1
|
Sprengel C, David C, Berning L, Nollmann C, Lenz T, Stühler K, Stork B, Heinzel T. Lysosomal activity in response to the incubation of pristine and functionalized carbon nanodots. iScience 2025; 28:111654. [PMID: 39886472 PMCID: PMC11780158 DOI: 10.1016/j.isci.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 02/01/2025] Open
Abstract
We present functional studies of lysosomes in human cells after uptake of carbon nanodots (CNDs). Even under high CND concentrations, the lysosomal functionality, as characterized via cathepsins B and L as well as the autophagic markers SQSTM1/p62 and LC3B-II, is maintained. Furthermore, branched polyethylenimine (bPEI) molecules have been coupled to the CNDs as a model functionalization or example of a drug. We observe that the bPEI-CND conjugates accumulate to a higher degree in the lysosomes as compared to bPEI or CND alone. Here, changes in the lysosomal size and function are observed, which can be explained exclusively by the bPEI. It is concluded that CNDs are highly efficient and inert carriers for functional molecules into lysosomes as target, with the added value that lysosomal escape is suppressed, thereby avoiding unintended side effects in other cellular compartments.
Collapse
Affiliation(s)
- Carla Sprengel
- Solid State Physics Laboratory, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Cathrin Nollmann
- Solid State Physics Laboratory, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Heinzel
- Solid State Physics Laboratory, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
2
|
Damiecki M, Naha R, Schaumkessel Y, Westhoff P, Atanelov N, Stefanski A, Petzsch P, Stühler K, Köhrer K, Weber AP, Anand R, Reichert AS, Kondadi AK. Mitochondrial apolipoprotein MIC26 is a metabolic rheostat regulating central cellular fuel pathways. Life Sci Alliance 2024; 7:e202403038. [PMID: 39393820 PMCID: PMC11472510 DOI: 10.26508/lsa.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Mitochondria play central roles in metabolism and metabolic disorders such as type 2 diabetes. MIC26, a mitochondrial contact site and cristae organising system complex subunit, was linked to diabetes and modulation of lipid metabolism. Yet, the functional role of MIC26 in regulating metabolism under hyperglycemia is not understood. We used a multi-omics approach combined with functional assays using WT and MIC26 KO cells cultured in normoglycemia or hyperglycemia, mimicking altered nutrient availability. We show that MIC26 has an inhibitory role in glycolysis and cholesterol/lipid metabolism under normoglycemic conditions. Under hyperglycemia, this inhibitory role is reversed demonstrating that MIC26 is critical for metabolic adaptations. This is partially mediated by alterations of mitochondrial metabolite transporters. Furthermore, MIC26 deletion led to a major metabolic rewiring of glutamine use and oxidative phosphorylation. We propose that MIC26 acts as a metabolic "rheostat," that modulates mitochondrial metabolite exchange via regulating mitochondrial cristae, allowing cells to cope with nutrient overload.
Collapse
Affiliation(s)
- Melissa Damiecki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ritam Naha
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nika Atanelov
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Molecular Medicine, Protein Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Gisevius B, Duscha A, Poschmann G, Stühler K, Motte J, Fisse AL, Augustyniak S, Rehm A, Renk P, Böse C, Hubert D, Peters K, Jagst M, Gömer A, Todt D, Bader V, Tokic M, Hirschberg S, Krogias C, Trampe N, Coutourier C, Winnesberg C, Steinmann E, Winklhofer K, Gold R, Haghikia A. Propionic acid promotes neurite recovery in damaged multiple sclerosis neurons. Brain Commun 2024; 6:fcae182. [PMID: 38894951 PMCID: PMC11184351 DOI: 10.1093/braincomms/fcae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegeneration in the autoimmune disease multiple sclerosis still poses a major therapeutic challenge. Effective drugs that target the inflammation can only partially reduce accumulation of neurological deficits and conversion to progressive disease forms. Diet and the associated gut microbiome are currently being discussed as crucial environmental risk factors that determine disease onset and subsequent progression. In people with multiple sclerosis, supplementation of the short-chain fatty acid propionic acid, as a microbial metabolite derived from the fermentation of a high-fiber diet, has previously been shown to regulate inflammation accompanied by neuroprotective properties. We set out to determine whether the neuroprotective impact of propionic acid is a direct mode of action of short-chain fatty acids on CNS neurons. We analysed neurite recovery in the presence of the short-chain fatty acid propionic acid and butyric acid in a reverse-translational disease-in-a-dish model of human-induced primary neurons differentiated from people with multiple sclerosis-derived induced pluripotent stem cells. We found that recovery of damaged neurites is induced by propionic acid and butyric acid. We could also show that administration of butyric acid is able to enhance propionic acid-associated neurite recovery. Whole-cell proteome analysis of induced primary neurons following recovery in the presence of propionic acid revealed abundant changes of protein groups that are associated with the chromatin assembly, translational, and metabolic processes. We further present evidence that these alterations in the chromatin assembly were associated with inhibition of histone deacetylase class I/II following both propionic acid and butyric acid treatment, mediated by free fatty acid receptor signalling. While neurite recovery in the presence of propionic acid is promoted by activation of the anti-oxidative response, administration of butyric acid increases neuronal ATP synthesis in people with multiple sclerosis-specific induced primary neurons.
Collapse
Affiliation(s)
- Barbara Gisevius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Alexander Duscha
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40335 Düsseldorf, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Sanja Augustyniak
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Adriana Rehm
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Pia Renk
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Celina Böse
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Diana Hubert
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Kathrin Peters
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michelle Jagst
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Marianne Tokic
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Sarah Hirschberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christos Krogias
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nadine Trampe
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Charlotta Coutourier
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carmen Winnesberg
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Konstanze Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Scheliga I, Baston-Buest DM, Poschmann G, Stuehler K, Kruessel JS, Bielfeld AP. Closer to the Reality-Proteome Changes Evoked by Endometrial Scratching in Fertile Females. Int J Mol Sci 2023; 24:13577. [PMID: 37686380 PMCID: PMC10488085 DOI: 10.3390/ijms241713577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Endometrial scratching (ES) has been widely used in assisted reproductive technology to possibly improve pregnancy rates, but its exact mechanism is still not understood or investigated, and its benefits are controversially discussed. Hypothetically, ES may trigger a local immune response, leading to an improved endometrial receptivity. So far, it has been shown that ES affects the gene expression of cytokines, growth factors, and adhesive proteins, potentially modulating inflammatory pathways and adhesion molecule expression. Our pilot study applying proteomic analysis reveals that ES probably has an impact on the proteins involved in immune response pathways and cytoskeleton formation, which could potentially increase endometrial receptivity. Specifically, proteins that are involved in the immune response and cytoskeleton regulation showed a trend toward higher abundance after the first ES. On the other hand, proteins with a decreasing abundance after the first ES play roles in the regulation of the actin cytoskeleton and cellular processes such as intracellular transport, apoptosis, and autophagy. These trends in protein changes suggest that ES may affect endometrial tissue stiffness and extracellular matrix remodeling, potentially enhancing the embryos' implantation. To our knowledge, this pilot study provides, for the first time, data investigating potential changes in the endometrium due to the scratching procedure that might explain its possible benefit for patients in infertility treatment. Furthermore, the proteome of a group of patients suffering from repeated implantation failure was compared to that of the fertile group in order to transfer the basic science to clinical routine and application.
