1
|
Chen YM, Burrough E. The Effects of Swine Coronaviruses on ER Stress, Autophagy, Apoptosis, and Alterations in Cell Morphology. Pathogens 2022; 11:pathogens11080940. [PMID: 36015060 PMCID: PMC9416022 DOI: 10.3390/pathogens11080940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field.
Collapse
Affiliation(s)
- Ya-Mei Chen
- College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan
- Correspondence:
| | - Eric Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Coinfection with PEDV and BVDV induces inflammatory bowel disease pathway highly enriched in PK-15 cells. Virol J 2022; 19:119. [PMID: 35842726 PMCID: PMC9288691 DOI: 10.1186/s12985-022-01845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background From the 1078 diarrhea stools tested in our survey from 2017 to 2020 in local area of China, PEDV was the key pathogen that was closely related to the death of piglets with diarrhea. In addition, coinfection of PEDV-positive samples with BVDV reached 17.24%. Although BVDV infection in swine is typically subclinical, the effect of PEDV and BVDV coinfection on disease severity and the potential molecular mechanism of coinfection with these two viruses remain unknown. Methods In this study, we developed a model of coinfection with porcine epidemic diarrhea virus (PEDV) and bovine viral diarrhea virus (BVDV) in PK15 cells, and a tandem mass tag (TMT) combined with LC–MS/MS proteomic approach was used to identify differential protein expression profiles. Additionally, we performed drug experiments to explore the inflammatory response induced by PEDV or BVDV mono- or coinfection. Results A total of 1094, 1538, and 1482 differentially expressed proteins (DEPs) were identified upon PEDV monoinfection, BVDV monoinfection and PEDV/BVDV coinfection, respectively. KEGG pathway analysis revealed that PEDV and BVDV coinfection led to a highly significantly enrichment of the inflammatory bowel disease (IBD) pathway. In addition, the NF-κB signaling pathway was more intensively activated by PEDV and BVDV coinfection, which induced higher production of inflammatory cytokines, than PEDV or BVDV monoinfection. Conclusions Our study indicated that cattle pathogens might play synergistic roles in the pathogenesis of porcine diarrhea, which might also improve our understanding of the pathogenesis of multiple infections in diarrhea. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01845-8.
Collapse
|
3
|
Li L, Li P, Chen A, Li H, Liu Z, Yu L, Hou X. Quantitative proteomic analysis shows involvement of the p38 MAPK pathway in bovine parainfluenza virus type 3 replication. Virol J 2022; 19:116. [PMID: 35831876 PMCID: PMC9281021 DOI: 10.1186/s12985-022-01834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bovine parainfluenza virus type 3 (BPIV3) infection often causes respiratory tissue damage and immunosuppression and further results in bovine respiratory disease complex (BRDC), one of the major diseases in dairy cattle, caused huge economical losses every year. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. However, the pathogenetic and immunoregulatory mechanisms involved in the process of BPIV3 infection remain unknown. Proteomics is a powerful tool for high-throughput identification of proteins, which has been widely used to understand how viruses interact with host cells. METHODS In the present study, we report a proteomic analysis to investigate the whole cellular protein alterations of MDBK cells infected with BPIV3. To investigate the infection process of BPIV3 and the immune response mechanism of MDBK cells, isobaric tags for relative and absolute quantitation analysis (iTRAQ) and Q-Exactive mass spectrometry-based proteomics were performed. The differentially expressed proteins (DEPs) involved in the BPIV3 invasion process in MDBK cells were identified, annotated, and quantitated. RESULTS A total of 116 proteins, which included 74 upregulated proteins and 42 downregulated proteins, were identified as DEPs between the BPIV3-infected and the mock-infected groups. These DEPs included corresponding proteins related to inflammatory response, immune response, and lipid metabolism. These results might provide some insights for understanding the pathogenesis of BPIV3. Fluorescent quantitative PCR and western blotting analysis showed results consistent with those of iTRAQ identification. Interestingly, the upregulated protein MKK3 was associated with the p38 MAPK signaling pathway. CONCLUSIONS The results of proteomics analysis indicated BPIV3 infection could activate the p38 MAPK pathway to promote virus replication.
Collapse
Affiliation(s)
- Liyang Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.,Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Pengfei Li
- Department of Nephrology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163319, China
| | - Ao Chen
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hanbing Li
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhe Liu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xilin Hou
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
4
|
Li H, Wan B, Jiang D, Ji P, Zhao M, Li X, Li R, Qiao S. Proteomic Investigation Reveals Eukaryotic Translation Initiation Factor 5A Involvement in Porcine Reproductive and Respiratory Syndrome Virus Infection in vitro. Front Vet Sci 2022; 9:861137. [PMID: 35498732 PMCID: PMC9043857 DOI: 10.3389/fvets.2022.861137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most serious animal pathogens in the world, has caused enormous global swine industry losses. An in-depth investigation of the PRRSV-host interaction would be beneficial for preventing and controlling PRRSV infections and transmission. In this study, we performed label-free quantitative proteomic assays to investigate proteome dynamics of porcine alveolar macrophages (PAMs) during infection with highly pathogenic PRRSV (HP-PRRSV) strain HN07-1. Analysis of the results led to identification of 269 significantly differentially expressed host cellular proteins, of which levels of proteins belonging to the eukaryotic translation initiation factor (eIF) family were found to be decreased in abundance in HP-PRRSV-infected PAMs. Furthermore, knockdown of eIF5A expression was demonstrated to markedly suppress HP-PRRSV propagation, as reflected by reduced progeny virus titers in vitro. These results highlight the importance of eIF5A in PRRSV infection, while also demonstrating that PAMs down-regulate eIF5A expression as a host cell antiviral strategy. Results of the current study deepen our understanding of PRRSV pathogenesis and provide novel insights to guide development of effective strategies to combat the virus.
Collapse
Affiliation(s)
- Huawei Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xinfeng Li
- Henan Key Laboratory of Innovation and Utilization of Unconventional Feed Resources, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Rui Li
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Songlin Qiao
| |
Collapse
|
5
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
6
|
Song L, Chen J, Hao P, Jiang Y, Xu W, Li L, Chen S, Gao Z, Jin N, Ren L, Li C. Differential Transcriptomics Analysis of IPEC-J2 Cells Single or Coinfected With Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus. Front Immunol 2022; 13:844657. [PMID: 35401515 PMCID: PMC8989846 DOI: 10.3389/fimmu.2022.844657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Lina Song
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Si Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
7
|
Zhou J, Huang S, Fan B, Niu B, Guo R, Gu J, Gao S, Li B. iTRAQ-based proteome analysis of porcine group A rotavirus-infected porcine IPEC-J2 intestinal epithelial cells. J Proteomics 2021; 248:104354. [PMID: 34418579 DOI: 10.1016/j.jprot.2021.104354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Porcine rotavirus (PoRV), particularly group A, is one of the most important swine pathogens, causing substantial economic losses in the animal husbandry industry. To improve understanding of host responses to PoRV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially expressed proteins in PoRV-infected IPEC-J2 cells and confirmed the differentially accumulated proteins (DAPs) expression differences by performing RT-qPCR and Western blot analysis. Herein, in PoRV- and mock-infected IPEC-J2 cells, relative quantitative data were identified for 4724 proteins, 223 of which were DAPs (125 up-accumulated and 98 down-accumulated). Bioinformatics analyses further revealed that a majority of the DAPs are involved in numerous crucial biological processes and signaling pathways, such as metabolic process, immune system process, amino acid metabolism, energy metabolism, immune system, MHC class I peptide loading complex, Hippo signaling pathway, Th1 and Th2 cell differentiation, antigen processing and presentation, and tubule bicarbonate reclamation. The cellular localization prediction analysis indicated that these DAPs may be located in the Golgi apparatus, nucleus, peroxisomal, cytoplasm, mitochondria, extracellular, plasma membrane, and endoplasmic reticulum (ER). Expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) or two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, were further validated by RT-qPCR and Western blot analysis. Collectively, this work is the first time to investigate the protein profile of PoRV-infected IPEC-J2 cells using quantitative proteomics; these findings provide valuable information to better understand the mechanisms underlying the host responses to PoRV infection in piglets. SIGNIFICANCE: The proteomics analysis of this study uncovered the target associated with PoRV-induced innate immune response or cellular damage, and provided relevant insights into the molecular functions, biological processes, and signaling pathway in these targets. Out of these 223 DAPs, the expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) and two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, have been further validated using RT-qPCR and Western blot analysis. These outcomes could uncover how PoRV manipulated the cellular machinery, which could further our understanding of PoRV pathogenesis in piglets.
