1
|
Guo X, Yang YY, Zhou R, Tian G, Shan C, Liu JM, Li R. Causal effect of blood osteocalcin on the risk of Alzheimer's disease and the mediating role of energy metabolism. Transl Psychiatry 2024; 14:205. [PMID: 38769320 PMCID: PMC11106250 DOI: 10.1038/s41398-024-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Rong Zhou
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ge Tian
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chang Shan
- Department of Endocrinology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
2
|
Liu J, He S, Ma B, Li X, Wang Y, Xiong J. TMT-based quantitative proteomic analysis revealed that FBLN2 and NPR3 are involved in the early osteogenic differentiation of mesenchymal stem cells (MSCs). Aging (Albany NY) 2023; 15:7637-7654. [PMID: 37543430 PMCID: PMC10457061 DOI: 10.18632/aging.204931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
The delicate equilibrium between osteoblast and adipocyte differentiation of MSCs is highly regulated. We screened for early-stage osteogenesis- or adipogenesis-based MSCs protein expression profiles using TMT-based quantitative proteomic analysis to identify novel participating molecules. Protein annotation, hierarchical clustering, functional stratification, and protein-protein association assessments were performed. Moreover, two upregulated proteins, namely, FBLN2 and NPR3, were validated to participate in the osteogenic differentiation process of MSCs. After that, we independently downregulated FBLN2 and NPR3 over seven days of osteogenic differentiation, and we performed quantitative proteomics analysis to determine how different proteins were regulated in knockdown vs. control cells. Based on gene ontology (GO) and network analyses, FBLN2 deficiency induced functional alterations associated with biological regulation and stimulus-response, whereas NPR3 deficiency induced functional alterations related to cellular and metabolic processes, and so on. These findings suggested that proteomics remains a useful method for an in-depth study of the MSCs differentiation process. This will assist in comprehensively evaluating its role in osteoporosis and provide additional approaches for identifying as-yet-unidentified effector molecules.
Collapse
Affiliation(s)
- Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Baicheng Ma
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Xingnuan Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
3
|
Rocha RA, Fox JM, Genever PG, Hancock Y. Biomolecular phenotyping and heterogeneity assessment of mesenchymal stromal cells using label-free Raman spectroscopy. Sci Rep 2021; 11:4385. [PMID: 33623051 PMCID: PMC7902661 DOI: 10.1038/s41598-021-81991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Easy, quantitative measures of biomolecular heterogeneity and high-stratified phenotyping are needed to identify and characterise complex disease processes at the single-cell level, as well as to predict cell fate. Here, we demonstrate how Raman spectroscopy can be used in the difficult-to-assess case of clonal, bone-derived mesenchymal stromal cells (MSCs) to identify MSC lines and group these according to biological function (e.g., differentiation capacity). Biomolecular stratification is achieved using high-precision measures obtained from representative statistical sampling that also enable quantified heterogeneity assessment. Application to primary MSCs and human dermal fibroblasts shows use of these measures as a label-free assay to classify cell sub-types within complex heterogeneous cell populations, thus demonstrating the potential for therapeutic translation, and broad application to the phenotypic characterisation of other cells.
Collapse
Affiliation(s)
- R A Rocha
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Federal University of Technology-Paraná, Campus Dois Vizinhos, Paraná, 85660-000, Brazil
| | - J M Fox
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - P G Genever
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Y Hancock
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
- York Cross-disciplinary Centre for Systems Analysis, University of York, Heslington, York, YO30 5GG, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE19RT, UK.
| |
Collapse
|
4
|
Systems biology analysis of osteogenic differentiation behavior by canine mesenchymal stem cells derived from bone marrow and dental pulp. Sci Rep 2020; 10:20703. [PMID: 33244029 PMCID: PMC7692528 DOI: 10.1038/s41598-020-77656-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Utilization of canine mesenchymal stem cells (cMSCs) for regenerating incorrigible bone diseases has been introduced. However, cMSCs harvested from different sources showed distinct osteogenicity. To clarify this, comparative proteomics-based systems biology analysis was used to analyze osteogenic differentiation behavior by cMSCs harvested from bone marrow and dental pulp. The results illustrated that canine dental pulp stem cells (cDPSCs) contained superior osteogenicity comparing with canine bone marrow-derived MSCs (cBM-MSCs) regarding alkaline phosphatase activity, matrix mineralization, and osteogenic marker expression. Global analyses by proteomics platform showed distinct protein clustering and expression pattern upon an in vitro osteogenic induction between them. Database annotation using Reactome and DAVID revealed contrast and unique expression profile of osteogenesis-related proteins, particularly on signaling pathways, cellular components and processes, and cellular metabolisms. Functional assay and hierarchical clustering for tracking protein dynamic change confirmed that cBM-MSCs required the presences of Wnt, transforming growth factor (TGF)-beta, and bone-morphogenetic protein (BMP) signaling, while cDPSCs mainly relied on BMP signaling presentation during osteogenic differentiation in vitro. Therefore, these findings illustrated the comprehensive data regarding an in vitro osteogenic differentiation behavior by cBM-MSCs and cDPSCs which is crucial for further mechanism study and the establishment of cMSC-based bone tissue engineering (BTE) for veterinary practice.