Collapse
Affiliation(s)
- Iwona Scheliga
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Dunja M Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Kai Stuehler
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Duesseldorf, Germany
| | - Jan-Steffen Kruessel
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Alexandra P Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| |
Collapse
|
5
|
Spona D, Hanisch PT, Hegemann JH, Mölleken K. A single chlamydial protein reshapes the plasma membrane and serves as recruiting platform for central endocytic effector proteins. Commun Biol 2023; 6:520. [PMID: 37179401 PMCID: PMC10182996 DOI: 10.1038/s42003-023-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Collapse
Affiliation(s)
- Dominik Spona
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp T Hanisch
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Sinatra L, Yang J, Schliehe-Diecks J, Dienstbier N, Vogt M, Gebing P, Bachmann LM, Sönnichsen M, Lenz T, Stühler K, Schöler A, Borkhardt A, Bhatia S, Hansen FK. Solid-Phase Synthesis of Cereblon-Recruiting Selective Histone Deacetylase 6 Degraders (HDAC6 PROTACs) with Antileukemic Activity. J Med Chem 2022; 65:16860-16878. [PMID: 36473103 DOI: 10.1021/acs.jmedchem.2c01659] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin-proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou, 225009, P.R. China
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Luisa M Bachmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Hein-rich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
7
|
Primary cilia contribute to the aggressiveness of atypical teratoid/rhabdoid tumors. Cell Death Dis 2022; 13:806. [PMID: 36127323 PMCID: PMC9489777 DOI: 10.1038/s41419-022-05243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/23/2023]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.
Collapse
|
8
|
Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, Neidert M, Poschmann G, Malisic M, Thiele M, Stühler K, Dama M, Pauly M, Zuccaro A. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. THE PLANT CELL 2022; 34:2765-2784. [PMID: 35441693 PMCID: PMC9252488 DOI: 10.1093/plcell/koac114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.
Collapse
Affiliation(s)
| | - Alan Wanke
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Lisa Mahdi
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Miriam Neidert
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Milena Malisic
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Meik Thiele
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Murali Dama
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
9
|
Skowron MA, Becker TK, Kurz L, Jostes S, Bremmer F, Fronhoffs F, Funke K, Wakileh GA, Müller MR, Burmeister A, Lenz T, Stefanski A, Stühler K, Petzsch P, Köhrer K, Altevogt P, Albers P, Kristiansen G, Schorle H, Nettersheim D. The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Mol Oncol 2022; 16:982-1008. [PMID: 34293822 PMCID: PMC8847992 DOI: 10.1002/1878-0261.13066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Teresa K. Becker
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Lukas Kurz
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Sina Jostes
- Department of Oncological ScienceIcahn School of Medicine at Mount SinaiHess Center for Science and MedicineNew YorkNYUSA
| | - Felix Bremmer
- Institute of PathologyUniversity Medical Center GoettingenGermany
| | | | - Kai Funke
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Gamal A. Wakileh
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
- Department of UrologyUniversity Hospital UlmGermany
| | - Melanie R. Müller
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Aaron Burmeister
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Thomas Lenz
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Anja Stefanski
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics LaboratoryHeinrich‐Heine‐University DüsseldorfGermany
| | - Patrick Petzsch
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Karl Köhrer
- Genomics & Transcriptomics LabHeinrich Heine University DüsseldorfGermany
| | - Peter Altevogt
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center MannheimRuprecht‐Karl University HeidelbergGermany
| | - Peter Albers
- Department of UrologyMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfGermany
| | | | - Hubert Schorle
- Department of Developmental PathologyInstitute of PathologyUniversity Hospital BonnGermany
| | - Daniel Nettersheim
- Department of UrologyUrological Research LaboratoryTranslational UroOncologyMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
10
|
Physical Interaction between Embryonic Stem Cell-Expressed Ras (ERas) and Arginase-1 in Quiescent Hepatic Stellate Cells. Cells 2022; 11:cells11030508. [PMID: 35159317 PMCID: PMC8834437 DOI: 10.3390/cells11030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC–MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence.
Collapse
|
11
|
Hüdig M, Tronconi MA, Zubimendi JP, Sage TL, Poschmann G, Bickel D, Gohlke H, Maurino VG. Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cell mitochondria and evolved via association of differentially adapted subunits. THE PLANT CELL 2022; 34:597-615. [PMID: 34734993 PMCID: PMC8773993 DOI: 10.1093/plcell/koab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/26/2021] [Indexed: 05/29/2023]
Abstract
In plant mitochondria, nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) has a housekeeping function in malate respiration. In different plant lineages, NAD-ME was independently co-opted in C4 photosynthesis. In the C4 Cleome species, Gynandropsis gynandra and Cleome angustifolia, all NAD-ME genes (NAD-MEα, NAD-MEβ1, and NAD-MEβ2) were affected by C4 evolution and are expressed at higher levels than their orthologs in the C3 species Tarenaya hassleriana. In T. hassleriana, the NAD-ME housekeeping function is performed by two heteromers, NAD-MEα/β1 and NAD-MEα/β2, with similar biochemical properties. In both C4 species, this role is restricted to NAD-MEα/β2. In the C4 species, NAD-MEα/β1 is exclusively present in the leaves, where it accounts for most of the enzymatic activity. Gynandropsis gynandra NAD-MEα/β1 (GgNAD-MEα/β1) exhibits high catalytic efficiency and is differentially activated by the C4 intermediate aspartate, confirming its role as the C4-decarboxylase. During C4 evolution, NAD-MEβ1 lost its catalytic activity; its contribution to the enzymatic activity results from a stabilizing effect on the associated α-subunit and the acquisition of regulatory properties. We conclude that in bundle sheath cell mitochondria of C4 species, the functions of NAD-ME as C4 photosynthetic decarboxylase and as a housekeeping enzyme coexist and are performed by isoforms that combine the same α-subunit with differentially adapted β-subunits.
Collapse
Affiliation(s)
- Meike Hüdig
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee, Bonn 53115, Germany
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Juan P Zubimendi
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Tammy L Sage
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ) & Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - David Bickel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee, Bonn 53115, Germany
| |
Collapse
|
12
|
Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential Crosstalk Between Parkinson's Disease and Energy Metabolism. Aging Dis 2021; 12:2003-2015. [PMID: 34881082 PMCID: PMC8612621 DOI: 10.14336/ad.2021.0422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of alpha-synuclein (α-Syn) in the substantia nigra (SN) and the degeneration of nigrostriatal dopaminergic (DAergic) neurons. Some studies have reported that the pathology of PD originates from the gastrointestinal (GI) tract, which also serves as an energy portal, and develops upward along the neural pathway to the central nervous system (CNS), including the dorsal motor nucleus of vagus (DMV), SN, and hypothalamus, which are also involved in energy metabolism control. Therefore, we discuss the alterations of nuclei that regulate energy metabolism in the development of PD. In addition, due to their anti-inflammatory, antiapoptotic and antioxidative roles, metabolism-related peptides are involved in the progression of PD. Furthermore, abnormal glucose and lipid metabolism are common in PD patients and exacerbate the pathological changes in PD. Therefore, in this review, we attempt to explain the correlation between PD and energy metabolism, which may provide possible strategies for PD treatment.