Collapse
Affiliation(s)
- Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-gang, Nanjing 210095, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China
| | - Jun Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Song Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Luo R, Huan C, Gao Q, Pan H, Chen P, Liu X, Gao S. AlphaB-crystallin promotes porcine circovirus type 2 replication in a cell proliferation-dependent manner. Virus Res 2021; 301:198435. [PMID: 33961899 DOI: 10.1016/j.virusres.2021.198435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) and causes heavy economic losses to the porcine industry worldwide. In this study, PK-15 cells were infected with PCV2 for 48 h, then harvested and subjected to label-free quantitative proteomic mass spectrometry. In total, 1212 proteins were differentially expressed in PCV2-infected cells compared with mock-infected cells, including 796 upregulated and 416 downregulated proteins. Gene ontology analysis showed that these differentially expressed proteins were involved in biological processes, cellular components and molecular functions, and these categories included cellular processes, environmental information processing, genetic information processing, disease, metabolism, and body systems. Enrichment analysis of the KEGG pathway showed that innate immune responses were significantly enriched. AlphaB-crystallin (CRYAB) interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation, helping to maintain cytoskeletal integrity and promoting cell proliferation. In this study, CRYAB was found to effect the replication of PCV2, as verified by qRT-PCR, TCID50 determination and western blot analysis. Overexpression of CRYAB significantly upregulated PCV2 capsid protein and increased viral titers in both PK-15 cells and culture supernatants, whereas the opposite results were obtained in CRYAB knockdown cells. Furthermore, we revealed that the promotion of PCV2 replication by CRYAB was dependent on cell proliferation. To our knowledge, this is the first report of the effect of CRYAB on PCV2 replication and our findings contribute to a greater understanding of the mechanism of PCV2 replication and pathogenesis, as well as the host's response to PCV2 infection.
Collapse
Affiliation(s)
- Rongdi Luo
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Changchao Huan
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haochun Pan
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Pengxiang Chen
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Song Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
9
|
Zhang Q, Yang Y, Lu Y, Cao Z. iTRAQ-based quantitative proteomic analyses the cycle chronic heat stress affecting liver proteome in yellow-feather chickens. Poult Sci 2021; 100:101111. [PMID: 33965807 PMCID: PMC8120948 DOI: 10.1016/j.psj.2021.101111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Heat stress (HS) is one of the main environmental factors affecting the efficiency of poultry production. The yellow-feather chickens (YFC) as an indigenous strain of chicken is a popular poultry breed in China. Our previous study used the RNA-seq to analyze the gene expression profiles of male YFC under HS and showed that the lipid and energy metabolism pathways are activated in livers of YFC exposed to acute HS (38°C, 4 h and 25°C recovery 2 h). In this study, we used quantitative proteome analysis based on iTRAQ to study the liver response of YFC to cycle chronic HS (38 ± 1°C, 8 h/d, 7 d, CyCHS). The male YFCs treatment used the CyCHS from 22 to 28 days of age. The liver tissue samples were collected at 28 d old. A total of 39,327 unique peptides matches were detected using iTRAQ analysis and 4,571 proteins exhibited a false discovery rate of 1% or less. Forty-six significant differentially expressed proteins (DEPs) were detected in the CyCHS group compared with the control group for the liver samples, including up- and down-regulated DEPs were 18 and 28, respectively. We found that the enriched biological process terms of the DEPs expressed in the liver were related to DNA metabolic process, oxidation-reduction process, oxidative stress and gluconeogenesis. In KEGG pathway analysis. Most of the hepatic DEPs were annotated to glutathione metabolism and TCA cycle in response to CyCHS. The up-regulation of 5 DEPs (GPX1, GSTT1, GSTT1L, RRM2, and LOC100859645) in the glutathione metabolism pathway likely reflects an attempt to deal with oxidative damage by CyCHS. The down-regulation of 3 DEPs (Isocitrate dehydrogenase [IDH3A], IDH3B, and phosphoenolpyruvate carboxykinase 1) in the TCA cycle pathway contributes to the regulation mechanism of energy metabolism and probably to cope with the balance of heat production and dissipation during CyCHS in order to adapt to high temperature environments. Our results provide insights into the potential molecular mechanism in heat-induced oxidative stress and energy in YFCs and future studies will investigate the functional genes associated with the response to HS.
Collapse
Affiliation(s)
- Quan Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
| | - YuZe Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - YongQiang Lu
- Beijing General Station of Animal Husbandry, Beijing, China
| | - ZiWen Cao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Yang Y, Li L, Liu X, Jiang M, Zhao J, Li X, Zhao C, Yi H, Liu S, Li N. Quantitative Proteomic Analysis of Duck Embryo Fibroblasts Infected With Novel Duck Reovirus. Front Vet Sci 2020; 7:577370. [PMID: 33344524 PMCID: PMC7738351 DOI: 10.3389/fvets.2020.577370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
The novel duck reovirus (NDRV) can cause hemorrhage and necrosis on the spleen of Pekin ducks; this disease has resulted in great economic losses to the duck industry. However, the molecular pathogenesis of NDRV remains poorly understood. In the current study, the quantitative proteomic analysis of NDRV-infected duck embryo fibroblasts was performed to explore the cellular protein changes in response to viral infection through iTRAQ coupled with the liquid chromatography (LC)-tandem mass spectrometry (MS/MS) method. A total of 6,137 proteins were obtained in cell samples at 24 h post-infection. Of these, 179 differentially expressed proteins (DEPs) were identified (cutoff set to 1.5-fold change), including 89 upregulated and 90 downregulated proteins. Bioinformatics analysis showed that DEPs can be divided into the cellular component, molecular function, and biological process; they were mainly involved in signal transduction, infectious diseases, cell growth and death, and the immune system. The subcellular localization of most proteins was in the cytoplasm. Importantly, the expressions of signal transducer and activator of transcription 1 (STAT1) and various interferon-stimulated genes (ISGs) were upregulated after NDRV infection. The mRNA transcripts of some ISGs were consistent with proteomic data, showing an increased trend. Results of our study suggested that NDRV infection can elicit strong expression changes of cellular proteins and activate the expression of ISGs from the point of quantitative proteomic analysis. The study provides a new insight into the understanding of NDRV pathogenesis.
