCRs). This strict selection by specific and strong interaction between antigen and antibody enables the efficient production of monoclonal antibodies with high specificity and affinity. It also offers the condensation of sensitized target B lymphocytes to selectively generate hybridoma cells secreting desired monoclonal antibodies. In this study, several kinds of biotinylated human myoglobin (hMyo) were prepared to select sensitized B lymphocytes via BCRs. Biotinylated hMyo prepared by a 3.75- and 7.5-fold molar excess of N-hydroxysuccinimide (NHS)-biotin provided high antigenicity of 68-88%. B lymphocytes selected by these biotinylated antigens had an ELISA-positive rate >17 times higher than that with usual biotinylated antigen. Monoclonal antibodies generated by the optimized BCT technology by preselecting sensitized B lymphocytes with the target antigen were identified to specifically recognize lower antigenic epitopes in hMyo with high affinity, while this would be impossible by the polyethylene glycol (PEG) method. Furthermore, combination of these high-affinity monoclonal antibodies gave the best binding rate in an epitope binning assay. These outcomes could be attributed to the unique characteristic that BCRs on sensitized B lymphocytes themselves can select the target epitopes in the antigen. The BCRs may act as a strict sensor of B lymphocytes to precisely select the target epitopes, even though the number of immunized B lymphocytes is low.
Collapse
Affiliation(s)
- Kento Sakashita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan; Denka Company Limited, 1359-1 Kagamida Kigoshi Gosen-city, Niigata 959-1695, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu Mie 514-8507, Japan.
| |
Collapse
|
4
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
5
|
Kulyyassov A, Ramankulov Y, Ogryzko V. Generation of Peptides for Highly Efficient Proximity Utilizing Site-Specific Biotinylation in Cells. Life (Basel) 2022; 12:life12020300. [PMID: 35207587 PMCID: PMC8875956 DOI: 10.3390/life12020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein tags are peptide sequences genetically embedded into a recombinant protein for various purposes, such as affinity purification, Western blotting, and immunofluorescence. Another recent application of peptide tags is in vivo labeling and analysis of protein–protein interactions (PPI) by proteomics methods. One of the common workflows involves site-specific in vivo biotinylation of an AviTag-fused protein in the presence of the biotin ligase BirA. However, due to the rapid kinetics of labeling, this tag is not ideal for analysis of PPI. Here we describe the rationale, design, and protocol for the new biotin acceptor peptides BAP1070 and BAP1108 using modular assembling of biotin acceptor fragments, DNA sequencing, transient expression of proteins in cells, and Western blotting methods. These tags were used in the Proximity Utilizing Biotinylation (PUB) method, which is based on coexpression of BAP-X and BirA-Y in mammalian cells, where X or Y are candidate interacting proteins of interest. By changing the sequence of these peptides, a low level of background biotinylation is achieved, which occurs due to random collisions of proteins in cells. Over 100 plasmid constructs, containing genes of transcription factors, histones, gene repressors, and other nuclear proteins were obtained during implementation of projects related to this method.
Collapse
Affiliation(s)
- Arman Kulyyassov
- Republican State Enterprise “National Center for Biotechnology” under the Science Committee of Ministry of Education and Science of the Republic of Kazakhstan, 13/5 Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan;
- Correspondence: ; Tel.: +7-7172-707534
| | - Yerlan Ramankulov
- Republican State Enterprise “National Center for Biotechnology” under the Science Committee of Ministry of Education and Science of the Republic of Kazakhstan, 13/5 Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan;
| | - Vasily Ogryzko
- UMR8126, Institut de Cancerologie Gustave Roussy, Universite Paris-Sud 11, CNRS, 94805 Villejuif, France;
| |
Collapse
|
6
|
Pfeiffer CT, Paulo JA, Gygi SP, Rockman HA. Proximity labeling for investigating protein-protein interactions. Methods Cell Biol 2022; 169:237-266. [PMID: 35623704 PMCID: PMC10782847 DOI: 10.1016/bs.mcb.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study of protein complexes and protein-protein interactions is of great importance due to their fundamental roles in cellular function. Proximity labeling, often coupled with mass spectrometry, has become a powerful and versatile tool for studying protein-protein interactions by enriching and identifying proteins in the vicinity of a specified protein-of-interest. Here, we describe and compare traditional approaches to investigate protein-protein interactions to current day state-of-the-art proximity labeling methods. We focus on the wide array of proximity labeling strategies and underscore studies using diverse model systems to address numerous biological questions. In addition, we highlight current advances in mass spectrometry-based technology that exhibit promise in improving the depth and breadth of the data acquired in proximity labeling experiments. In all, we show the diversity of proximity labeling strategies and emphasize the broad range of applications and biological inquiries that can be addressed using this technology.