Collapse
Affiliation(s)
- Meiqiu Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
The regulatory effect of hyaluronan on human mesenchymal stem cells' fate modulates their interaction with cancer cells in vitro. Sci Rep 2021; 11:21229. [PMID: 34707175 PMCID: PMC8551322 DOI: 10.1038/s41598-021-00754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic spread of cancer cells into a pre-metastatic niche is highly dependent on a supporting microenvironment. Human bone marrow-derived mesenchymal stem cells (bmMSCs) contribute to the tumor microenvironment and promote cancer metastasis by inducing epithelial-to-mesenchymal transition and immune evasion. The underlying mechanisms, however, are incompletely understood. The glycosaminoglycan hyaluronan (HA) is a central component of the extracellular matrix and has been shown to harbor pro-metastatic properties. In this study we investigated the highly disseminating breast cancer and glioblastoma multiforme cell lines MDA-MB-321 and U87-MG which strongly differ in their metastatic potential to evaluate the impact of HA on tumor promoting features of bmMSC and their interaction with tumor cells. We show that adipogenic differentiation of bmMSC is regulated by the HA-matrix. This study reveals that MDA-MB-231 cells inhibit this process by the induction of HA-synthesis in bmMSCs and thus preserve the pro-tumorigenic properties of bmMSC. Furthermore, we show that adhesion of MDA-MB-231 cells to bmMSC is facilitated by the tumor cell-induced HA-rich matrix and is mediated by the HA-receptor LAYN. We postulate that invasive breast cancer cells modulate the HA-matrix of bmMSC to adapt the pre-metastatic niche. Thus, the HA-matrix provides a potential novel therapeutic target to prevent cancer metastasis.
Collapse
|
14
|
Ahmadov U, Picard D, Bartl J, Silginer M, Trajkovic-Arsic M, Qin N, Blümel L, Wolter M, Lim JKM, Pauck D, Winkelkotte AM, Melcher M, Langini M, Marquardt V, Sander F, Stefanski A, Steltgens S, Hassiepen C, Kaufhold A, Meyer FD, Seibt A, Kleinesudeik L, Hain A, Münk C, Knobbe-Thomsen CB, Schramm A, Fischer U, Leprivier G, Stühler K, Fulda S, Siveke JT, Distelmaier F, Borkhardt A, Weller M, Roth P, Reifenberger G, Remke M. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death Dis 2021; 12:885. [PMID: 34584066 PMCID: PMC8478910 DOI: 10.1038/s41419-021-04146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Ulvi Ahmadov
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Manuela Silginer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jonathan K M Lim
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alina Marie Winkelkotte
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maike Langini
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Sander
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Sascha Steltgens
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christina Hassiepen
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Anna Kaufhold
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lara Kleinesudeik
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Alexander Schramm
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
15
|
FIP200 controls the TBK1 activation threshold at SQSTM1/p62-positive condensates. Sci Rep 2021; 11:13863. [PMID: 34226595 PMCID: PMC8257712 DOI: 10.1038/s41598-021-92408-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
The protein kinase TBK1 is a central regulator of innate immune responses and autophagy, and ablation of either function has been linked to neuroinflammatory or degenerative diseases. Autophagy is an intracellular process that recycles old or damaged proteins and organelles. In recent years, the TBK1-dependent regulation of autophagy pathways has been characterized. However, the autophagy-dependent regulation of TBK1 activity awaits further clarification. Here, we observed that TBK1 is recruited to SQSTM1/p62-containing aggregates via the selective autophagy receptor TAX1BP1. In these aggregates, TBK1 phosphorylates SQSTM1/p62 at serine 403 and thus presumably regulates the efficient engulfment and clearance of these structures. We found that TBK1 activation is strongly increased if FIP200, a component of the autophagy-inducing ULK1 complex, is not present or cannot bind to TAX1BP1. Given our collective findings, we hypothesize that FIP200 ensures the inducible activation of TBK1 at SQSTM1/p62 condensates.
Collapse
|
16
|
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, Seggewiß S, Peter C, Kasof G, Stefanski A, Stühler K, Tschapek A, Gödecke A, Stork B. The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death. Cell Rep 2021; 31:107547. [PMID: 32320653 DOI: 10.1016/j.celrep.2020.107547] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaojing Wang
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Nora Wallot-Hieke
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Philip Böhler
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Cox
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schmitz
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Seggewiß
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Astrid Tschapek
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Prescher N, Hänsch S, Knobbe-Thomsen CB, Stühler K, Poschmann G. The migration behavior of human glioblastoma cells is influenced by the redox-sensitive human macrophage capping protein CAPG. Free Radic Biol Med 2021; 167:81-93. [PMID: 33711419 DOI: 10.1016/j.freeradbiomed.2021.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
The macrophage capping protein CAPG belongs to the gelsolin superfamily which modulates actin dynamics by capping the growing end of actin filaments in a Ca2+- and PIP2-dependent manner resulting in polymerization inhibition of actin filaments. In the last years, additional functions for CAPG in transcription regulation were described and higher CAPG amounts have been linked to increased invasiveness and migration behavior in different human tumor entities like e.g. glioblastoma. Nevertheless, there is a lack of knowledge how additional functions of CAPG are regulated. As CAPG contains several cysteine residues which may be accessible to oxidation we were especially interested to investigate how alterations in the cysteine oxidation state may influence the function, localization, and regulation of CAPG. In the present study, we provide strong evidence that CAPG is a redox-sensitive protein and identified two cysteines: C282 and C290 as reversibly oxidized in glioblastoma cell lines. Whereas no evidence could be found that the canonical actin capping function of CAPG is redox-regulated, our results point to a novel role of the identified cysteines in the regulation of cell migration. Along with this, we found a localization shift out of the nucleus of CAPG and RAVER1, a potential interaction partner identified in our study which might explain the observed altered cell migration properties. The newly identified redox sensitive cysteines of CAPG could perspectively be considered as new targets for controlling tumor invasive properties.
Collapse
Affiliation(s)
- Nina Prescher
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sebastian Hänsch
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christiane B Knobbe-Thomsen
- Department of Neuropathology, Heinrich-Heine University Düsseldorf and University Hospital, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Gerovska D, Larrinaga G, Solano-Iturri JD, Márquez J, García Gallastegi P, Khatib AM, Poschmann G, Stühler K, Armesto M, Lawrie CH, Badiola I, Araúzo-Bravo MJ. An Integrative Omics Approach Reveals Involvement of BRCA1 in Hepatic Metastatic Progression of Colorectal Cancer. Cancers (Basel) 2020; 12:E2380. [PMID: 32842712 PMCID: PMC7565528 DOI: 10.3390/cancers12092380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
(1) Background & Aims: The roles of different cells in the tumor microenvironment (TME) are critical to the metastatic process. The phenotypic transformation of the liver cells is one of the most important stages of the hepatic metastasis progression of colorectal cancer (CRC). Our aim was to identify the major molecules (i.e., genes, miRNAs and proteins) involved in this process. (2) Methods: We isolated and performed whole-genome analysis of gene, miRNA, and protein expression in three types of liver cells (Ito cells, Kupffer cells, and liver sinusoidal endothelial cells) from the TME of a murine model of CRC liver metastasis. We selected the statistically significant differentially expressed molecules using the Student's t-test with Benjamini-Hochberg correction and performed functional statistically-significant enrichment analysis of differentially expressed molecules with hypergeometric distribution using the curated collection of molecular signatures, MSigDB. To build a gene-miRNA-protein network centered in Brca1, we developed a software package (miRDiana) that collects miRNA targets from the union of the TargetScan, MicroCosm, mirTarBase, and miRWalk databases. This was used to search for miRNAs targeting Brca1. We validated the most relevant miRNAs with real-time quantitative PCR. To investigate BRCA1 protein expression, we built tissue microarrays (TMAs) from hepatic metastases of 34 CRC patients. (3) Results: Using integrated omics analyses, we observed that the Brca1 gene is among the twenty transcripts simultaneously up-regulated in all three types of TME liver cells during metastasis. Further analysis revealed that Brca1 is the last BRCA1-associated genome surveillance complex (BASC) gene activated in the TME. We confirmed this finding in human reanalyzing transcriptomics datasets from 184 patients from non-tumor colorectal tissue, primary colorectal tumor and colorectal liver metastasis of the GEO database. We found that the most probable sequence of cell activation during metastasis is Endothelial→Ito→Kupffer. Immunohistochemical analysis of human liver metastases showed the BRCA1 protein was co-localized in Ito, Kupffer, and endothelial cells in 81.8% of early or synchronous metastases. However, in the greater part of the metachronous liver metastases, this protein was not expressed in any of these TME cells. (4) Conclusions: These results suggest a possible role of the co-expression of BRCA1 in Ito, Kupffer, and sinusoidal endothelial cells in the early occurrence of CRC liver metastases, and point to BRCA1 as a potential TME biomarker.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain
| | - Gorka Larrinaga
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
- BioCruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
| | - Jon Danel Solano-Iturri
- BioCruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
- Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Joana Márquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Patricia García Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Abdel-Majid Khatib
- University of Bordeaux, Allée Geoffroy St Hilaire, 33615 Pessac, France; INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, 33615 Pessac, France;
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - María Armesto
- Molecular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (C.H.L.)