Collapse
Affiliation(s)
- Yudong Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lin Li
- Taian City Central Hospital, Taian, China
| | - Xingpo Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | - Jun Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cui Zhao
- Taian City Animal Husbandry and Veterinary Service Center, Taian, China
| | - Hui Yi
- Taian City Animal Husbandry and Veterinary Service Center, Taian, China
| | - Sidang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
11
|
Zhou X, Zhou L, Ge X, Guo X, Han J, Zhang Y, Yang H. Quantitative Proteomic Analysis of Porcine Intestinal Epithelial Cells Infected with Porcine Deltacoronavirus Using iTRAQ-Coupled LC-MS/MS. J Proteome Res 2020; 19:4470-4485. [PMID: 33045833 PMCID: PMC7640975 DOI: 10.1021/acs.jproteome.0c00592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emergent enteropathogenic coronavirus associated with swine diarrhea. Porcine small intestinal epithelial cells (IPEC) are the primary target cells of PDCoV infection in vivo. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively identify differentially expressed proteins (DEPs) in PDCoV-infected IPEC-J2 cells. A total of 78 DEPs, including 23 upregulated and 55 downregulated proteins, were identified at 24 h postinfection. The data are available via ProteomeXchange with identifier PXD019975. To ensure reliability of the proteomics data, two randomly selected DEPs, the downregulated anaphase-promoting complex subunit 7 (ANAPC7) and upregulated interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), were verified by real-time PCR and Western blot, and the results of which indicate that the proteomics data were reliable and valid. Bioinformatics analyses, including GO, COG, KEGG, and STRING, further demonstrated that a majority of the DEPs are involved in numerous crucial biological processes and signaling pathways, such as immune system, digestive system, signal transduction, RIG-I-like receptor, mTOR, PI3K-AKT, autophagy, and cell cycle signaling pathways. Altogether, this is the first study on proteomes of PDCoV-infected host cells, which shall provide valuable clues for further investigation of PDCoV pathogenesis.
Collapse
Affiliation(s)
- Xinrong Zhou
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Lei Zhou
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xinna Ge
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xin Guo
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jun Han
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yongning Zhang
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Hanchun Yang
- Key
Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural
Affairs, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
12
|
Gao X, Zhang L, Zhou P, Zhang Y, Wei Y, Wang Y, Liu X. Tandem Mass Tag-Based Quantitative Proteome Analysis of Porcine Deltacoronavirus (PDCoV)-Infected LLC Porcine Kidney Cells. ACS OMEGA 2020; 5:21979-21987. [PMID: 32923756 PMCID: PMC7482077 DOI: 10.1021/acsomega.0c00886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/12/2020] [Indexed: 05/12/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging porcine pathogenic enteric coronavirus that can cause diarrhea, vomiting, dehydration, and a high mortality rate in piglets. At present, the understanding of PDCoV pathogenesis is very limited, which seriously hinders effective prevention and control. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to compare the differential expression of proteins in PDCoV-infected and mock-infected LLC-PK cells at 18 h post-infection (hpi). In addition, the parallel reaction monitoring (PRM) technique was used to verify the quantitative proteome data. A total of 4624 differentially expressed proteins (DEPs) were quantitated, of which 128 were significantly upregulated, and 147 were significantly downregulated. Bioinformatics analysis revealed that these DEPs were involved mainly in the defense response, apoptosis, and the immune system, and several DEPs may be related to interferon-stimulated genes and the immune system. Based on DEP bioinformatics analysis, we propose that PDCoV infection may utilize the apoptosis pathway of host cells to achieve maximum viral replication. Meanwhile, the host may be able to stimulate the transcription of interferon-stimulated genes (ISGs) through the JAK/STAT signaling pathway to resist the virus. Overall, in this study, we presented the first application of proteomics analysis to determine the protein profile of PDCoV-infected cells, which provides valuable information with respect to better understanding the host response to PDCoV infection and the specific pathogenesis of PDCoV infection.
Collapse
Affiliation(s)
- Xiang Gao
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- College
of Veterinary Medicine, Gansu Agricultural
University, Lanzhou 730070, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Liping Zhang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Peng Zhou
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yongguang Zhang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanming Wei
- College
of Veterinary Medicine, Gansu Agricultural
University, Lanzhou 730070, China
| | - Yonglu Wang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xinsheng Liu
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
13
|
Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, Fang L, Ge C, Wei Y, Zhang X, Xu C, Che J, Fan Z, Xiang G, Guo J, Shang H, Li H, Xiao S, Li J, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 2020; 9:57132. [PMID: 32876563 PMCID: PMC7467724 DOI: 10.7554/elife.57132] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and transmissible gastroenteritis virus (TGEV) are two highly infectious and lethal viruses causing major economic losses to pig production. Here, we report generation of double-gene-knockout (DKO) pigs harboring edited knockout alleles for known receptor proteins CD163 and pAPN and show that DKO pigs are completely resistant to genotype 2 PRRSV and TGEV. We found no differences in meat-production or reproductive-performance traits between wild-type and DKO pigs, but detected increased iron in DKO muscle. Additional infection challenge experiments showed that DKO pigs exhibited decreased susceptibility to porcine deltacoronavirus (PDCoV), thus offering unprecedented in vivo evidence of pAPN as one of PDCoV receptors. Beyond showing that multiple gene edits can be combined in a livestock animal to achieve simultaneous resistance to two major viruses, our study introduces a valuable model for investigating infection mechanisms of porcine pathogenic viruses that exploit pAPN or CD163 for entry.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Hou
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujian Xiong
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changli Ge
- Shandong Landsee Genetics Co., Ltd., Rizhao, China
| | - Yinghui Wei
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuling Zhang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiang Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Che
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyao Fan
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Xiang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Guo
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitao Shang
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Ontario, Canada
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Li Y, Wang J, Liu Y, Luo X, Lei W, Xie L. Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro. J Gen Virol 2020; 101:1079-1084. [PMID: 32677610 DOI: 10.1099/jgv.0.001466] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emerging coronaviruses represent serious threats to human and animal health worldwide, and no approved therapeutics are currently available. Here, we used Transmissible gastroenteritis virus (TGEV) as the alpha-coronavirus model, and investigated the antiviral properties of curcumin against TGEV. Our results demonstrated that curcumin strongly inhibited TGEV proliferation and viral protein expression in a dose-dependent manner. We also observed that curcumin exhibited direct virucidal abilities in a dose-, temperature- and time-dependent manner. Furthermore, time-of-addition assays showed that curcumin mainly acted in the early phase of TGEV replication. Notably, in an adsorption assay, curcumin at 40 µM resulted in a reduction in viral titres of 3.55 log TCID50 ml-1, indicating that curcumin possesses excellent inhibitory effects on the adsorption of TGEV. Collectively, we demonstrate for the first time that curcumin has virucidal activity and virtual inhibition against TGEV, suggesting that curcumin might be a candidate drug for effective control of TGEV infection.
Collapse
Affiliation(s)
- Yaoming Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Jing Wang
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Yinchuan Liu
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Xiang Luo
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Weiqiang Lei
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| | - Lilan Xie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 30415, PR China
| |
Collapse
|
15
|
Zhao T, Cui L, Yu X, Zhang Z, Chen Q, Hua X. Proteome Analysis Reveals Syndecan 1 Regulates Porcine Sapelovirus Replication. Int J Mol Sci 2020; 21:E4386. [PMID: 32575635 PMCID: PMC7352226 DOI: 10.3390/ijms21124386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine sapelovirus A (PSV) is a single stranded, positive-sense, non-enveloped RNA virus that causes enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. Research on PSV infection and interaction with host cells is unclear. In this study, we applied tandem mass tag proteomics analysis to investigate the differentially expressed proteins (DEPs) in PSV-infected pig kidney (PK)-15 cells and explored the interactions between PSV and host cells. Here we mapped 181 DEPs, including 59 up-regulated and 122 down-regulated DEPs. Among them, osteopontin (SPP1), induced protein with tetratricopeptide repeats 5 (IFIT5), ISG15 ubiquitin-like modifier (ISG15), vinculin (VCL), and syndecan-1 (SDC1) were verified significantly changed using RT-qPCR. Additionally, overexpression of SDC1 promoted PSV viral protein (VP)1 synthesis and virus titer, and silencing of SDC1 revealed the opposite results. Our findings show that SDC1 is a novel host protein and plays crucial roles in regulating PSV replication.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.Z.); (L.C.)