Collapse
Affiliation(s)
- Conrad T Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
7
|
Kulyyassov A. Application of Skyline for Analysis of Protein-Protein Interactions In Vivo. Molecules 2021; 26:molecules26237170. [PMID: 34885753 PMCID: PMC8658920 DOI: 10.3390/molecules26237170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Quantitative and qualitative analyses of cell protein composition using liquid chromatography/tandem mass spectrometry are now standard techniques in biological and clinical research. However, the quantitative analysis of protein–protein interactions (PPIs) in cells is also important since these interactions are the bases of many processes, such as the cell cycle and signaling pathways. This paper describes the application of Skyline software for the identification and quantification of the biotinylated form of the biotin acceptor peptide (BAP) tag, which is a marker of in vivo PPIs. The tag was used in the Proximity Utilizing Biotinylation (PUB) method, which is based on the co-expression of BAP-X and BirA-Y in mammalian cells, where X or Y are interacting proteins of interest. A high level of biotinylation was detected in the model experiments where X and Y were pluripotency transcription factors Sox2 and Oct4, or heterochromatin protein HP1γ. MRM data processed by Skyline were normalized and recalculated. Ratios of biotinylation levels in experiment versus controls were 86 ± 6 (3 h biotinylation time) and 71 ± 5 (9 h biotinylation time) for BAP-Sox2 + BirA-Oct4 and 32 ± 3 (4 h biotinylation time) for BAP-HP1γ + BirA-HP1γ experiments. Skyline can also be applied for the analysis and identification of PPIs from shotgun proteomics data downloaded from publicly available datasets and repositories.
Collapse
Affiliation(s)
- Arman Kulyyassov
- Republican State Enterprise "National Center for Biotechnology" under the Science Committee of Ministry of Education and Science of the Republic of Kazakhstan, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
8
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
Escobar TM, Oksuz O, Saldaña-Meyer R, Descostes N, Bonasio R, Reinberg D. Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication. Cell 2020; 179:953-963.e11. [PMID: 31675501 DOI: 10.1016/j.cell.2019.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/06/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022]
Abstract
Chromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.1 and H3.2 histone-containing nucleosomes at desired loci in mouse embryonic stem cells so that their fate after DNA replication could be followed. Strikingly, repressed chromatin domains are preserved through local re-deposition of parental nucleosomes. In contrast, nucleosomes decorating active chromatin domains do not exhibit such preservation. Notably, altering cell fate leads to an adjustment of the positional inheritance of parental nucleosomes that reflects the corresponding changes in chromatin structure. These findings point to important mechanisms that contribute to parental nucleosome segregation to preserve cellular identity.