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (C.H.L.)
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.M.); (P.G.G.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| |
Collapse
|
19
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
20
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Kurz L, Miklyaeva A, Skowron MA, Overbeck N, Poschmann G, Becker T, Eul K, Kurz T, Schönberger S, Calaminus G, Stühler K, Dykhuizen E, Albers P, Nettersheim D. ARID1A Regulates Transcription and the Epigenetic Landscape via POLE and DMAP1 while ARID1A Deficiency or Pharmacological Inhibition Sensitizes Germ Cell Tumor Cells to ATR Inhibition. Cancers (Basel) 2020; 12:E905. [PMID: 32272809 PMCID: PMC7226530 DOI: 10.3390/cancers12040905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Germ cell tumors (GCTs) are the most common solid malignancies found in young men. Although they generally have high cure rates, metastases, resistance to cisplatin-based therapy, and late toxicities still represent a lethal threat, arguing for the need of new therapeutic options. In a previous study, we identified downregulation of the chromatin-remodeling SWI/SNF complex member ARID1A as a key event in the mode of action of the histone deacetylase inhibitor romidepsin. Additionally, the loss-of-function mutations re-sensitize different tumor types to various drugs, like EZH2-, PARP-, HDAC-, HSP90- or ATR-inhibitors. Thus, ARID1A presents as a promising target for synthetic lethality and combination therapy. In this study, we deciphered the molecular function of ARID1A and screened for the potential of two pharmacological ARID1A inhibitors as a new therapeutic strategy to treat GCTs. By CRISPR/Cas9, we generated ARID1A-deficient GCT cells and demonstrate by mass spectrometry that ARID1A is putatively involved in regulating transcription, DNA repair and the epigenetic landscape via DNA Polymerase POLE and the DNA methyltransferase 1-associated protein DMAP1. Additionally, ARID1A/ARID1A deficiency or pharmacological inhibition increased the efficacy of romidepsin and considerably sensitized GCT cells, including cisplatin-resistant subclones, towards ATR inhibition. Thus, targeting ARID1A in combination with romidepsin and ATR inhibitors presents as a new putative option to treat GCTs.
Collapse
Affiliation(s)
- Lukas Kurz
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Alissa Miklyaeva
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Margaretha A. Skowron
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Institute for Molecular Medicine I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Institute for Molecular Medicine I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Teresa Becker
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina Eul
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Schönberger
- Department of Paediatric Haematology and Oncology, University Hospital Bonn, 53113 Bonn, Germany
| | - Gabriele Calaminus
- Department of Paediatric Haematology and Oncology, University Hospital Bonn, 53113 Bonn, Germany
| | - Kai Stühler
- Institute for Molecular Medicine I, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emily Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 479078, USA
| | - Peter Albers
- Department of Urology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Nehrenheim L, Raschke S, Stefanski A, Barth M, Isabel Selig J, Barbian A, Fernández-Colino A, Stühler K, Mela P, Albert A, Lichtenberg A, Akhyari P. Native aortic valve derived extracellular matrix hydrogel for three dimensional culture analyses with improved biomimetic properties. ACTA ACUST UNITED AC 2019; 14:035014. [PMID: 30769335 DOI: 10.1088/1748-605x/ab0791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Calcific aortic valve disease (CAVD) is the most common acquired heart valve disease with complex underlying pathomechanisms that are yet not fully understood. Three-dimensional (3D) cell culture models as opposed to conventional two-dimensional (2D) techniques may reveal new aspects of CAVD and serve as a transitional platform between conventional 2D cell culture and in vivo experiments. METHODS Here we report on fabrication and characterization of a novel 3D hydrogel derived from cell-free native aortic valves. A detailed analysis containing protein composition, rheological behavior, cytotoxic and proliferative effects as well as results of 3D cell culture experiments are presented. Moreover, this aortic valve derived hydrogel (AVdH) is compared to commercially available biological extracellular matrix (ECM) components to evaluate and classify AVdH with respect to other currently used ECM solutions, i.e. Collagen type I and Matrigel®. RESULTS On the biochemical level, a complex composition of native proteins was detected. Using different techniques, including mass spectrometry with Gene Ontology network and enrichment analysis, different fundamental biological functions of AVdH were identified, including peptidase-, peptidase inhibitor-, growth- and binding activity. No cytotoxic effects were detected and AVdH showed positive effects on cell growth and proliferation in vitro when compared to Collagen type I and Matrigel®. CONCLUSION These results suggest AVdH as an organotypic ECM supporting sophisticated 3D cell culture model studies, while mimicking the native environment of the aortic valve to a greater level for enhanced in vitro analyses.
Collapse
Affiliation(s)
- Laura Nehrenheim
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baberg F, Geyh S, Waldera-Lupa D, Stefanski A, Zilkens C, Haas R, Schroeder T, Stühler K. Secretome analysis of human bone marrow derived mesenchymal stromal cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:434-441. [PMID: 30716505 DOI: 10.1016/j.bbapap.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
As an essential cellular component of the bone marrow (BM) microenvironment mesenchymal stromal cells (MSC) play a pivotal role for the physiological regulation of hematopoiesis, in particular through the secretion of cytokines and chemokines. Mass spectrometry (MS) facilitates the identification and quantification of a large amount of secreted proteins (secretome), but can be hampered by the false-positive identification of contaminating proteins released from dead cells or derived from cell medium. To reduce the likelihood of contaminations we applied an approach combining secretome and proteome analysis to characterize the physiological secretome of BM derived human MSC. Our analysis revealed a secretome consisting of 315 proteins. Pathway analyses of these proteins revealed a high abundance of proteins related to cell growth and/or maintenance, signal transduction and cell communication thereby representing key biological functions of BM derived MSC on protein level. Within the MSC secretome we identified several cytokines and growth factors such as VEGFC, TGF-β1, TGF-β2 and GDF6 which are known to be involved in the physiological regulation of hematopoiesis. By comparing the peptide patterns of secretomes and cell lysates 17 proteins were identified as candidates for proteolytic processing. Taken together, our combined MS work-flow reduced the likelihood of contaminations and enabled us to carve out a specific overview about the composition of the secretome from human BM derived MSC. This methodological approach and the specific secretome signature of BM derived MSC may serve as basis for future comparative analyses of the interplay of MSC and HSPC in patients with hematological malignancies.