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.Z.); (L.C.)
| | - Xiangqian Yu
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai 200136, China; (X.Y.); (Z.Z.)
| | - Zhonghai Zhang
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai 200136, China; (X.Y.); (Z.Z.)
| | - Qi Chen
- Shanghai Animal Disease Control Center, Shanghai 201103, China;
| | - Xiuguo Hua
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (T.Z.); (L.C.)
| |
Collapse
|
16
|
Qian S, Gao Z, Cao R, Yang K, Cui Y, Li S, Meng X, He Q, Li Z. Transmissible Gastroenteritis Virus Infection Up-Regulates FcRn Expression via Nucleocapsid Protein and Secretion of TGF-β in Porcine Intestinal Epithelial Cells. Front Microbiol 2020; 10:3085. [PMID: 32038538 PMCID: PMC6990134 DOI: 10.3389/fmicb.2019.03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine intestinal coronavirus that causes fatal severe watery diarrhea in piglets. The neonatal Fc receptor (FcRn) is the only IgG transport receptor, its expression on mucosal surfaces is triggered upon viral stimulation, which significantly enhances mucosal immunity. We utilized TGEV as a model pathogen to explore the role of FcRn in resisting viral invasion in overall intestinal mucosal immunity. TGEV induced FcRn expression by activating NF-κB signaling in porcine small intestinal epithelial (IPEC-J2) cells, however, the underlying mechanisms are unclear. First, using small interfering RNAs, we found that TGEV up-regulated FcRn expression via TLR3, TLR9 and RIG-I. Moreover, TGEV induced IL-1β, IL-6, IL-8, TGF-β, and TNF-α production. TGF-β-stimulated IPEC-J2 cells highly up-regulated FcRn expression, while treatment with a JNK-specific inhibitor down-regulated the expression. TGEV nucleocapsid (N) protein also enhanced FcRn promoter activity via the NF-κB signaling pathway and its central region (aa 128–252) was essential for FcRn activation. Additionally, N protein-mediated FcRn up-regulation promotes IgG transcytosis. Thus, TGEV N protein and TGF-β up-regulated FcRn expression, further clarifying the molecular mechanism of up-regulation of FcRn expression by TGEV.
Collapse
Affiliation(s)
- Shaoju Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zitong Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
17
|
Jiang H, Wei L, Wang D, Wang J, Zhu S, She R, Liu T, Tian J, Quan R, Hou L, Li Z, Chu J, Zhou J, Guo Y, Xi Y, Song H, Yuan F, Liu J. ITRAQ-based quantitative proteomics reveals the first proteome profiles of piglets infected with porcine circovirus type 3. J Proteomics 2019; 212:103598. [PMID: 31785380 DOI: 10.1016/j.jprot.2019.103598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
Porcine circovirus type 3 (PCV3) infection induces porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammatory lesions in piglets and sows. To better understand the host responses to PCV3 infection, isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with LC-MS/MS analysis was used for quantitative determination of differentially regulated cellular proteins in the lungs of specific-pathogen-free piglets after 4 weeks of PCV3 infection. Totally, 3429 proteins were detected in three independent mass spectrometry analyses, of which 242 differential cellular proteins were significantly regulated, consisting of 100 upregulated proteins and 142 downregulated proteins in PCV3-infected group relative to control group. Bioinformatics analysis revealed that these higher or lower abundant proteins involved primarily metabolic processes, innate immune response, MHC-I and MHC-II components, and phagosome pathways. Ten genes encoding differentially regulated proteins were selected for investigation via real-time RT-PCR. The expression levels of six representative proteins, OAS1, Mx1, ISG15, IFIT3, SOD2, and HSP60, were further confirmed by Western blotting and immunohistochemistry. This study attempted for the first time to investigate the protein profile of PCV3-infected piglets using iTRAQ technology; our findings provide valuable information to better understand the mechanisms underlying the host responses to PCV3 infection in piglets. SIGNIFICANCE: Our study identified differentially abundant proteins related to a variety of potential signaling pathways in the lungs of PCV3-infected piglets. These findings provide valuable information to better understand the mechanisms of host responses to PCV3 infection.
Collapse
Affiliation(s)
- Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Jijing Tian
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jun Chu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuxin Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yanyang Xi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Huiqi Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Feng Yuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China.
| |
Collapse
|
18
|
Zhong C, Li J, Mao L, Liu M, Zhu X, Li W, Sun M, Ji X, Xiao F, Yang L, Zhang W, Liao Z. Proteomics analysis reveals heat shock proteins involved in caprine parainfluenza virus type 3 infection. BMC Vet Res 2019; 15:151. [PMID: 31101113 PMCID: PMC6525452 DOI: 10.1186/s12917-019-1897-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Caprine parainfluenza virus type 3 (CPIV3) is major pathogen of goat herds causing serious respiratory tract disease and economic losses to the goat industry in China. We analyzed the differential proteomics of CPIV3-infected Madin-Darby bovine kidney (MDBK) cells using quantitative iTRAQ coupled LC-MS/MS. In addition, four DEPs were validated by qRT-PCR and western blot analysis. RESULTS Quantitative proteomics analysis revealed 163 differentially expressed proteins (DEPs) between CPIV3-infected and mock-infected groups (p-value < 0.05 and fold change > 1.2), among which 91 were down-regulated and 72 were up-regulated. Gene ontology (GO) analysis showed that these DEPs were involved in molecular functions, cellular components and biological processes. Biological functions in which the DEPs were involved in included diseases, genetic information processing, metabolism, environmental information processing, cellular processes, and organismal systems. STRING analysis revealed that four heat shock proteins (HSPs) included HSPA5, HSPA1B, HSP90B1 and HSPA6 may be associated with proliferation of CPIV3 in MDBK cells. qRT-PCR and western blot analysis showed that the selected HSPs were identical to the quantitative proteomics data. CONCLUSION To our knowledge, this is the first report of the proteomic changes in MDBK cells after CPIV3 infection.
Collapse
Affiliation(s)
- Chunyan Zhong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China. .,School of Pharmacy, Linyi University, Linyi, 276000, China.
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fang Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Zheng Liao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
19
|
Cui YH, Liu Q, Xu ZY, Li JH, Hu ZX, Li MJ, Zheng WL, Li ZJ, Pan HW. Quantitative proteomic analysis of human corneal epithelial cells infected with HSV-1. Exp Eye Res 2019; 185:107664. [PMID: 31085182 DOI: 10.1016/j.exer.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
HSV-1 infection in corneal epithelium initiates the process of herpes simplex keratitis. We investigated the dynamic change of the host proteins in corneal epithelial cells infected with HSV-1 to understand the virus-host interaction. iTRAQ coupled with LC-MS/MS was applied to quantitatively analyze the protein profiles in HSV-1 infected corneal epithelial cells at 6 and 24 h post-infection (hpi), and the results were validated by multiple reaction monitoring (MRM). We also performed bioinformatic analysis to investigate the potentially important signal pathways and protein interaction networks in the host response to HSV-1 infection. We identified 292 proteins were up-regulated and 168 proteins were down-regulated at 6 hpi, while 132 proteins were up-regulated and 89 proteins were down-regulated at 24 hpi, which were validated by MRM analysis. We found the most enriched GO terms were translational initiation, cytosol, poly(A) RNA binding, mRNA splicing via spliceosome and extracellular exosome for the dysregulated proteins. KEGG pathway analysis revealed significant changes in metabolism pathway characterized by decreased tricarboxylic acid cycle activity and increased glycolysis. Proteins interaction network analysis indicated several proteins including P4HB, ACLY, HSP90AA1 and EIF4A3, might be critical proteins in the host-virus response. Our study for the first time analyzed the protein profile of HSV-1 infected primary corneal epithelial cells by quantitative proteomics. These findings help to better understand the host-virus interaction and the pathogenesis of herpes simplex keratitis.
