1
|
Angelin-Bonnet O, Thomson S, Vignes M, Biggs PJ, Monaghan K, Bloomer R, Wright K, Baldwin S. Investigating the genetic components of tuber bruising in a breeding population of tetraploid potatoes. BMC PLANT BIOLOGY 2023; 23:238. [PMID: 37147582 PMCID: PMC10161554 DOI: 10.1186/s12870-023-04255-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Tuber bruising in tetraploid potatoes (Solanum tuberosum) is a trait of economic importance, as it affects tubers' fitness for sale. Understanding the genetic components affecting tuber bruising is a key step in developing potato lines with increased resistance to bruising. As the tetraploid setting renders genetic analyses more complex, there is still much to learn about this complex phenotype. Here, we used capture sequencing data on a panel of half-sibling populations from a breeding programme to perform a genome-wide association analysis (GWAS) for tuber bruising. In addition, we collected transcriptomic data to enrich the GWAS results. However, there is currently no satisfactory method to represent both GWAS and transcriptomics analysis results in a single visualisation and to compare them with existing knowledge about the biological system under study. RESULTS When investigating population structure, we found that the STRUCTURE algorithm yielded greater insights than discriminant analysis of principal components (DAPC). Importantly, we found that markers with the highest (though non-significant) association scores were consistent with previous findings on tuber bruising. In addition, new genomic regions were found to be associated with tuber bruising. The GWAS results were backed by the transcriptomics differential expression analysis. The differential expression notably highlighted for the first time the role of two genes involved in cellular strength and mechanical force sensing in tuber resistance to bruising. We proposed a new visualisation, the HIDECAN plot, to integrate the results from the genomics and transcriptomics analyses, along with previous knowledge about genomic regions and candidate genes associated with the trait. CONCLUSION This study offers a unique genome-wide exploration of the genetic components of tuber bruising. The role of genetic components affecting cellular strength and resistance to physical force, as well as mechanosensing mechanisms, was highlighted for the first time in the context of tuber bruising. We showcase the usefulness of genomic data from breeding programmes in identifying genomic regions whose association with the trait of interest merit further investigation. We demonstrate how confidence in these discoveries and their biological relevance can be increased by integrating results from transcriptomics analyses. The newly proposed visualisation provides a clear framework to summarise of both genomics and transcriptomics analyses, and places them in the context of previous knowledge on the trait of interest.
Collapse
Affiliation(s)
- Olivia Angelin-Bonnet
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, 4442, New Zealand.
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| | - Matthieu Vignes
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, 4412, New Zealand
| | - Patrick J Biggs
- School of Natural Sciences, Massey University, Palmerston North, 4412, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, 4412, New Zealand
| | - Katrina Monaghan
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| | - Rebecca Bloomer
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| | - Kathryn Wright
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| | - Samantha Baldwin
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, 8140, New Zealand
| |
Collapse
|
2
|
Grudzińska M, Mańkowski D. Reconditioning and weather conditions affect black spot damage during storage of potato (Solanum tuberosum L.) tubers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4913-4921. [PMID: 30924948 DOI: 10.1002/jsfa.9719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In potatoes (Solanum tuberosum L.), mechanical damage can cause the formation of black spots in the tuber flesh as the result of oxidation of phenolic compounds. This damage can result in substantial economic losses and degradation of quality. External factors contributing to the formation and the prevention of black spot damage (BSD) are not fully understood. The aim of this study was to determine the effect of weather conditions, using a hydrothermal coefficient, and of two potato tuber reconditioning methods on the formation of BSD. Five potato varieties were divided into high, moderate and low BSD susceptibility groups. The research was carried out over two growing seasons that differed greatly in precipitation and temperature. The black spot index was determined immediately after harvest and after 3 and 7 months of storage. Two reconditioning methods, applied for 7 days at 8 °C and for 7 days at 15 °C, were used for each variety. RESULTS The incidence of BSD in susceptible varieties did not depend significantly on weather conditions, although statistically significant variation was observed. We found a correlation between the hydrothermal coefficient (dry conditions) and BSD in the