Collapse
Affiliation(s)
- Falk Baberg
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedic Surgery, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
25
|
Bielfeld AP, Pour SJ, Poschmann G, Stühler K, Krüssel JS, Baston-Büst DM. A Proteome Approach Reveals Differences between Fertile Women and Patients with Repeated Implantation Failure on Endometrial Level⁻Does hCG Render the Endometrium of RIF Patients? Int J Mol Sci 2019; 20:ijms20020425. [PMID: 30669470 PMCID: PMC6358950 DOI: 10.3390/ijms20020425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: The molecular signature of endometrial receptivity still remains barely understood, especially when focused on the possible benefit of therapeutical interventions and implantation-related pathologies. Therefore, the protein composition of tissue and isolated primary cells (endometrial stromal cells, ESCs) from endometrial scratchings of ART (Assisted Reproductive Techniques) patients with repeated implantation failure (RIF) was compared to volunteers with proven fertility during the time of embryo implantation (LH + 7). Furthermore, an analysis of the endometrial tissue of fertile women infused with human chorionic gonadotropin (hCG) was conducted. Methods: Endometrial samples (n = 6 RIF, n = 10 fertile controls) were split into 3 pieces: 1/3 each was frozen in liquid nitrogen, 1/3 fixed in PFA and 1/3 cultured. Protein lysates prepared from fresh frozen tissue were processed for mass spectrometric analysis. Results: Three proteins (EPPK1, BCLAF1 and PTMA) showed a statistically altered abundance in the endometrial tissue of RIF patients. Furthermore, pathways like metabolism, immune system, ferroptosis and the endoplasmic reticulum were altered in RIF patients. Remarkably, endometrial tissues of RIF patients showed a significantly higher (p-value = 9 × 10−8) protein intensity correlation (Pearson’s correlation coefficient = 0.95) compared to fertile women (Pearson’s correlation coefficient = 0.88). The in vivo infusion of hCG stimulated proteins of endocytosis, HIF1 signalling and chemokine production. Notably, patients suffering from RIF had a clinical pregnancy rate of 19% after the intrauterine infusion of hCG before embryo transfer (ET) compared to their failed previous cycles. Conclusion: Our study showed for the first time that the endometrial proteome composition of RIF patients differs from fertile controls during the window of implantation. The intrauterine infusion of hCG prior to an embryo transfer might improve the chemokine triggered embryo-endometrial dialogue and intensify the angiogenesis and immune response. From a clinical point of view, the hCG infusion prior to an embryo transfer might increase the pregnancy rate of RIF patients.
Collapse
Affiliation(s)
- Alexandra P Bielfeld
- Medical Center University of Düsseldorf, Department of OB/GYN and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Sarah Jean Pour
- Medical Center University of Düsseldorf, Department of OB/GYN and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
- Institute for Molecular Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
| | - Jan-Steffen Krüssel
- Medical Center University of Düsseldorf, Department of OB/GYN and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | - Dunja M Baston-Büst
- Medical Center University of Düsseldorf, Department of OB/GYN and REI (UniKiD), Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
26
|
Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, Zorina A, Steuer R, Červený J. Quantitative insights into the cyanobacterial cell economy. eLife 2019; 8:42508. [PMID: 30714903 PMCID: PMC6391073 DOI: 10.7554/elife.42508] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 01/27/2023] Open
Abstract
Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological acclimations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial acclimations to different growth rates have implications to understand and optimize photosynthetic productivity.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Marjan Faizi
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Cristina Loureiro
- Department of Applied PhysicsPolytechnic University of ValenciaValenciaSpain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Maria Sinetova
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Anna Zorina
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Ralf Steuer
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Jan Červený
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
27
|
Lang E, Pozdeev VI, Shinde PV, Xu HC, Sundaram B, Zhuang Y, Poschmann G, Huang J, Stühler K, Pandyra AA, Keitel V, Häussinger D, Lang KS, Lang PA. Cholestasis induced liver pathology results in dysfunctional immune responses after arenavirus infection. Sci Rep 2018; 8:12179. [PMID: 30111770 PMCID: PMC6093869 DOI: 10.1038/s41598-018-30627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Immune responses are critical for defense against pathogens. However, prolonged viral infection can result in defective T cell immunity, leading to chronic viral infection. We studied immune activation in response to arenavirus infection during cholestasis using bile duct ligation (BDL). We monitored T cell responses, virus load and liver pathology markers after infection with lymphocytic choriomeningitis virus (LCMV). BDL mice failed to induce protective anti-viral immunity against LCMV and consequently exhibited chronic viral infection. BDL mice exhibited reduced anti-viral T cell immunity as well as reduced type 1 interferon production early after LCMV infection. Consistently, the presence of serum from BDL mice reduced the responsiveness of dendritic cell (DC) and T cell cultures when compared to Sham controls. Following fractionation and mass spectrometry analyses of sera, we identified several serum factors to be upregulated following BDL including bilirubin, bile acids, 78 kDa Glucose regulated protein (GRP78) and liver enzymes. Bilirubin and GRP78 were capable of inhibiting DC and T cell activation. In this work, we demonstrate that liver damage mediated by cholestasis results in defective immune induction following arenavirus infection.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), German Cancer Research Center (DKFZ), Im Neunheimer Feld 242, 69120, Heidelberg, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), 84, rue Val Fleuri, L-1526, Strassen, Luxembourg
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse. 55, Essen, 45147, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Marquez J, Fernandez-Piñeiro I, Araúzo-Bravo MJ, Poschmann G, Stühler K, Khatib AM, Sanchez A, Unda F, Ibarretxe G, Bernales I, Badiola I. Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver. Int J Cancer 2018; 143:709-719. [PMID: 29492958 DOI: 10.1002/ijc.31343] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Phenotypic transformation of liver sinusoidal endothelial cells is one of the most important stages of liver metastasis progression. The miRNA effects on liver sinusoidal endothelial cells during liver metastasis have not yet been studied. Herein, whole genome analysis of miRNA expression in these cells during colorectal liver metastasis revealed repressed expression of microRNA-20a. Importantly, downregulation of miR-20a occurs in parallel with upregulation of its known protein targets. To restore normal miR-20a levels in liver sinusoidal endothelial cells, we developed chondroitin sulfate-sorbitan ester nanoparticles conjugated with miR-20a in a delivery system that specifically targets liver sinusoidal endothelial cells. The restoration of normal mir-20a levels in these cells induced downregulation of the expression of its protein targets, and this also resulted in a reduction of in vitro LSEC migration and a reduction of in vivo activation and tumor-infiltrating capacity and ability of the tumor decreased by ∼80% in a murine liver metastasis model.