Collapse
Affiliation(s)
- Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jia-Hui Li
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zi-Xuan Hu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zhi-Jie Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Wang X, Fang L, Liu S, Ke W, Wang D, Peng G, Xiao S. Susceptibility of porcine IPI-2I intestinal epithelial cells to infection with swine enteric coronaviruses. Vet Microbiol 2019; 233:21-27. [PMID: 31176408 PMCID: PMC7117161 DOI: 10.1016/j.vetmic.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
IPI-2I cells are susceptible to TGEV, PDCoV, and PEAV. IPI-2I cells can be infected with PEDV, but with low efficiency. A homogeneous cell line IPI-FX is obtained from IPI-2I cells by sub-cloning. IPI-FX cells are highly susceptible to PEDV, TGEV, PDCoV, and PEAV.
Swine enteric coronavirus (CoV) is an important group of pathogens causing diarrhea in piglets. At least four kinds of swine enteric CoVs have been identified, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and the emerging HKU2-like porcine enteric alphacoronavirus (PEAV). The small intestines, particularly the jejunum and ileum, are the most common targets of these four CoVs in vivo, and co-infections by these CoVs are frequently observed in clinically infected pigs. This study was conducted to investigate the susceptibility of the porcine ileum epithelial cell line, IPI-2I, to different swine enteric CoVs. We found that IPI-2I cells are highly susceptible to TGEV, PDCoV, and PEAV, as demonstrated by cytopathic effect and virus multiplication. However, only a small number of cells could be infected by PEDV, possibly due to the heterogeneity of IPI-2I cells. A homogeneous cell line, designated IPI-FX, obtained from IPI-2I cells by sub-cloning with limited serial dilutions, was found to be highly susceptible to PEDV. Furthermore, IPI-FX cells were also highly susceptible to TGEV, PDCoV, as well as PEAV. Thus, this sub-cloned IPI-FX cell line is an ideal cell model to study the mechanisms of infection, particularly co-infections of swine enteric CoVs.
Collapse
Affiliation(s)
- Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
21
|
Ma X, Zhao X, Zhang Z, Guo J, Guan L, Li J, Mi M, Huang Y, Tong D. Differentially expressed non-coding RNAs induced by transmissible gastroenteritis virus potentially regulate inflammation and NF-κB pathway in porcine intestinal epithelial cell line. BMC Genomics 2018; 19:747. [PMID: 30314467 PMCID: PMC6186045 DOI: 10.1186/s12864-018-5128-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV) infection can activate NF-κB pathway in porcine intestinal epithelial cells and result in severe inflammation. Non-coding RNAs (ncRNAs) are not translated into proteins and play an important role in many biological and pathological processes such as inflammation, viral infection, and mitochondrial damage. However, whether ncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells is largely unknown. Results In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of mRNAs, miRNAs, and circRNAs in Mock- and TGEV-infected intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 523 mRNAs, 65 microRNAs (miRNAs), and 123 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed differentially expressed mRNAs were linked to inflammation-related pathways, including NF-κB, Toll-like receptor, NOD-like receptor, Jak-STAT, TNF, and RIG-I-like receptor pathways. The interactions among mRNA, miRNA, and circRNA were analyzed. The data showed that ssc_circ_009380 and miR-22 might have interaction relationship. Dual-luciferase reporter assay confirmed that miR-22 directly bound to ssc_circ_009380. We also observed that overexpression of miR-22 led to a reduction of p-IκB-α and accumulation of p65 in nucleus in TGEV-infected IPEC-J2 cells. In contrast, inhibition of miR-22 had the opposite effects. Moreover, silencing of ssc_circ_009380 inhibited accumulation of p65 in nucleus and phosphorylation of IκB-α. Conclusions The data revealed that differentially expressed mRNAs and ncRNAs were primarily enriched in inflammation-related pathways and ssc_circ_009380 promoted activation of NF-κB pathway by binding miR-22 during TGEV-induced inflammation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5128-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuelian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhichao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianxiong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lijuan Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Juejun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mi Mi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
22
|
Xia L, Dai L, Zhu L, Hu W, Yang Q. Proteomic Analysis of IPEC-J2 Cells in Response to Coinfection by Porcine Transmissible Gastroenteritis Virus and Enterotoxigenic Escherichia coli K88. Proteomics Clin Appl 2018; 11. [PMID: 29090858 DOI: 10.1002/prca.201600137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 09/22/2017] [Indexed: 01/03/2023]
Abstract
SCOPE Piglet diarrhea causes large economic losses to the swine industry. Epidemiological investigations show that piglet diarrhea is often caused by mixed infections, but the mechanisms by which multiple microorganisms cause disease are unclear. EXPERIMENTAL DESIGN Because transmissible gastroenteritis virus (TGEV) and enterotoxigenic Escherichia coli K88 (ETEC K88) are important contributors to piglet diarrhea, coinfection experiments are conducted using porcine intestinal columnar epithelial cells (IPEC-J2) as a model system. In order to evaluate piglet diarrhea caused TGEV and ETEC K88, the authors examin the effects of coinfection in IPEC-J2 cells. In TGEV pre-infected IPEC-J2 cells, ETEC K88 adhesion is enhanced over uninfected cells. ETEC K88 is also found to inhibit the proliferation of TGEV. Additionally, cytokine levels (IL-1β, IL-6, IL-8, and TNF-α) in coinfected cells are lower than cells infected by TGEV alone, and higher than cells infected by ETEC K88 alone. LCMS/MS coupled to isobaric tags for relative and absolute quantification (iTRAQ) is used to profile expressed proteins in IPEC-J2 cells infected by TGEV alone, ETEC K88 alone, and by both agents together. RESULTS 77, 89, and 136 differentially expressed proteins are identified in TGEV infected, ETEC K88 infected, and coinfected cells, respectively. CONCLUSION AND CLINICAL RELEVANCE Based on these data, the authors suspect that integrin α5 might enable TGEV to promote ETEC K88 adhesion. This study is the first to analyze piglet diarrhea caused by TGEV-ETEC K88 coinfection using high-throughput quantitative proteomics. The results advance the understanding of coinfection and its role in causing piglet diarrhea.