Etiuda variety. There was no significant effect of storage time and temperature on BSD incidence in susceptible or moderately susceptible varieties. The reconditioning methods significantly reduced the formation of BSD in tubers after storage in all three groups. Regardless of the level of susceptibility of the variety, storage time and storage temperature, the most efficient treatment to limit BSD was reconditioning for 7 days at 15 °C. CONCLUSION Identification of the significant effects of weather, and strong reduction of BSD in tubers that had been reconditioned, allows examination of the underlying mechanisms. The described reconditioning method can lead to satisfactory reduction of BSD in potato tubers. Data from this research will be of interest to potato breeders, particularly if valuable alleles that affect this phenomeon can be isolated. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Grudzińska
- Plant Breeding and Acclimatization Institute, National Research Institute, Poland
| | - Dariusz Mańkowski
- Plant Breeding and Acclimatization Institute, National Research Institute, Poland
| |
Collapse
|
3
|
Al-Mohanna T, Ahsan N, Bokros NT, Dimlioglu G, Reddy KR, Shankle M, Popescu GV, Popescu SC. Proteomics and Proteogenomics Analysis of Sweetpotato (Ipomoea batatas) Leaf and Root. J Proteome Res 2019; 18:2719-2734. [DOI: 10.1021/acs.jproteome.8b00943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thualfeqar Al-Mohanna
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island, USA Hospital, Providence, Rhode Island 02903, United States
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02903, United States
| | - Norbert T. Bokros
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Gizem Dimlioglu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Mark Shankle
- Pontotoc Experimental Station, Mississippi State University, Pontotoc, Mississippi 38863, United States
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi 39759, United States
- The National Institute for Laser, Plasma and Radiation Physics, Bucharest RO-077125, Romania
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| |
Collapse
|
4
|
Ahmed S, Zhou X, Pang Y, Jin L, Bao J. Improving Starch‐Related Traits in Potato Crops: Achievements and Future Challenges. STARCH-STARKE 2018. [DOI: 10.1002/star.201700113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sulaiman Ahmed
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Xin Zhou
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Yuehan Pang
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Liping Jin
- Department of PotatoInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root CropMinistry of AgricultureBeijing100081P.R. China
| | - Jinsong Bao
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root CropMinistry of AgricultureBeijing100081P.R. China
| |
Collapse
|
5
|
Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. Quantitative trait loci for tuber blackspot bruise and enzymatic discoloration susceptibility in diploid potato. Mol Genet Genomics 2017; 293:331-342. [PMID: 29080143 PMCID: PMC5854731 DOI: 10.1007/s00438-017-1387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Tuber tissue discolorations caused by impact (blackspot bruising) and enzymatic discoloration (ED) after tuber cutting are crucial quality traits of the cultivated potato. To understand the complex genetics of the traits, quantitative trait locus (QTL) analysis using diploid mapping population and diversity array technology (DArT) markers was performed. The phenotypic assessment included the complex evaluation of blackspot bruising susceptibility through two methods: rotating drum (BRD) and falling bolt (BFB) in combination with the evaluation of enzymatic discoloration. Because of observed in-practice relationship between bruising susceptibility and tuber starch content (TSC), analysis of starch content-corrected bruising susceptibility (SCB) was performed. QTLs for bruising were detected on chromosomes I, V with both test methods. The rotating drum method enabled the detection of additional QTLs on chromosomes VIII and XII. Analysis of SCB enabled the identification of the major QTL on chromosome V and two weaker QTLs on chromosomes VIII and XII, independently of starch content. The QTL for bruising detected on chromosome I overlapped with the most significant QTL for tuber starch content. This QTL was not significant for starch content-corrected bruising susceptibility, and the effect of the QTL on chromosome V was enhanced for this trait. The QTL analysis of ED revealed the contribution of seven QTLs for the trait, located on six chromosomes, including these detected for the first time: a major locus on chromosome V and minor QTLs on chromosomes VII and X, which were specific for the trait. The QTL for ED on chromosome VIII was co-localized with the marker for polyphenol oxidase (POT32). The phenotypic correlation between bruising and ED was confirmed in QTL analyses of both traits, and the QTLs detected for these traits overlapped on chromosomes I, V, and VIII. Our results should provide a basis for further studies on candidate genes affecting blackspot bruise susceptibility and enzymatic discoloration.