Collapse
Affiliation(s)
- Thelma M Escobar
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA
| | - Ozgur Oksuz
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA
| | - Ricardo Saldaña-Meyer
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA
| | - Nicolas Descostes
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA
| | - Roberto Bonasio
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Medical Center, New York, NY 10016, USA; New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
10
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
In Vivo Quantitative Estimation of DNA-Dependent Interaction of Sox2 and Oct4 Using BirA-Catalyzed Site-Specific Biotinylation. Biomolecules 2020; 10:biom10010142. [PMID: 31963153 PMCID: PMC7022529 DOI: 10.3390/biom10010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms of pluripotency at the molecular level. Here, a detailed protocol for the detection and quantitative analysis of in vivo protein–protein proximity of Sox2 and Oct4 using the proximity-utilizing biotinylation (PUB) method is described. The method is based on the coexpression of two proteins of interest fused to a biotin acceptor peptide (BAP)in one case and a biotin ligase enzyme (BirA) in the other. The proximity between the two proteins leads to more efficient biotinylation of the BAP, which can be either detected by Western blotting or quantified using proteomics approaches, such as a multiple reaction monitoring (MRM) analysis. Coexpression of the fusion proteins BAP-X and BirA-Y revealed strong biotinylation of the target proteins when X and Y were, alternatively, the pluripotency transcription factors Sox2 and Oct4, compared with the negative control where X or Y was green fluorescent protein (GFP), which strongly suggests that Sox2 and Oct4 come in close proximity to each other and interact.
Collapse
|
12
|
Li P, Meng Y, Wang Y, Li J, Lam M, Wang L, Di LJ. Nuclear localization of Desmoplakin and its involvement in telomere maintenance. Int J Biol Sci 2019; 15:2350-2362. [PMID: 31595153 PMCID: PMC6775319 DOI: 10.7150/ijbs.34450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/28/2019] [Indexed: 12/21/2022] Open
Abstract
The interaction between genomic DNA and protein fundamentally determines the activity and the function of DNA elements. Capturing the protein complex and identifying the proteins associated with a specific DNA locus is difficult. Herein, we employed CRISPR, the well-known gene-targeting tool in combination with the proximity-dependent labeling tool BioID to capture a specific genome locus associated proteins and to uncover the novel functions of these proteins. By applying this research tool on telomeres, we identified DSP, out of many others, as a convincing telomere binding protein validated by both biochemical and cell-biological approaches. We also provide evidence to demonstrate that the C-terminal domain of DSP is required for its binding to telomere after translocating to the nucleus mediated by NLS sequence of DSP. In addition, we found that the telomere binding of DSP is telomere length dependent as hTERT inhibition or knockdown caused a decrease of telomere length and diminished DSP binding to the telomere. Knockdown of TRF2 also negatively influenced DSP binding to the telomere. Functionally, loss of DSP resulted in the shortened telomere DNA and induced the DNA damage response and cell apoptosis. In conclusion, our studies identified DSP as a novel potential telomere binding protein and highlighted its role in protecting against telomere DNA damage and resultant cell apoptosis.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Yuan Meng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Manting Lam
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| |
Collapse
|
13
|
Jurisic A, Robin C, Tarlykov P, Siggens L, Schoell B, Jauch A, Ekwall K, Sørensen CS, Lipinski M, Shoaib M, Ogryzko V. Topokaryotyping demonstrates single cell variability and stress dependent variations in nuclear envelope associated domains. Nucleic Acids Res 2019; 46:e135. [PMID: 30215776 PMCID: PMC6294560 DOI: 10.1093/nar/gky818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Analysis of large-scale interphase genome positioning with reference to a nuclear landmark has recently been studied using sequencing-based single cell approaches. However, these approaches are dependent upon technically challenging, time consuming and costly high throughput sequencing technologies, requiring specialized bioinformatics tools and expertise. Here, we propose a novel, affordable and robust microscopy-based single cell approach, termed Topokaryotyping, to analyze and reconstruct the interphase positioning of genomic loci relative to a given nuclear landmark, detectable as banding pattern on mitotic chromosomes. This is accomplished by proximity-dependent histone labeling, where biotin ligase BirA fused to nuclear envelope marker Emerin was coexpressed together with Biotin Acceptor Peptide (BAP)-histone fusion followed by (i) biotin labeling, (ii) generation of mitotic spreads, (iii) detection of the biotin label on mitotic chromosomes and (iv) their identification by karyotyping. Using Topokaryotyping, we identified both cooperativity and stochasticity in the positioning of emerin-associated chromatin domains in individual cells. Furthermore, the chromosome-banding pattern showed dynamic changes in emerin-associated domains upon physical and radiological stress. In summary, Topokaryotyping is a sensitive and reliable technique to quantitatively analyze spatial positioning of genomic regions interacting with a given nuclear landmark at the single cell level in various experimental conditions.