Collapse
Affiliation(s)
- Lu Xia
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Lei Dai
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Liqi Zhu
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Weiwei Hu
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qian Yang
- College of veterinary medicine, Nanjing Agricultural University, Jiangsu, PR China
| |
Collapse
|
23
|
Tong M, Yi L, Sun N, Cheng Y, Cao Z, Wang J, Li S, Lin P, Sun Y, Cheng S. Quantitative Analysis of Cellular Proteome Alterations in CDV-Infected Mink Lung Epithelial Cells. Front Microbiol 2017; 8:2564. [PMID: 29312244 PMCID: PMC5743685 DOI: 10.3389/fmicb.2017.02564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Canine distemper virus (CDV), a paramyxovirus, causes a severe highly contagious lethal disease in carnivores, such as mink. Mink lung epithelial cells (Mv.1.Lu cells) are sensitive to CDV infection and are homologous to the natural host system of mink. The current study analyzed the response of Mv.1.Lu cells to CDV infection by iTRAQ combined with LC-MS/MS. In total, 151 and 369 differentially expressed proteins (DEPs) were markedly up-regulated or down-regulated, respectively. Thirteen DEPs were validated via real-time RT-PCR or western blot analysis. Network and KEGG pathway analyses revealed several regulated proteins associated with the NF-κB signaling pathway. Further validation was performed by western blot analysis and immunofluorescence assay, which demonstrated that different CDV strains induced NF-κB P65 phosphorylation and nuclear translocation. Moreover, the results provided interesting information that some identified DEPs possibly associated with the pathogenesis and the immune response upon CDV infection. This study is the first overview of the responses to CDV infection in Mv.1.Lu cells, and the findings will help to analyze further aspects of the molecular mechanisms involved in viral pathogenesis and the immune responses upon CDV infection.
Collapse
Affiliation(s)
- Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhigang Cao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Lin
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
24
|
Zhao X, Bai X, Guan L, Li J, Song X, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. microRNA-4331 Promotes Transmissible Gastroenteritis Virus (TGEV)-induced Mitochondrial Damage Via Targeting RB1, Upregulating Interleukin-1 Receptor Accessory Protein (IL1RAP), and Activating p38 MAPK Pathway In Vitro. Mol Cell Proteomics 2017; 17:190-204. [PMID: 29217619 PMCID: PMC5795386 DOI: 10.1074/mcp.ra117.000432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 11/06/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a member of the coronaviridae family, could cause fatal diarrhea of piglets and result in numerous economic losses. Previous studies demonstrated that TGEV infection could lead to mitochondrial damage and upregulate miR-4331 level. So miR-4331 may play an important regulatory role in the control of mitochondrial function. To explore the potential role of miR-4331 in mitochondrial damage, we adopted a strategy consisting of quantitative proteomic analysis of porcine kidney (PK-15) cells in response to miR-4331 and TGEV infection. Eventually, 69 differentially expressed proteins were gained. The target of miR-4331 was identified. The effects of miR-4331 and its target RB1 on mitochondrial Ca2+ level, mitochondrial membrane potential (MMP), interleukin-1 receptor accessory protein (IL1RAP), p38 MAPK signaling pathway were investigated. The results showed that miR-4331 elevated mitochondrial Ca2+ level, reduced MMP, targets Retinoblastoma 1 (RB1), upregulated IL1RAP, and induced activation of p38 MAPK pathway during TGEV infection. RB1 was identified as the direct targets of miR-4331 and downregulated IL1RAP, suppressed the activation of p38 MPAK, and attenuated TGEV-induced mitochondrial damage. In addition, IL1RAP played a positive role in activating p38 MAPK signaling and negative role in TGEV-induced mitochondrial damage. The data indicate that miR-4331 aggravates TGEV-induced mitochondrial damage by repressing expression of RB1, promoting IL1RAP, and activating p38 MAPK pathway.
Collapse
Affiliation(s)
- Xiaomin Zhao
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyuan Bai
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lijuan Guan
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Juejun Li
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiangjun Song
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xuelian Ma
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhichao Zhang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
25
|
Sun X, Wang S, Lin X, Zhao L, Zhang D, Yi C, Sun X, Chen H, Jin M. Proteome analysis of Duck Tembusu virus (DTMUV)-infected BHK-21 cells. Proteomics 2017; 17. [PMID: 28516729 DOI: 10.1002/pmic.201700033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused huge economic losses to the duck industry in China since 2010. Moreover, the infection has spread rapidly, posing a potential public health concern. In this study, iTRAQ approach was first used to quantitatively identify differentially expressed cellular proteins in DTMUV-infected BHK-21 cells which are usually employed to produce veterinary vaccines for DTMUV, as well as other flaviviruses by serial passage. We identified 192 differentially expressed cellular proteins, including 11 upregulated and eight downregulated proteins at 24 h postinfection (hpi), as well as 25 upregulated and 151 downregulated proteins at 48 hpi, of which TLR9, DDX3X, and DDX5 may play important roles in virus propagation. Further, DDX3X could inhibit DTMUV replication by modulating the IFN pathway via TBK1. In conclusion, our study is the first to analyze the protein profile of DTMUV-infected cells by quantitative proteomics. We believe that our findings provide valuable information in better understanding the host response to DTMUV infection. These findings are particularly important in the development of vaccine-based strategies.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| |
Collapse
|
26
|
Zhou Y, Wu W, Xie L, Wang D, Ke Q, Hou Z, Wu X, Fang Y, Chen H, Xiao S, Fang L. Cellular RNA Helicase DDX1 Is Involved in Transmissible Gastroenteritis Virus nsp14-Induced Interferon-Beta Production. Front Immunol 2017; 8:940. [PMID: 28848548 PMCID: PMC5552718 DOI: 10.3389/fimmu.2017.00940] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus (CoV) of porcine, causes lethal watery diarrhea and severe dehydration in piglets and leads to severe economic losses in the swine industry. Unlike most CoVs that antagonize type I interferon (IFN) production, previous studies showed that TGEV infection induces IFN-I production both in vivo and in vitro. However, the underlying mechanism(s) remain largely unknown. In this study, we found that TGEV infection significantly facilitated IFN-β production as well as activation of the transcription factors IFN regulatory factor 3 (IRF3) and nuclear factor-kappaB (NF-κB) in porcine kidney (PK-15) cells. Screening of TGEV-encoded proteins demonstrated that non-structural protein 14 (nsp14) was the most potent IFN-β inducer and induced IFN-β production mainly by activating NF-κB but not IRF3. Further analysis showed that nsp14 interacted with DDX1, a member of the DExD/H helicase family. Knockdown of DDX1 by specific small interfering RNA (siRNA) significantly decreased nsp14-induced IFN-β production and NF-κB activation. Furthermore, TGEV-induced IFN-β production and IFN-stimulated gene (ISG) expression were decreased in cells transfected with DDX1-specific siRNA, indicating the vital role of DDX1 to TGEV-induced IFN-β responses. In summary, our data revealed a potential coactivator role of host RNA helicase DDX1 to the induction of IFN-β response initiated by TGEV and demonstrated that nsp14 is an important IFN inducer among the TGEV-encoded proteins.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lilan Xie
- College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhenzhen Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoli Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ying Fang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
27
|
Lin H, Li B, Chen L, Ma Z, He K, Fan H. Differential Protein Analysis of IPEC-J2 Cells Infected with Porcine Epidemic Diarrhea Virus Pandemic and Classical Strains Elucidates the Pathogenesis of Infection. J Proteome Res 2017; 16:2113-2120. [PMID: 28506058 DOI: 10.1021/acs.jproteome.6b00957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea (PED) re-emerged in China in late 2010 and has now become widespread. Accumulated evidence indicates that this large-scale outbreak of diarrhea was caused by variants of the highly virulent porcine epidemic diarrhea virus (PEDV). A pandemic PEDV YC2014 strain (YC2014) was isolated from clinical samples. An iTRAQ-based comparative quantitative proteomic study of IPEC-J2 cells infected with YC2014 and a classical CV777 strain (CV777) was performed to determine the differences between pandemic and classical PEDV strain infection. Totals of 353 and 299 differentially expressed proteins were identified upon YC2014 and CV777 infection, respectively. The canonical pathways and functional networks involved in both PEDV infections were analyzed. The results indicated that the PEDV suppressed protein synthesis of IPEC-J2 cells through down-regulation of the PI3K-AKT/mTOR signaling pathways. Infection with YC2014 could activate the JAK-STAT signaling pathway and the NF-κB pathway more intensively than CV777. YC2014 could activate NF-κB pathway more intensively than CV777. On the basis of differentially expressed proteins, we propose that PEDV might disrupt apoptosis and may elicit stronger inflammatory cascades as well. This study might contribute to an understanding of the pathogenesis of PEDV infection and aid in the development of effective preventive and control vaccines.