Collapse
Affiliation(s)
- Agnieszka Hara-Skrzypiec
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland.
| | - J Śliwka
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| | - H Jakuczun
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| | - E Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
6
|
Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J Proteomics 2017; 169:41-57. [PMID: 28528990 DOI: 10.1016/j.jprot.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 10/25/2022]
Abstract
Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 68583-0915, USA
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
7
|
Grudzińska M, Barbaś P. Natural losses in tuber weight during storage as a predictor of susceptibility to post-wounding blackspot in advanced potato breeding materials. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3841-3846. [PMID: 28150459 DOI: 10.1002/jsfa.8248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND In potatoes, mechanical damage and the formation of black spots in the tuber flesh cause substantial economic losses and degradation of quality. The aim of this study was to determine the susceptibility of new potato genotypes (178 elite breeding lines) to blackspot damage after 7 months' storage at 5 and 8 °C, and to examine whether this susceptibility correlated with natural losses. RESULTS The lowest index of blackspot damage after harvest was found in genotypes from the mid-late group of earliness and low-susceptibility group, and after storage in genotypes from the early group of earliness and low-susceptibility group. After storage at 5 °C tubers were characterized by a lower susceptibility to bruising compared with tubers stored at 8 °C. The storage temperature significantly affected the natural losses in advanced potato breeding materials after storage in the case of all earliness and susceptibility groups. The highest susceptibility to blackspot damage and natural losses occurred in potatoes stored at 8 °C (r = 0.85-0.91). Such a relationship was not observed in potatoes stored at 5 °C. CONCLUSION For potato tubers susceptible to the formation of after-wounding blackspot, the natural losses arising as a result of storage at 8 °C can be used as a subjective method to evaluate the susceptibility of potatoes to the formation of black spots in the flesh. However, this observation needs further studies and stronger proof of this theory. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Grudzińska
- Plant Breeding and Acclimatization Institute, Research Division Jadwisin, Serock, Poland
| | - Piotr Barbaś
- Plant Breeding and Acclimatization Institute, Research Division Jadwisin, Serock, Poland
| |
Collapse
|
8
|
Ali A, Ahmad Nasir I, Muzaffar A, Shahzad Iqbal M, Qayyum Rao A, Husnain T. Screening of Potato Germplasm Resistant Against Low Temperature Sweetening. J FOOD QUALITY 2016. [DOI: 10.1111/jfq.12196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Arfan Ali
- Centre of Excellence in Molecular Biology, University of the Punjab; Lahore Pakistan
- Institute of Molecular Biology and Biotechnology, The University of Lahore; Lahore Pakistan
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab; Lahore Pakistan
| | - Adnan Muzaffar
- Centre of Excellence in Molecular Biology, University of the Punjab; Lahore Pakistan
| | | | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab; Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab; Lahore Pakistan
| |
Collapse
|
9
|
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLoS One 2015; 10:e0132683. [PMID: 26172952 PMCID: PMC4501783 DOI: 10.1371/journal.pone.0132683] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
Collapse
Affiliation(s)
- Michal Szalonek
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Barbara Sierpien
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Wojciech Rymaszewski
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | | | - Maciej Garstka
- Department of Metabolic Regulation, University of Warsaw, Warsaw, Poland
| | - Malgorzata Lichocka
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Laszlo Sass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Kenny Paul
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Laboratory of Molecular Stress and Photobiology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Praha, Czech Republic
| | - Pawel Szczesny
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Waldemar Marczewski
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Dominika Krusiewicz
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Danuta Strzelczyk-Zyta
- Department of Potato Genetics and Parental Lines, Plant Breeding and Acclimatization Institute—National Research Institute, Mlochow, Poland
| | - Jacek Hennig
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
| | - Dorota Konopka-Postupolska
- Plant Pathogenesis Lab, Institute of Biochemistry and Biophysics Polish Academy of Science, Warsaw, Poland
- * E-mail:
| |
Collapse
|
10
|
Sołtys-Kalina D, Szajko K, Sierocka I, Śliwka J, Strzelczyk-Żyta D, Wasilewicz-Flis I, Jakuczun H, Szweykowska-Kulinska Z, Marczewski W. Novel candidate genes AuxRP and Hsp90 influence the chip color of potato tubers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:224. [PMID: 26612975 PMCID: PMC4648990 DOI: 10.1007/s11032-015-0415-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/11/2015] [Indexed: 05/11/2023]
Abstract
Potato (Solanum tuberosum L.) tubers exhibit significant variation in reducing sugar content directly after harvest, cold storage and reconditioning. Here, we performed QTL analysis for chip color, which is strongly influenced by reducing sugar content, in a diploid potato mapping population. Two QTL on chromosomes I and VI were detected for chip color after harvest and reconditioning. Only one region on chromosome VI was linked with cold-induced sweetening. Using the RT-PCR technique, we showed differential expression of the auxin-regulated protein (AuxRP) gene. The AuxRP transcript was presented in light chip color parental clone DG 97-952 and the RNA progeny of the bulk sample consisting of light chip color phenotypes after cold storage. This amplicon was absent in dark chip parental clone DG 08-26/39 and the RNA bulk sample of dark chip progeny. Genetic variation of AuxRP explained up to 16.6 and 15.2 % of the phenotypic variance after harvest and 3 months of storage at 4 °C, respectively. Using an alternative approach, the RDA-cDNA method was used to recognize 25 gene sequences, of which 11 could be assigned to potato chromosome VI. One of these genes, Heat-shock protein 90 (Hsp90), demonstrated higher mRNA and protein expression in RT-qPCR and western blotting assays in the dark chip color progeny bulk sample compared with the light chip color progeny bulk sample. Our study, for the first time, suggests that the AuxRP and Hsp90 genes are novel candidate genes capable of influencing the chip color of potato tubers.