Collapse
Affiliation(s)
- Joana Marquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Ines Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group.Computational Biology Data Analysis Platform. Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biologisch-Medizinisches Forschungszentrum (BMFZ),Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Abdel-Majid Khatib
- Université Bordeaux, Pessac, France.,INSERM, LAMC, UMR 1029, Pessac, France
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| | - Irantzu Bernales
- Gene Expression Unit, Genomics Facility of General Research Services (SGIker), University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
29
|
Grube L, Dellen R, Kruse F, Schwender H, Stühler K, Poschmann G. Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach To Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis. J Proteome Res 2018; 17:879-890. [DOI: 10.1021/acs.jproteome.7b00684] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leonie Grube
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Rafael Dellen
- Mathematical
Institute, Heinrich-Heine-University, Düsseldorf 40225, Germany
- Center for
Bioinformatics and Biostatistics, Biomedical Research Centre Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Fabian Kruse
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Holger Schwender
- Mathematical
Institute, Heinrich-Heine-University, Düsseldorf 40225, Germany
- Center for
Bioinformatics and Biostatistics, Biomedical Research Centre Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Kai Stühler
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
- Institute
for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| |
Collapse
|
30
|
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ES, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018; 172:409-422.e21. [DOI: 10.1016/j.cell.2017.11.048] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023]
|
31
|
Temme S, Friebe D, Schmidt T, Poschmann G, Hesse J, Steckel B, Stühler K, Kunz M, Dandekar T, Ding Z, Akhyari P, Lichtenberg A, Schrader J. Genetic profiling and surface proteome analysis of human atrial stromal cells and rat ventricular epicardium-derived cells reveals novel insights into their cardiogenic potential. Stem Cell Res 2017; 25:183-190. [PMID: 29156374 DOI: 10.1016/j.scr.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 11/04/2017] [Indexed: 02/06/2023] Open
Abstract
Epicardium-derived cells (EPDC) and atrial stromal cells (ASC) display cardio-regenerative potential, but the molecular details are still unexplored. Signals which induce activation, migration and differentiation of these cells are largely unknown. Here we have isolated rat ventricular EPDC and rat/human ASC and performed genetic and proteomic profiling. EPDC and ASC expressed epicardial/mesenchymal markers (WT-1, Tbx18, CD73, CD90, CD44, CD105), cardiac markers (Gata4, Tbx5, troponin T) and also contained phosphocreatine. We used cell surface biotinylation to isolate plasma membrane proteins of rEPDC and hASC, Nano-liquid chromatography with subsequent mass spectrometry and bioinformatics analysis identified 396 rat and 239 human plasma membrane proteins with 149 overlapping proteins. Functional GO-term analysis revealed several significantly enriched categories related to extracellular matrix (ECM), cell migration/differentiation, immunology or angiogenesis. We identified receptors for ephrin and growth factors (IGF, PDGF, EGF, anthrax toxin) known to be involved in cardiac repair and regeneration. Functional category enrichment identified clusters around integrins, PI3K/Akt-signaling and various cardiomyopathies. Our study indicates that EPDC and ASC have a similar molecular phenotype related to cardiac healing/regeneration. The cell surface proteome repository will help to further unravel the molecular details of their cardio-regenerative potential and their role in cardiac diseases.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Timo Schmidt
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Hesse
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, Würzburg, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
32
|
Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora. Curr Biol 2017; 27:2763-2773.e5. [DOI: 10.1016/j.cub.2017.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 01/03/2023]
|
33
|
Brillen AL, Schöneweis K, Walotka L, Hartmann L, Müller L, Ptok J, Kaisers W, Poschmann G, Stühler K, Buratti E, Theiss S, Schaal H. Succession of splicing regulatory elements determines cryptic 5΄ss functionality. Nucleic Acids Res 2017; 45:4202-4216. [PMID: 28039323 PMCID: PMC5397162 DOI: 10.1093/nar/gkw1317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022] Open
Abstract
A critical step in exon definition is the recognition of a proper splice donor (5΄ss) by the 5’ end of U1 snRNA. In the selection of appropriate 5΄ss, cis-acting splicing regulatory elements (SREs) are indispensable. As a model for 5΄ss recognition, we investigated cryptic 5΄ss selection within the human fibrinogen Bβ-chain gene (FGB) exon 7, where we identified several exonic SREs that simultaneously acted on up- and downstream cryptic 5΄ss. In the FGB exon 7 model system, 5΄ss selection iteratively proceeded along an alternating sequence of U1 snRNA binding sites and interleaved SREs which in principle supported different 3’ exon ends. Like in a relay race, SREs either suppressed a potential 5΄ss and passed the splicing baton on or splicing actually occurred. From RNA-Seq data, we systematically selected 19 genes containing exons with silent U1 snRNA binding sites competing with nearby highly used 5΄ss. Extensive SRE analysis by different algorithms found authentic 5΄ss significantly more supported by SREs than silent U1 snRNA binding sites, indicating that our concept may permit generalization to a model for 5΄ss selection and 3’ exon end definition.
Collapse
Affiliation(s)
- Anna-Lena Brillen
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lara Walotka
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Hartmann
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, 34149 Trieste, Italy
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, 40225
| | - Heiner Schaal
- Institute for Virology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Willibald M, Bayer G, Stahlhut V, Poschmann G, Stühler K, Gierke B, Pawlak M, Seeger H, Mueck AO, Niederacher D, Fehm T, Neubauer H. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget 2017; 8:72480-72493. [PMID: 29069804 PMCID: PMC5641147 DOI: 10.18632/oncotarget.19819] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Menopausal hormone therapy, using estrogen and synthetic progestins, is associated with an increased risk of developing breast cancer. The effect of progestins on breast cells is complex and not yet fully understood. In previous in vitro and in vivo studies, we found different progestins to increase the proliferation of Progesterone Receptor Membrane Component-1 (PGRMC1)-overexpressing MCF7 cells (MCF7/PGRMC1), suggesting a possible role of PGRMC1 in transducing membrane-initiated progestin signals. Understanding the activation mechanism of PGRMC1 by progestins will provide deeper insights into the mode of action of progestins on breast cells and the often-reported phenomenon of elevated breast cancer rates upon progestin-based hormone therapy. In the present study, we aimed to further investigate the effect of progestins on receptor activation in MCF7 and T47D breast cancer cell lines. We report that treatment of both breast cancer cell lines with the progestin norethisterone (NET) induces phosphorylation of PGRMC1 at the Casein Kinase 2 (CK2) phosphorylation site Ser181, which can be decreased by treatment with CK2 inhibitor quinalizarin. Point mutation of the Ser181 phosphorylation site in MCF7/PGRMC1 cells impaired proliferation upon NET treatment. This study gives further insights into the mechanism of differential phosphorylation of the receptor and confirms our earlier hypothesis that phosphorylation of the CK2-binding site is essential for activation of PGRMC1. It further suggests an important role of PGRMC1 in the tumorigenesis and progression of breast cancer in progestin-based hormone replacement therapy.
Collapse
Affiliation(s)
- Marina Willibald
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Giuliano Bayer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Vanessa Stahlhut
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Berthold Gierke
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Pawlak
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Harald Seeger
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alfred O Mueck
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
35
|
Schmitz J, Srikanth NV, Hüdig M, Poschmann G, Lercher MJ, Maurino VG. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate. PHOTOSYNTHESIS RESEARCH 2017; 132:183-196. [PMID: 28247236 DOI: 10.1007/s11120-017-0355-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 05/15/2023]
Abstract
Like other oxygenic photosynthetic organisms, diatoms produce glycolate, a toxic intermediate, as a consequence of the oxygenase activity of Rubisco. Diatoms can remove glycolate through excretion and through oxidation as part of the photorespiratory pathway. The diatom Phaeodactylum tricornutum encodes two proteins suggested to be involved in glycolate metabolism: PtGO1 and PtGO2. We found that these proteins differ substantially from the sequences of experimentally characterized proteins responsible for glycolate oxidation in other species, glycolate oxidase (GOX) and glycolate dehydrogenase. We show that PtGO1 and PtGO2 are the only sequences of P. tricornutum homologous to GOX. Our phylogenetic analyses indicate that the ancestors of diatoms acquired PtGO1 during the proposed first secondary endosymbiosis with a chlorophyte alga, which may have previously obtained this gene from proteobacteria. In contrast, PtGO2 is orthologous to an uncharacterized protein in Galdieria sulphuraria, consistent with its acquisition during the secondary endosymbiosis with a red alga that gave rise to the current plastid. The analysis of amino acid residues at conserved positions suggests that PtGO2, which localizes to peroxisomes, may use substrates other than glycolate, explaining the lack of GOX activity we observe in vitro. Instead, PtGO1, while only very distantly related to previously characterized GOX proteins, evolved glycolate-oxidizing activity, as demonstrated by in gel activity assays and mass spectrometry analysis. PtGO1 localizes to mitochondria, consistent with previous suggestions that photorespiration in diatoms proceeds in these organelles. We conclude that the ancestors of diatoms evolved a unique alternative to oxidize photorespiratory glycolate: a mitochondrial dehydrogenase homologous to GOX able to use electron acceptors other than O2.