Collapse
Affiliation(s)
- Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Bin Li
- Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Chen
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Kongwang He
- Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, China
| |
Collapse
|
28
|
Yan G, Li X, Peng Y, Long B, Fan Q, Wang Z, Shi M, Xie C, Zhao L, Yan X. The Fatty Acid β-Oxidation Pathway is Activated by Leucine Deprivation in HepG2 Cells: A Comparative Proteomics Study. Sci Rep 2017; 7:1914. [PMID: 28507299 PMCID: PMC5432498 DOI: 10.1038/s41598-017-02131-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Leucine (Leu) is a multifunctional essential amino acid that plays crucial role in various cellular processes. However, the integral effect of Leu on the hepatic proteome remains largely unknown. Here, we for the first time applied an isobaric tags for relative and absolute quantification (iTRAQ)-based comparative proteomics strategy to investigate the proteome alteration induced by Leu deprivation in human hepatocellular carcinoma (HepG2) cells. A total of 4,111 proteins were quantified; 43 proteins were further identified as differentially expressed proteins between the normal and Leu deprivation groups. Bioinformatics analysis showed that the differentially expressed proteins were involved in various metabolic processes, including amino acid and lipid metabolism, as well as degradation of ethanol. Interestingly, several proteins involved in the fatty acid β-oxidation pathway, including ACSL1, ACADS, and ACOX1, were up-regulated by Leu deprivation. In addition, Leu deprivation led to the reduction of cellular triglycerides in HepG2 cells. These results reveal that the fatty acid β-oxidation pathway is activated by Leu deprivation in HepG2 cells, and provide new insights into the regulatory function of Leu in multiple cellular processes, especially fatty acid metabolism.
Collapse
Affiliation(s)
- Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xiuzhi Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Ying Peng
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Baisheng Long
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Qiwen Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Zhichang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Min Shi
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Chunlin Xie
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Li Zhao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China. .,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China.
| |
Collapse
|
29
|
Ding Z, An K, Xie L, Wu W, Zhang R, Wang D, Fang Y, Chen H, Xiao S, Fang L. Transmissible gastroenteritis virus infection induces NF-κB activation through RLR-mediated signaling. Virology 2017; 507:170-178. [PMID: 28448848 PMCID: PMC7111708 DOI: 10.1016/j.virol.2017.04.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine enteric coronavirus which causes lethal severe watery diarrhea in piglets. The pathogenesis of TGEV is strongly associated with inflammation. In this study, we found that TGEV infection activates transcription factors NF-κB, IRF3 and AP-1 in a time- and dose-dependent manner in porcine kidney cells. Treatment with the NF-κB-specific inhibitor BAY11-7082 significantly decreased TGEV-induced proinflammatory cytokine production, but did not affect virus replication. Phosphorylation of NF-κB subunit p65 and proinflammatory cytokine production were greatly decreased after knockdown of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) or its adaptors MAVS and STING, while only slight reduction was observed in cells following silencing of Toll-like receptor adaptors, MyD88 and TRIF. Furthermore, TGEV infection significantly upregulated mRNA expression of RIG-I and MDA5. Taken together, our results indicate that the RLR signaling pathway is involved in TGEV-induced inflammatory responses. Transmissible gastroenteritis virus (TGEV) infection activates NF-κB. Inhibition of NF-κB activation does not affect TGEV replication. RLR signaling pathway is involved in TGEV-induced inflammatory responses. TGEV infection significantly upregulates mRNA expression of RIG-I and MDA5.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Lilan Xie
- College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan 430415, China
| | - Wei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ruoxi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ying Fang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
30
|
Yang S, Pei Y, Zhao A. iTRAQ-based Proteomic Analysis of Porcine Kidney Epithelial PK15 cells Infected with Pseudorabies virus. Sci Rep 2017; 7:45922. [PMID: 28374783 PMCID: PMC5379687 DOI: 10.1038/srep45922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Pseudorabies virus (PRV) is one of the most important pathogens of swine, resulting in severe economic losses to the pig industry. To improve our understanding of the host responses to PRV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry to quantitatively identify the differentially expressed cellular proteins in PRV-infected PK15 cells. In total, relative quantitative data were identified for 4333 proteins in PRV and mock- infected PK15 cells, among which 466 cellular proteins were differentially expressed, including 234 upregulated proteins and 232 downregulated proteins. Bioinformatics analysis disclosed that most of these differentially expressed proteins were involved in metabolic processes, cellular growth and proliferation, endoplasmic reticulum (ER) stress response, cell adhesion and cytoskeleton. Moreover, expression levels of four representative proteins, beta-catenin, STAT1, GRB2 and PCNA, were further confirmed by western blot analysis. This is the first attempt to analyze the protein profile of PRV-infected PK15 cells using iTRAQ technology, and our findings may provide valuable information to help understand the host response to PRV infection.
Collapse
Affiliation(s)
- Songbai Yang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Yue Pei
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| |
Collapse
|
31
|
Li Z, Chen F, Ye S, Guo X, Muhanmmad Memon A, Wu M, He Q. Comparative Proteome Analysis of Porcine Jejunum Tissues in Response to a Virulent Strain of Porcine Epidemic Diarrhea Virus and Its Attenuated Strain. Viruses 2016; 8:v8120323. [PMID: 27916855 PMCID: PMC5192384 DOI: 10.3390/v8120323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a predominant cause of acute enteric infection, leads to severe dehydrating diarrhea and mortality in piglets all over the world. A virulent PEDV YN13 strain, isolated in our laboratory, was attenuated to yield an attenuated PEDV strain YN144. To better understand the pathogenesis mechanism and the virus-host interaction during infection with both PEDV YN13 and YN144 strains, a comparative proteomic analysis was carried out to investigate the proteomic changes produced in the primary target organ, using isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). A total of 269 and 301 differently expressed proteins (DEPs) were identified in the jejunum tissues of the piglets inoculated with YN13 and YN144, respectively. Bioinformatics analysis revealed that these proteins were involved in stress responses, signal transduction, and the immune system. All of these involved interferon-stimulated genes (ISGs) which were up-regulated in jejunums by both of the PEDV-infected groups. Based on the comparative analysis, we proposed that different changes induced by YN13 and YN144 in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), eukaryotic initiation factor 4G1 (eIF4G1), and some members in the heat shock protein (HSP) family, may be responsible for differences in their pathogenicity.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Atta Muhanmmad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Zhao W, Liu Z, Yu X, Lai L, Li H, Liu Z, Li L, Jiang S, Xia Z, Xu SY. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways. Proteomics 2016; 16:564-75. [PMID: 26621341 DOI: 10.1002/pmic.201500202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/26/2015] [Accepted: 11/14/2015] [Indexed: 01/09/2023]
Abstract
Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Xujiao Yu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Luying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Haobo Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China.,Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, P. R. China
| | - Zipeng Liu
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, P. R. China
| | - Le Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Shan Jiang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| | - Zhengyuan Xia
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China.,Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, P. R. China
| | - Shi-yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangdong Province, P. R. China
| |
Collapse
|
33
|
Yan G, Li X, Cheng X, Peng Y, Long B, Fan Q, Wang Z, Zheng Z, Shi M, Yan X. Proteomic profiling reveals oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids. Int J Biochem Cell Biol 2016; 79:288-297. [DOI: 10.1016/j.biocel.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
|
34
|
TGEV infection up-regulates FcRn expression via activation of NF-κB signaling. Sci Rep 2016; 6:32154. [PMID: 27555521 PMCID: PMC4995372 DOI: 10.1038/srep32154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022] Open
Abstract
It has been well characterized that the neonatal Fc receptor (FcRn) transports maternal IgG to a fetus or newborn and protects IgG from degradation. We previously reported that FcRn is expressed in a model of normal porcine intestinal epithelial cells (IPEC-J2). Transmissible gastroenteritis is an acute enteric disease of swine that is caused by transmissible gastroenteritis virus (TGEV). How porcine FcRn (pFcRn) expression is regulated by pathogenic infection remains unknown. Our research shows that IPEC-J2 cells infected with TGEV had up-regulated pFcRn expression. In addition, the NF-κB signaling pathway was activated in IPEC-J2 cells by TGEV infection. Furthermore, treatment of TGEV-infected IPEC-J2 cells with the NF-κB-specific inhibitor BAY 11-7082 resulted in down-regulation of pFcRn expression. Transient transfection of pFcRn promoter luciferase report plasmids with overexpression of NF-κB p65 transcription factor enhanced the activation of the luciferase report plasmids. We identified four NF-κB transcription factor binding sites in the promoter region of this gene using luciferase reporter system, chromatin immunoprecipitation, electromobility shift assay, and supershift analysis. Together, the data provide the first evidence that TGEV infection up-regulates pFcRn expression via activation of NF-κB signaling.