Collapse
Affiliation(s)
- Anamarija Jurisic
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Chloé Robin
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Tarlykov
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | - Lee Siggens
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Brigitte Schoell
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Karl Ekwall
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marc Lipinski
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Muhammad Shoaib
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vasily Ogryzko
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
14
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. PLoS One 2018; 13:e0202232. [PMID: 30110394 PMCID: PMC6093668 DOI: 10.1371/journal.pone.0202232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3’-repair phosphodiesterase, and 3’-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth’s AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7–8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3’-blocking sugar-phosphate, and 3’-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 μM–1·min–1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease—deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.
Collapse
|
16
|
Li P, Li J, Wang L, Di LJ. Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Peipei Li
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Jingjing Li
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Li Wang
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
- Metabolomics Core; Faculty of Health Sciences; University of Macau; Macau SAR of China
| | - Li-Jun Di
- Cancer Center; Faculty of Health Sciences; University of Macau; Macau SAR of China
| |
Collapse
|
17
|
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 2016; 26:804-817. [PMID: 27667171 DOI: 10.1016/j.tcb.2016.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review we describe current methods for proximity-dependent labeling in living cells and discuss their applications and future use in the study of protein behavior.
Collapse
|
18
|
Rees JS, Li XW, Perrett S, Lilley KS, Jackson AP. Protein Neighbors and Proximity Proteomics. Mol Cell Proteomics 2015; 14:2848-56. [PMID: 26355100 PMCID: PMC4638030 DOI: 10.1074/mcp.r115.052902] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/31/2022] Open
Abstract
Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest.
Collapse
Affiliation(s)
- Johanna S Rees
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW, the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Xue-Wen Li
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Sarah Perrett
- the ‖National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kathryn S Lilley
- the §Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QR, and
| | - Antony P Jackson
- From the ‡Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom CB2 1QW,
| |
Collapse
|
19
|
Lajko M, Haddad AF, Robinson CA, Connolly SA. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins. J Virol Methods 2015; 221:81-9. [PMID: 25958131 DOI: 10.1016/j.jviromet.2015.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023]
Abstract
Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.
Collapse
Affiliation(s)
- Michelle Lajko
- DePaul University, Department of Biological Sciences, Chicago, IL, USA
| | | | | | - Sarah A Connolly
- DePaul University, Department of Biological Sciences, Chicago, IL, USA; DePaul University, Department of Health Sciences, Chicago, IL, USA.