Collapse
|
5
|
Bionaz M, Monaco E, Wheeler MB. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One 2015; 10:e0137644. [PMID: 26398344 PMCID: PMC4580618 DOI: 10.1371/journal.pone.0137644] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
The importance of mesenchymal stem cells (MSC) for bone regeneration is growing. Among MSC the bone marrow-derived stem cells (BMSC) are considered the gold standard in tissue engineering and regenerative medicine; however, the adipose-derived stem cells (ASC) have very similar properties and some advantages to be considered a good alternative to BMSC. The molecular mechanisms driving adipogenesis are relatively well-known but mechanisms driving osteogenesis are poorly known, particularly in pig. In the present study we have used transcriptome analysis to unravel pathways and biological functions driving in vitro adipogenesis and osteogenesis in BMSC and ASC. The analysis was performed using the novel Dynamic Impact Approach and functional enrichment analysis. In addition, a k-mean cluster analysis in association with enrichment analysis, networks reconstruction, and transcription factors overlapping analysis were performed in order to uncover the coordination of biological functions underlining differentiations. Analysis indicated a larger and more coordinated transcriptomic adaptation during adipogenesis compared to osteogenesis, with a larger induction of metabolism, particularly lipid synthesis (mostly triglycerides), and a larger use of amino acids for synthesis of feed-forward adipogenic compounds, larger cell signaling, lower cell-to-cell interactions, particularly for the cytoskeleton organization and cell junctions, and lower cell proliferation. The coordination of adipogenesis was mostly driven by Peroxisome Proliferator-activated Receptors together with other known adipogenic transcription factors. Only a few pathways and functions were more induced during osteogenesis compared to adipogenesis and some were more inhibited during osteogenesis, such as cholesterol and protein synthesis. Up-stream transcription factor analysis indicated activation of several lipid-related transcription regulators (e.g., PPARs and CEBPα) during adipogenesis but osteogenesis was driven by inhibition of several up-stream regulators, such as MYC. Between MSCs the data indicated an ‘adipocyte memory’ in ASC with also an apparent lower immunogenicity compared to BMSC during differentiations. Overall the analysis allowed proposing a dynamic model for the adipogenic and osteogenic differentiation in porcine ASC and BMSC.
Collapse
Affiliation(s)
- Massimo Bionaz
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elisa Monaco
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew B. Wheeler
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wang HL, Yang CH, Lee HH, Kuo JC, Hur SS, Chien S, Lee OKS, Hung SC, Chang ZF. Dexamethasone-induced cellular tension requires a SGK1-stimulated Sec5-GEF-H1 interaction. J Cell Sci 2015; 128:3757-68. [PMID: 26359301 DOI: 10.1242/jcs.169961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Dexamethasone, a synthetic glucocorticoid, is often used to induce osteoblast commitment of mesenchymal stem cells (MSCs), and this process requires RhoA-dependent cellular tension. The underlying mechanism is unclear. In this study, we show that dexamethasone stimulates expression of fibronectin and integrin α5 (ITGA5), accompanied by an increase in the interaction of GEF-H1 (also known as ARHGEF2) with Sec5 (also known as EXOC2), a microtubule (MT)-regulated RhoA activator and a component of the exocyst, respectively. Disruption of this interaction abolishes dexamethasone-induced cellular tension and GEF-H1 targeting to focal adhesion sites at the cell periphery without affecting dexamethasone-induced levels of ITGA5 and fibronectin, and the extracellular deposition of fibronectin at adhesion sites is specifically inhibited. We demonstrate that dexamethasone stimulates the expression of serum-glucocorticoid-induced protein kinase 1 (SGK1), which is necessary and sufficient for the induction of the Sec5-GEF-H1 interaction. Given the function of SGK1 in suppressing MT growth, our data suggest that the induction of SGK1 through treatment with dexamethasone alters MT dynamics to increase Sec5-GEF-H1 interactions, which promote GEF-H1 targeting to adhesion sites. This mechanism is essential for the formation of fibronectin fibrils and their attachment to integrins at adhesion sites in order to generate cellular tension.