Collapse
Affiliation(s)
- Jessica Schmitz
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Nishtala V Srikanth
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS),, 40225, Düsseldorf, Germany
| | - Meike Hüdig
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Center for Biological and Medical Research (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS),, 40225, Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany.
| |
Collapse
|
36
|
Abstract
Genomic studies focus on key metabolites and pathways that, despite their obvious anthropocentric design, keep being 'predicted', while this is only finding again what is already known. As increasingly more genomes are sequenced, this lightpost effect may account at least in part for our failure to understand the function of a continuously growing number of genes. Core metabolism often goes astray, accidentally producing a variety of unexpected compounds. Catabolism of these forgotten metabolites makes an essential part of the functions coded in metagenomes. Here, I explore the fate of a limited number of those: compounds resulting from radical reactions and molecules derived from some reactive intermediates produced during normal metabolism. I try both to update investigators with the most recent literature and to uncover old articles that may open up new research avenues in the genome exploration of metabolism. This should allow us to foresee further developments in experimental genomics and genome annotation.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'HôpitalParis75013France
| |
Collapse
|
37
|
Kolkhof P, Werthebach M, van de Venn A, Poschmann G, Chen L, Welte M, Stühler K, Beller M. A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions. Mol Cell Proteomics 2016; 16:329-345. [PMID: 27956707 DOI: 10.1074/mcp.m116.061499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins.Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions.In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction.
Collapse
Affiliation(s)
- Petra Kolkhof
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Werthebach
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Anna van de Venn
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Gereon Poschmann
- ¶Molecular Proteomics Laboratory, Institute for Molecular Medicine, Heinrich Heine University, Duesseldorf, Germany.,‖Biomedical Research Center (BMFZ), Heinrich Heine University, Duesseldorf, Germany
| | - Lili Chen
- **Department of Biology, University of Rochester, Rochester, New York
| | - Michael Welte
- **Department of Biology, University of Rochester, Rochester, New York
| | - Kai Stühler
- ¶Molecular Proteomics Laboratory, Institute for Molecular Medicine, Heinrich Heine University, Duesseldorf, Germany.,‖Biomedical Research Center (BMFZ), Heinrich Heine University, Duesseldorf, Germany
| | - Mathias Beller
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany; .,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
38
|
Morales J, Kokkori S, Weidauer D, Chapman J, Goltsman E, Rokhsar D, Grossman AR, Nowack ECM. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol Biol 2016; 16:247. [PMID: 27835948 PMCID: PMC5106770 DOI: 10.1186/s12862-016-0820-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023] Open
Abstract
Background Bacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution. In many endosymbiotic associations with vertically inherited symbionts, highly complementary metabolic functions encoded by host and endosymbiont genomes indicate integration of metabolic processes between the partner organisms. While endosymbionts were initially expected to exchange only metabolites with their hosts, recent evidence has demonstrated that also host-encoded proteins can be targeted to the bacterial symbionts in various endosymbiotic systems. These proteins seem to participate in regulating symbiont growth and physiology. However, mechanisms required for protein targeting and the specific endosymbiont targets of these trafficked proteins are currently unexplored owing to a lack of molecular tools that enable functional studies of endosymbiotic systems. Results Here we show that the trypanosomatid Angomonas deanei, which harbors a β-proteobacterial endosymbiont, is readily amenable to genetic manipulation. Its rapid growth, availability of full genome and transcriptome sequences, ease of transfection, and high frequency of homologous recombination have allowed us to stably integrate transgenes into the A. deanei nuclear genome, efficiently generate null mutants, and elucidate protein localization by heterologous expression of a fluorescent protein fused to various putative targeting signals. Combining these novel tools with proteomic analysis was key for demonstrating the routing of a host-encoded protein to the endosymbiont, suggesting the existence of a specific endosymbiont-sorting machinery in A. deanei. Conclusions After previous reports from plants, insects, and a cercozoan amoeba we found here that also in A. deanei, i.e. a member of a fourth eukaryotic supergroup, host-encoded proteins can be routed to the bacterial endosymbiont. This finding adds further evidence to our view that the targeting of host proteins is a general strategy of eukaryotes to gain control over and interact with a bacterial endosymbiont. The molecular resources reported here establish A. deanei as a time and cost efficient reference system that allows for a rigorous dissection of host-symbiont interactions that have been, and are still being shaped over evolutionary time. We expect this system to greatly enhance our understanding of the biology of endosymbiosis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0820-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Sofia Kokkori
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Diana Weidauer
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Jarrod Chapman
- Plant Genome Group, DOE Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, CA, USA
| | - Eugene Goltsman
- Plant Genome Group, DOE Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, CA, USA
| | - Daniel Rokhsar
- Plant Genome Group, DOE Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, CA, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, 94305, Stanford, CA, USA
| | - Eva C M Nowack
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Preisner H, Karin EL, Poschmann G, Stühler K, Pupko T, Gould SB. The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist 2016; 167:526-543. [PMID: 27744090 DOI: 10.1016/j.protis.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
Certain protist lineages bear cytoskeletal structures that are germane to them and define their individual group. Trichomonadida are excavate parasites united by a unique cytoskeletal framework, which includes tubulin-based structures such as the pelta and axostyle, but also other filaments such as the striated costa whose protein composition remains unknown. We determined the proteome of the detergent-resistant cytoskeleton of Tetratrichomonas gallinarum. 203 proteins with homology to Trichomonas vaginalis were identified, which contain significantly more long coiled-coil regions than control protein sets. Five candidates were shown to associate with previously described cytoskeletal structures including the costa and the expression of a single T. vaginalis protein in T. gallinarum induced the formation of accumulated, striated filaments. Our data suggests that filament-forming proteins of protists other than actin and tubulin share common structural properties with metazoan intermediate filament proteins, while not being homologous. These filament-forming proteins might have evolved many times independently in eukaryotes, or simultaneously in a common ancestor but with different evolutionary trajectories downstream in different phyla. The broad variety of filament-forming proteins uncovered, and with no homologs outside of the Trichomonadida, once more highlights the diverse nature of eukaryotic proteins with the ability to form unique cytoskeletal filaments.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
40
|
Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Biochem J 2016; 473:2471-83. [DOI: 10.1042/bcj20160154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) transport a wide range of substrates across both membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC (ATP-binding cassette) transporter. The ABC transporter HlyB (haemolysin B) is part of a T1SS catalysing the export of the toxin HlyA in E. coli. HlyB consists of the canonical transmembrane and nucleotide-binding domains. Additionally, HlyB contains an N-terminal CLD (C39-peptidase-like domain) that interacts with the transport substrate, but its functional relevance is still not precisely defined. In the present paper, we describe the purification and biochemical characterization of detergent-solubilized HlyB in the presence of its transport substrate. Our results exhibit a positive co-operativity in ATP hydrolysis. We characterized further the influence of the CLD on kinetic parameters by using an HlyB variant lacking the CLD (HlyB∆CLD). The biochemical parameters of HlyB∆CLD revealed an increased basal maximum velocity but no change in substrate-binding affinity in comparison with full-length HlyB. We also assigned a distinct interaction of the CLD and a transport substrate (HlyA1), leading to an inhibition of HlyB hydrolytic activity at low HlyA1 concentrations. At higher HlyA1 concentrations, we observed a stimulation of the hydrolytic activities of both HlyB and HlyB∆CLD, which was completely independent of the interaction of HlyA1 with the CLD. Notably, all observed effects on ATPase activity, which were also analysed in detail by mass spectrometry, were independent of the HlyA1 secretion signal. These results assign an interdomain regulatory role for the CLD modulating the hydrolytic activity of HlyB.