Collapse
Affiliation(s)
- Dorota Sołtys-Kalina
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Katarzyna Szajko
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Izabela Sierocka
- />Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Jadwiga Śliwka
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Danuta Strzelczyk-Żyta
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Iwona Wasilewicz-Flis
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Henryka Jakuczun
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Zofia Szweykowska-Kulinska
- />Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Waldemar Marczewski
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|
11
|
Li J, Zhu L, Lu G, Zhan XB, Lin CC, Zheng ZY. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells. PLoS One 2014; 9:e97197. [PMID: 24816730 PMCID: PMC4016274 DOI: 10.1371/journal.pone.0097197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023] Open
Abstract
Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Zhu
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Guangxing Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Rayguang Biotech Company, Ltd., Wuxi, Jiangsu, China
| | - Chi-Chung Lin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhi-Yong Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Davies JM. Annexin-Mediated Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:128-40. [PMID: 27135495 PMCID: PMC4844307 DOI: 10.3390/plants3010128] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Calcium-permeable channels underpin elevations of free calcium that encode specific signals in stress adaptation, development and immunity. Identifying the genes encoding these channels remains a central goal of plant signalling research. Evidence now suggests that members of the plant annexin family function as unconventional calcium-permeable channels, with roles in development and stress signalling. Arabidopsis annexin 1 mediates a plasma membrane calcium-permeable conductance in roots that is activated by reactive oxygen species. Recombinant annexin 1 forms a very similar conductance in planar lipid bilayers, indicating that this protein could facilitate the in vivo conductance directly. The annexin 1 mutant is impaired in salinity-induced calcium signalling. Protein-protein interactions, post-translational modification and dynamic association with membranes could all influence annexin-mediated calcium signalling and are reviewed here. The prospect of annexins playing roles in calcium signalling events in symbiosis and immunity are considered.
Collapse
Affiliation(s)
- Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
13
|
Fischer M, Schreiber L, Colby T, Kuckenberg M, Tacke E, Hofferbert HR, Schmidt J, Gebhardt C. Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC PLANT BIOLOGY 2013; 13:113. [PMID: 23919263 PMCID: PMC3750364 DOI: 10.1186/1471-2229-13-113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/02/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Higher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality. RESULTS Pronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content. CONCLUSIONS The combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP's diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Lena Schreiber
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Colby
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Cologne, Germany
| | - Markus Kuckenberg
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Eckhard Tacke
- BIOPLANT, Biotechnologisches Forschungslabor GmbH, Cologne, Germany
| | | | - Jürgen Schmidt
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
14
|
Fischer M, Schreiber L, Colby T, Kuckenberg M, Tacke E, Hofferbert HR, Schmidt J, Gebhardt C. Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC PLANT BIOLOGY 2013; 13:113. [PMID: 23919263 DOI: 10.1186/1471-222913-113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/02/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Higher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality. RESULTS Pronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content. CONCLUSIONS The combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP's diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Plant Breeding and Genetics, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pedreschi R, Lurie S, Hertog M, Nicolaï B, Mes J, Woltering E. Post-harvest proteomics and food security. Proteomics 2013; 13:1772-83. [PMID: 23483703 DOI: 10.1002/pmic.201200387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/11/2012] [Indexed: 12/12/2022]
Abstract
To guarantee sufficient food supply for a growing world population, efforts towards improving crop yield and plant resistance should be complemented with efforts to reduce post-harvest losses. Post-harvest losses are substantial and occur at different stages of the food chain in developed and developing countries. In recent years, a substantially increasing interest can be seen in the application of proteomics to understand post-harvest events. In the near future post-harvest proteomics will be poised to move from fundamental research to aiding the reduction of food losses. Proteomics research can help in reducing food losses through (i) identification and validation of gene products associated to specific quality traits supporting marker-assisted crop improvement programmes, (ii) delivering markers of initial quality that allow optimisation of distribution conditions and prediction of remaining shelf-life for decision support systems and (iii) delivering early detection tools of physiological or pathogen-related post-harvest problems. In this manuscript, recent proteomics studies on post-harvest and stress physiology are reviewed and discussed. Perspectives on future directions of post-harvest proteomics studies aiming to reduce food losses are presented.