Collapse
Affiliation(s)
- Hong-Ling Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Hsuan Yang
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei 11221, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Sung-Sik Hur
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei 11221, Taiwan
| |
Collapse
|
7
|
Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. Proc Natl Acad Sci U S A 2015; 112:4280-5. [PMID: 25831522 DOI: 10.1073/pnas.1419799112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells' global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell-material interactions and suggest alternative research routes for evaluating biomaterials to improve their design.
Collapse
|
8
|
Lee JH, Cho JY. Proteomics approaches for the studies of bone metabolism. BMB Rep 2014; 47:141-8. [PMID: 24499667 PMCID: PMC4163882 DOI: 10.5483/bmbrep.2014.47.3.270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/16/2013] [Accepted: 01/04/2014] [Indexed: 01/13/2023] Open
Abstract
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling. [BMB Reports 2014; 47(3): 141-148]
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
9
|
Mateos J, Pernas PF, Labora JF, Blanco F, Arufe MDC. Proteomic Applications in the Study of Human Mesenchymal Stem Cells. Proteomes 2014; 2:53-71. [PMID: 28250369 PMCID: PMC5302726 DOI: 10.3390/proteomes2010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 01/26/2014] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.
Collapse
Affiliation(s)
- Jesús Mateos
- Rheumatology Division, ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
| | - Pablo Fernández Pernas
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| | - Juan Fafián Labora
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| | - Francisco Blanco
- Rheumatology Division, ProteoRed/ISCIII, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María Del Carmen Arufe
- CIBER-BBN, INIBIC-Hospital Universitario A Coruña, A Coruña 15006, Spain.
- Department of Medicine, University of A Coruña, A Coruña 15006, Spain.
| |
Collapse
|
10
|
Dudley E, Bond AE. Phosphoproteomic Techniques and Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:25-69. [DOI: 10.1016/b978-0-12-800453-1.00002-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Halcsik E, Forni MF, Fujita A, Verano-Braga T, Jensen ON, Sogayar MC. New insights in osteogenic differentiation revealed by mass spectrometric assessment of phosphorylated substrates in murine skin mesenchymal cells. BMC Cell Biol 2013; 14:47. [PMID: 24148232 PMCID: PMC3819743 DOI: 10.1186/1471-2121-14-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/09/2013] [Indexed: 01/15/2023] Open
Abstract
Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mari Cleide Sogayar
- Chemistry Institute, Department of Biochemistry, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo 05508-000, SP, Brazil.
| |
Collapse
|
12
|
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95:2196-211. [PMID: 23880644 DOI: 10.1016/j.biochi.2013.07.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Rumburska 89, 277 21 Libechov, Czech Republic.
| |
Collapse
|
13
|
Cheng G, Luo R, Hu C, Lin J, Bai Z, Zhang B, Wang H. TiO2-based phosphoproteomic analysis of schistosomes: characterization of phosphorylated proteins in the different stages and sex of Schistosoma japonicum. J Proteome Res 2013; 12:729-42. [PMID: 23259596 DOI: 10.1021/pr3007864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is an important posttranslational modification in many organisms that regulates numerous cellular processes. However, it remains poorly characterized in schistosomes, the causative agent of schistosomiasis in humans and related animals. In the present study, we characterized phosphorylated proteins in different stages and sex of Schistosoma japonicum (S. japonicum) including schistosomula (14 days), adult females (35 days), and adult males (35 days) by a titanium dioxide (TiO(2)) based phosphoproteomic method. A total of 180 phosphopeptides were identified in 148 proteins. Our further studies revealed that heat shock protein 90 (Hsp90), one of the phosphoproteins codetected in the different stage and sex of schistosomes, may play an important role in the regulation of schistosome development by directly or indirectly interacting with other codetected signal molecules. Additionally, some phosphoproteins were shown to be detected in a gender-specific manner, and the expressions of these proteins were further validated either by immunohistochemistry or by real-time reverse transcription polymerase chain reaction (RT-PCR) at transcript levels between male and female schistosomes. In summary, these findings as well as the providing of an inventory of phosphoproteins are expected to provide new insights into schistosome development and sexual maturation and then may result in the development of novel interventions against schistosomiasis.
Collapse
Affiliation(s)
- Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
|