Collapse
|
41
|
Przybylla S, Stindt J, Kleinschrodt D, Schulte am Esch J, Häussinger D, Keitel V, Smits SH, Schmitt L. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches. PLoS One 2016; 11:e0159778. [PMID: 27472061 PMCID: PMC4966956 DOI: 10.1371/journal.pone.0159778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis.
Collapse
Affiliation(s)
- Susanne Przybylla
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Diana Kleinschrodt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulte am Esch
- Department of General, Visceral and Pediatric Surgery, University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander H. Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
42
|
Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. NATURE PLANTS 2016; 2:15225. [PMID: 27249196 DOI: 10.1038/nplants.2015.225] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/22/2015] [Indexed: 05/19/2023]
Abstract
The non-photochemical quenching of light energy as heat (NPQ) is an important photoprotective mechanism that is activated in plants when light absorption exceeds the capacity of light utilization in photosynthesis. The PsbS protein plays a central role in this process and is supposed to activate NPQ through specific, light-regulated interactions with photosystem (PS) II antenna proteins. However, NPQ-specific interaction partners of PsbS in the thylakoid membrane are still unknown. Here, we have determined the localization and protein interactions of PsbS in thylakoid membranes in the NPQ-inactive (dark) and NPQ-active (light) states. Our results corroborate a localization of PsbS in PSII supercomplexes and support the model that the light activation of NPQ is based on the monomerization of dimeric PsbS and a light-induced enhanced interaction of PsbS with Lhcb1, the major component of trimeric light-harvesting complexes in PSII.
Collapse
Affiliation(s)
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Melzer
- Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Seyfarth K, Poschmann G, Rozman J, Fromme T, Rink N, Hofmann A, Wurst W, Stühler K, Klingenspor M. The development of diet-induced obesity and associated metabolic impairments in Dj-1 deficient mice. J Nutr Biochem 2014; 26:75-81. [PMID: 25448609 DOI: 10.1016/j.jnutbio.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/25/2014] [Accepted: 09/10/2014] [Indexed: 01/27/2023]
Abstract
DJ-1 constitutes a ubiquitously expressed, oxidative stress-responsive protein with multiple functions. DJ-1 emerged as a candidate from our previous proteome analysis investigating alterations in the hypothalamus in three mouse strains differing in their susceptibility to diet-induced obesity (DIO). Validation studies demonstrated a high-fat diet (HFD)-induced shift in the DJ-1 isoform pattern in the hypothalamus and several other tissues of mice. Others found HFD-induced alterations in DJ-1 protein abundance in adipose tissue and pancreatic islets in wild-type rodents. Here, we investigated the gene-diet interaction by challenging Dj-1(-/-) mice with a HFD. We demonstrate that the development of diet-induced obesity (DIO) Dj-1(-/-) mice is according to wild-type mice with the exception of transient higher gains in fat mass at the expense of lean mass after 14 weeks of feeding.
Collapse
Affiliation(s)
- Katrin Seyfarth
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Zentrum (EKFZ) & Research Center for Nutrition and Food Sciences (ZIEL), Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Gereon Poschmann
- Heinrich-Heine-Universität Düsseldorf, Molecular Proteomics Laboratory, BMFZ, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jan Rozman
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Zentrum (EKFZ) & Research Center for Nutrition and Food Sciences (ZIEL), Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Tobias Fromme
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Zentrum (EKFZ) & Research Center for Nutrition and Food Sciences (ZIEL), Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Nadine Rink
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Zentrum (EKFZ) & Research Center for Nutrition and Food Sciences (ZIEL), Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
| | - Andreas Hofmann
- Helmholtz Zentrum München, Institute of Developmental Genetics, Munich, Germany; Max Planck Institute of Psychiatr, Kraepelinstr. 2-10, 80804 Munich, Germany; Technische Universität München-Weihenstephan, Chair of Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1,85764 Neuherberg/Munich, Germany. German Center for Neurodegenerative Diseases (DZNE) Site Munich, Schillerstr. 44,80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, Institute of Developmental Genetics, Munich, Germany; Max Planck Institute of Psychiatr, Kraepelinstr. 2-10, 80804 Munich, Germany; Technische Universität München-Weihenstephan, Chair of Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1,85764 Neuherberg/Munich, Germany. German Center for Neurodegenerative Diseases (DZNE) Site Munich, Schillerstr. 44,80336 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 Munich, Germany
| | - Kai Stühler
- Heinrich-Heine-Universität Düsseldorf, Molecular Proteomics Laboratory, BMFZ, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Zentrum (EKFZ) & Research Center for Nutrition and Food Sciences (ZIEL), Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany.
| |
Collapse
|
44
|
Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS One 2014; 9:e106881. [PMID: 25222838 PMCID: PMC4164520 DOI: 10.1371/journal.pone.0106881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/09/2014] [Indexed: 12/28/2022] Open
Abstract
A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size.
Collapse
Affiliation(s)
| | - Tore Vehus
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Stefan Krauss
- Unit for Cell Signaling, Cancer Stem Cell Innovation Center, Oslo University Hospital, Oslo, Norway
| | - Tyge Greibrokk
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Berndt C, Poschmann G, Stühler K, Holmgren A, Bräutigam L. Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biol 2014; 2:673-8. [PMID: 24944912 PMCID: PMC4060141 DOI: 10.1016/j.redox.2014.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/14/2022] Open
Abstract
Glutaredoxin 2 is a vertebrate specific oxidoreductase of the thioredoxin family of proteins modulating the intracellular thiol pool. Thereby, glutaredoxin 2 is important for specific redox signaling and regulates embryonic development of brain and vasculature via reversible oxidative posttranslational thiol modifications. Here, we describe that glutaredoxin 2 is also required for successful heart formation. Knock-down of glutaredoxin 2 in zebrafish embryos inhibits the invasion of cardiac neural crest cells into the primary heart field. This leads to impaired heart looping and subsequent obstructed blood flow. Glutaredoxin 2 specificity of the observed phenotype was confirmed by rescue experiments. Active site variants of glutaredoxin 2 revealed that the (de)-glutathionylation activity is required for proper heart formation. Our data suggest that actin might be one target during glutaredoxin 2 regulated cardiac neural crest cell migration and embryonic heart development. In summary, this work represents further evidence for the general importance of redox signaling in embryonic development and highlights additionally the importance of glutaredoxin 2 during embryogenesis. Reversible redox regulation, S-glutathionylation, regulates heart formation. Glutaredoxin 2 controls migration of neural crest cells. Loss of glutaredoxin 2 impairs heart looping and subsequently heart functionality.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Merowinger Platz 1, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich-Heine-University, BMFZ, Düsseldorf, Germany
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bräutigam
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|