| |
Collapse
|
20
|
Dingar D, Kalkat M, Chan PK, Srikumar T, Bailey SD, Tu WB, Coyaud E, Ponzielli R, Kolyar M, Jurisica I, Huang A, Lupien M, Penn LZ, Raught B. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J Proteomics 2014; 118:95-111. [PMID: 25452129 DOI: 10.1016/j.jprot.2014.09.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED The BioID proximity-based biotin labeling technique was recently developed for the characterization of protein-protein interaction networks [1]. To date, this method has been applied to a number of different polypeptides expressed in cultured cells. Here we report the adaptation of BioID to the identification of protein-protein interactions surrounding the c-MYC oncoprotein in human cells grown both under standard culture conditions and in mice as tumor xenografts. Notably, in vivo BioID yielded >100 high confidence MYC interacting proteins, including >30 known binding partners. Putative novel MYC interactors include components of the STAGA/KAT5 and SWI/SNF chromatin remodeling complexes, DNA repair and replication factors, general transcription and elongation factors, and transcriptional co-regulators such as the DNA helicase protein chromodomain 8 (CHD8). Providing additional confidence in these findings, ENCODE ChIP-seq datasets highlight significant coincident binding throughout the genome for the MYC interactors identified here, and we validate the previously unreported MYC-CHD8 interaction using both a yeast two hybrid analysis and the proximity-based ligation assay. In sum, we demonstrate that BioID can be utilized to identify bona fide interacting partners for a chromatin-associated protein in vivo. This technique will allow for a much improved understanding of protein-protein interactions in a previously inaccessible biological setting. BIOLOGICAL SIGNIFICANCE The c-MYC (MYC) oncogene is a transcription factor that plays important roles in cancer initiation and progression. MYC expression is deregulated in more than 50% of human cancers, but the role of this protein in normal cell biology and tumor progression is still not well understood, in part because identifying MYC-interacting proteins has been technically challenging: MYC-containing chromatin-associated complexes are difficult to isolate using traditional affinity purification methods, and the MYC protein is exceptionally labile, with a half-life of only ~30 min. Developing a new strategy to gain insight into MYC-containing protein complexes would thus mark a key advance in cancer research. The recently described BioID proximity-based labeling technique represents a promising new complementary approach for the characterization of protein-protein interactions (PPIs) in cultured cells. Here we report that BioID can also be used to characterize protein-protein interactions for a chromatin-associated protein in tumor xenografts, and present a comprehensive, high confidence in vivo MYC interactome. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
Affiliation(s)
- Dharmendra Dingar
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Manpreet Kalkat
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Pak-Kei Chan
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Swneke D Bailey
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - William B Tu
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Romina Ponzielli
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Max Kolyar
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Annie Huang
- The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada.
| |
Collapse
|
21
|
Roux KJ. Marked by association: techniques for proximity-dependent labeling of proteins in eukaryotic cells. Cell Mol Life Sci 2013; 70:3657-64. [PMID: 23420482 PMCID: PMC11113768 DOI: 10.1007/s00018-013-1287-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Various methods have been established for the purpose of identifying and characterizing protein-protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.
Collapse
Affiliation(s)
- Kyle J Roux
- Children's Health Research Center, Sanford Research/USD, North 60th St. East, Sioux Falls, SD, 57104, USA,
| |
Collapse
|
22
|
Quantum biology at the cellular level--elements of the research program. Biosystems 2013; 112:11-30. [PMID: 23470561 DOI: 10.1016/j.biosystems.2013.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Abstract
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed.
Collapse
|
23
|
Shoaib M, Kulyyassov A, Robin C, Winczura K, Tarlykov P, Despas E, Kannouche P, Ramanculov E, Lipinski M, Ogryzko V. PUB-NChIP--"in vivo biotinylation" approach to study chromatin in proximity to a protein of interest. Genome Res 2012; 23:331-40. [PMID: 23038767 PMCID: PMC3561874 DOI: 10.1101/gr.134874.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed an approach termed PUB-NChIP (proximity utilizing biotinylation with native ChIP) to purify and study the protein composition of chromatin in proximity to a nuclear protein of interest. It is based on coexpression of (1) a protein of interest, fused with the bacterial biotin ligase BirA, together with (2) a histone fused to a biotin acceptor peptide (BAP), which is specifically biotinylated by BirA-fusion in the proximity of the protein of interest. Using the RAD18 protein as a model, we demonstrate that the RAD18-proximal chromatin is enriched in some H4 acetylated species. Moreover, the RAD18-proximal chromatin containing a replacement histone H2AZ has a different pattern of H4 acetylation. Finally, biotin pulse-chase experiments show that the H4 acetylation pattern starts to resemble the acetylation pattern of total H4 after the proximity of chromatin to RAD18 has been lost.
Collapse
Affiliation(s)
- Muhammad Shoaib
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|