Collapse
Affiliation(s)
- Romina Pedreschi
- Food & Biobased Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet 2013; 29:248-56. [DOI: 10.1016/j.tig.2012.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022]
|
17
|
Clark GB, Morgan RO, Fernandez MP, Roux SJ. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. THE NEW PHYTOLOGIST 2012; 196:695-712. [PMID: 22994944 DOI: 10.1111/j.1469-8137.2012.04308.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/29/2012] [Indexed: 05/04/2023]
Abstract
Annexins are an homologous, structurally related superfamily of proteins known to associate with membrane lipid and cytoskeletal components. Their involvement in membrane organization, vesicle trafficking and signaling is fundamental to cellular processes such as growth, differentiation, secretion and repair. Annexins exist in some prokaryotes and all eukaryotic phyla within which plant annexins represent a monophyletic clade of homologs descended from green algae. Genomic, proteomic and transcriptomic approaches have provided data on the diversity, cellular localization and expression patterns of different plant annexins. The availability of 35 complete plant genomes has enabled systematic comparative analysis to determine phylogenetic relationships, characterize structures and observe functional specificity between and within individual subfamilies. Short amino termini and selective erosion of the canonical type 2 calcium coordinating sites in domains 2 and 3 are typical of plant annexins. The convergent evolution of alternate functional motifs such as 'KGD', redox-sensitive Cys and hydrophobic Trp/Phe residues argues for their functional relevance and contribution to mechanistic diversity in plant annexins. This review examines recent findings and advances in plant annexin research with special focus on their structural diversity, cellular and molecular interactions and their potential integrated functions in the broader context of physiological responses.
Collapse
Affiliation(s)
- Greg B Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| |
Collapse
|
18
|
Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeong JC, Lee HS, Kwak SS. Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:120-129. [PMID: 22794925 DOI: 10.1016/j.plantsci.2012.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 05/15/2023]
Abstract
This study compares the differences in proteomes expressed in tuberous roots of a light orange-fleshed sweetpotato (Ipomoea batatas (L.) Lam. cultivar Yulmi) and a purple-fleshed sweetpotato cultivar (Shinjami). More than 370 protein spots were reproducibly detected by two-dimensional gel electrophoresis, in which 35 spots were up-regulated (Yulmi vs. Shinjami) or uniquely expressed (only Yulmi or Shinjami) in either of the two cultivars. Of these 35 protein spots, 23 were expressed in Yulmi and 12 were expressed in Shinjami. These protein spots were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry. Fifteen proteins in Yulmi and eight proteins in Shinjami were identified from the up-regulated (Yulmi vs. Shinjami) or uniquely expressed (only Yulmi or Shinjami) proteins, respectively. In Yulmi, α-amylase and isomerase precursor-like protein were uniquely expressed or up-regulated and activities of α-amylase, monodehydroascorbate reductase, and dehydroascorbate reductase were higher than in Shinjami. In Shinjami, peroxidase precursor and aldo-keto reductase were uniquely expressed or up-regulated and peroxidase and aldo-keto reductase activities were higher than in Yulmi. PSG-RGH7 uniquely expressed only in Shinjami and the cultivar was evaluated more resistant than Yulmi against the root-knot nematode, Meloidogyne incognita (Kofold and White, 1919) Chitwood 1949 on the basis of shoot and root growth. Egg mass formation was 14.9-fold less in Shinjami than in Yulmi. These results provide important clues that can provide a foundation for sweetpotato proteomics and lead to the characterization of the physiological function of differentially expressed proteins.
Collapse
Affiliation(s)
- Jeung Joo Lee
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Kee Woong Park
- Department of Crop Science, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Youn-Sig Kwak
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jae Young Ahn
- Department of Applied Biology, IALS, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Young Hak Jung
- Division of Applied Life Science (BK21 Program), IALS, PMBBRC, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Byung-Hyun Lee
- Division of Applied Life Science (BK21 Program), IALS, PMBBRC, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jae Cheol Jeong
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Haeng-Soon Lee
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Sang-Soo Kwak
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|