Collapse
|
35
|
Zhang Q, Yoo D. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling. Virus Res 2016; 226:128-141. [PMID: 27212682 PMCID: PMC7111337 DOI: 10.1016/j.virusres.2016.05.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Enteric coronaviruses have evolved to modulate the host innate immunity. Viral IFN antagonists have been identified and they are mostly redundant. For protection of intestinal epithelia from enteric viruses, type III IFN plays a major role.
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity.
Collapse
Affiliation(s)
- Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana IL, United States
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana IL, United States.
| |
Collapse
|
36
|
Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, Liu G, Luo J, Yin H. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016; 16:1499-514. [PMID: 26989863 PMCID: PMC7168089 DOI: 10.1002/pmic.201500275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/03/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Bluetongue virus (BTV) causes a non‐contagious, arthropod‐transmitted disease in wild and domestic ruminants, such as sheep. In this study, we used iTRAQ labeling coupled with LC‐MS/MS for quantitative identification of differentially expressed proteins in BTV‐infected sheep testicular (ST) cells. Relative quantitative data were obtained for 4455 proteins in BTV‐ and mock‐infected ST cells, among which 101 and 479 proteins were differentially expressed at 24 and 48 h post‐infection, respectively, indicating further proteomic changes during the later stages of infection. Ten corresponding genes of differentially expressed proteins were validated via real‐time RT‐PCR. Expression levels of three representative proteins, eIF4a1, STAT1 and HSP27, were further confirmed via western blot analysis. Bioinformatics analysis disclosed that the differentially expressed proteins are primarily involved in biological processes related to innate immune response, signal transduction, nucleocytoplasmic transport, transcription and apoptosis. Several upregulated proteins were associated with the RIG‐I‐like receptor signaling pathway and endocytosis. To our knowledge, this study represents the first attempt to investigate proteome‐wide dysregulation in BTV‐infected cells with the aid of quantitative proteomics. Our collective results not only enhance understanding of the host response to BTV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Junren Xie
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
37
|
Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics 2015; 130:65-75. [PMID: 26361011 PMCID: PMC7102838 DOI: 10.1016/j.jprot.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
The re-emerging porcine epidemic diarrhea virus (PEDV) variant related diarrhea has been documented in China since late 2010 and now with global distribution. Currently, a virulent PEDV CH/YNKM-8/2013 and a CV777 vaccine strain-like AH-M have been successfully isolated from the clinical samples. To dissect out the underlying pathogenic mechanism of virulent PEDV and clarify the differences between virulent and CV777 vaccine strain-like PEDV infections, we performed an iTRAQ-based comparative quantitative proteomic study of Vero cells infected with both PEDV strains. A total of 661 and 474 differentially expressed proteins were identified upon virulent and CV777 vaccine strain-like isolates infection, respectively. Ingenuity Pathway Analysis was employed to investigate the canonical pathways and functional networks involved in both PEDV infections. Comprehensive studies have revealed that the PEDV virulent strain suppressed protein synthesis of Vero cells through down-regulating mTOR as well as its downstream targets 4EBP1 and p70S6K activities, which were validated by immunoblotting. In addition, the virulent strain could activate NF-κB pathway more intensively than the CV777 vaccine strain-like isolate, and elicit stronger inflammatory cascades as well. These data might provide new insights for elucidating the specific pathogenesis of PEDV infection, and pave the way for the development of effective therapeutic strategies. Biological significance Porcine epidemic diarrhea is now worldwide distributed and causing huge economic losses to swine industry. The immunomodulation and pathogenesis between PEDV and host, as well as the difference between virulent and attenuated strains of PEDV infections are still largely unknown. In this study, we presented for the first application of proteomic analysis to compare whole cellular protein alterations induced by virulent and CV777 vaccine strain-like PEDV infections, which might contribute to understand the pathogenesis of PEDV and anti-viral strategy development. Vero cells proteome was individually analyzed upon virulent and attenuated PEDV infections. Many pathways and interactive networks were constructed based on differentially expressed proteins. Virulent PEDV strain suppressed mTOR as well as its downstream targets 4EBP1 and p70S6K activities. Virulent PEDV strain activated NF-κB pathway more intensively than the attenuated isolate.
Collapse
Affiliation(s)
- Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Zhou MT, Qin Y, Li M, Chen C, Chen X, Shu HB, Guo L. Quantitative Proteomics Reveals the Roles of Peroxisome-associated Proteins in Antiviral Innate Immune Responses. Mol Cell Proteomics 2015; 14:2535-49. [PMID: 26124285 DOI: 10.1074/mcp.m115.048413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Compared with whole-cell proteomic analysis, subcellular proteomic analysis is advantageous not only for the increased coverage of low abundance proteins but also for generating organelle-specific data containing information regarding dynamic protein movement. In the present study, peroxisome-enriched fractions from Sendai virus (SeV)-infected or uninfected HepG2 cells were obtained and subjected to quantitative proteomics analysis. We identified 311 proteins that were significantly changed by SeV infection. Among these altered proteins, 25 are immune response-related proteins. Further bioinformatic analysis indicated that SeV infection inhibits cell cycle-related proteins and membrane attack complex-related proteins, all of which are beneficial for the survival and replication of SeV within host cells. Using Luciferase reporter assays on several innate immune-related reporters, we performed functional analysis on 11 candidate proteins. We identified LGALS3BP and CALU as potential negative regulators of the virus-induced activation of the type I interferons.
Collapse
Affiliation(s)
- Mao-Tian Zhou
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Yue Qin
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Mi Li
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University
| | - Chen Chen
- From the ‡State Key Laboratory of Virology, College of Life Sciences
| | - Xi Chen
- ¶Wuhan Institute of Biotechnology, Wuhan, China
| | - Hong-Bing Shu
- From the ‡State Key Laboratory of Virology, College of Life Sciences; §Medical Research Institute, Wuhan University;
| | - Lin Guo
- From the ‡State Key Laboratory of Virology, College of Life Sciences;
| |
Collapse
|