1
|
Liu Q, Xu Y, Lv X, Guo C, Zhu H, Yang L, Wang Y. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine alleviates diet-induced hyperlipidemia by modulating intestinal gene expression profiles and metabolic pathway. Life Sci 2024; 352:122891. [PMID: 38977060 DOI: 10.1016/j.lfs.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
There is a growing body of evidence suggesting that the composition of intestinal flora plays a significant role in regulating lipid metabolism. 2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (IMMH007) is a new candidate compound for regulating blood cholesterol and other lipids. In this study, we conducted metagenomic and metabolomic analyses on samples from high-fat diet-fed (HFD) hamsters treated with IMMH007. Our findings revealed that IMM-H007 reversed the imbalance of gut microbiota caused by a high-fat diet. Additionally, it activated adiponectin receptor and pantothenate and CoA biosynthesis pathway-related genes, which are known to regulate lipid and glucose metabolism. Furthermore, IMM-H007 promotes cholesterol metabolism by reducing the abundance of genes and species associated with 7α-dehydroxylation and bile salt hydrolase (BSH). Metabolomics and pharmacological studies have shown that IMM-H007 effectively improved glucose and lipid metabolism disorders caused by HFD, reduced the aggregation of secondary bile acids (SBAs), significantly increased the content of hyodeoxycholic acid (HDCA), and also activated the expression of VDR in the small intestine. As a result, there was a reduction in the leakage of diamine oxidase (DAO) into the bloodstream in hamsters, accompanied by an upregulation of ZO-1 expression in the small intestine. The results suggested that IMM-H007 regulated glucose and lipid metabolism, promoted cholesterol metabolism through activating the expression of VDR, inhibiting inflammatory and improving the permeability of the intestinal barrier. Thus, our study provides new understanding of how IMM-H007 interacts with intestinal function, microbiota, and relevant targets, shedding light on its mechanism of action.
Collapse
Affiliation(s)
- Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Core Facilities, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Xu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqi Lv
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congcong Guo
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Di Pietrantonio N, Cappellacci I, Mandatori D, Baldassarre MPA, Pandolfi A, Pipino C. Role of Epigenetics and Metabolomics in Predicting Endothelial Dysfunction in Type 2 Diabetes. Adv Biol (Weinh) 2023; 7:e2300172. [PMID: 37616517 DOI: 10.1002/adbi.202300172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide health problem and cardiovascular disease (CVD) is a leading cause of morbidity and mortality in T2D patients, making the prevention of CVD onset a major priority. It is therefore crucial to optimize diagnosis and treatment to reduce this burden. Endothelial dysfunction is one of the most important prognostic factors for CVD progression, thus novel approaches to identify the early phase of endothelial dysfunction may lead to specific preventive measures to reduce the occurrence of CVD. Nowadays, multiomics approaches have provided unprecedented opportunities to stratify T2D patients into endotypes, improve therapeutic treatment and outcome and amend the survival prediction. Among omics strategies, epigenetics and metabolomics are gaining increasing interest. Recently, a dynamic correlation between metabolic pathways and gene expression through chromatin remodeling, such as DNA methylation, has emerged, indicating new perspectives on the regulatory networks impacting cellular processes. Thus, a better understanding of epigenetic-metabolite relationships can provide insight into the physiological processes altered early in the endothelium that ultimately head to disease development. Here, recent studies on epigenetics and metabolomics related to CVD prevention potentially useful to identify disease biomarkers, as well as new therapies hopefully targeting the early phase of endothelial dysfunction are highlighted.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Ilaria Cappellacci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
3
|
Gao Y, Wang H, Fu G, Feng Y, Wu W, Yang H, Zhang Y, Wang S. DNA methylation analysis reveals the effect of arsenic on gestational diabetes mellitus. Genomics 2023; 115:110674. [PMID: 37392895 DOI: 10.1016/j.ygeno.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Arsenic (As) exposure is one of the risk factors for gestational diabetes mellitus (GDM). This study aimed to explore the effect of As-exposure on DNA methylation in GDM and to establish a risk assessment model of GDM in As exposed pregnant women. METHOD We collected elbow vein blood of pregnant women before delivery to measure As concentration and DNA methylation data. Then compared the DNA methylation data and established a nomogram. RESULT We identified a total of 10 key differentially methylated CpGs (DMCs) and found 6 corresponding genes. Functions were enriched in Hippo signaling pathway, cell tight junction, prophetic acid metabolism, ketone body metabolic process, and antigen processing and presentation. A nomogram was established that can predict GDM risks (c-index = 0.595, s:p = 0.973). CONCLUSION We found 6 genes associated with GDM with high As exposure. The prediction of the nomograms has been proven to be effective.
Collapse
Affiliation(s)
- Ying Gao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China; Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hu Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Gan Fu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Hailan Yang
- Department of Obstetrics, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yawei Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Guan R, Ma N, Liu G, Wu Q, Su S, Wang J, Geng Y. Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116385. [PMID: 36931413 DOI: 10.1016/j.jep.2023.116385] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a traditional natural medicine with various activities such as antioxidant and anti-inflammatory, immunomodulatory, anti-tumour, gastroenteritis treatment and prevention, anti-microbial and parasitic, as well as glucose regulation and anti-diabetes, and is expected to be an anti-diabetic candidate with few side effects, but the mechanism of action of propolis on type 2 diabetes mellitus (T2DM) has not been fully elucidated. AIM OF THE STUDY The purpose of this study was to investigate the mechanism of the effect of ethanol extract of propolis (EEP) on the regulation of blood glucose in T2DM mice. MATERIALS AND METHODS We studied the possible mechanism of EEP on T2DM using an animal model of T2DM induced by a combination of a high-fat diet and intraperitoneal injection of streptozotocin (STZ). The experiment was divided into four groups, namely, the normal group (HC), model group (T2DM), EEP and metformin group (MET). Biochemical indexes and cytokines were measured, and the differences of metabolites in the serum were compared by 1H-NMR. In addition, the diversity of intestinal flora in feces was studied by 16S rDNA amplicon sequencing. RESULTS The results showed that following treatment with EEP and MET, the weight-loss trend of mice was alleviated, and the fasting blood glucose, insulin secretion level, insulin resistance index, C peptide level and oral glucose tolerance level decreased, whereas the insulin sensitivity index increased, thereby EEP effectively alleviated the occurrence of T2DM and insulin resistance. Compared with the T2DM group, the concentrations of pro-inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) decreased significantly in EEP and MET groups, whereas the concentrations of anti-inflammatory cytokine interleukin-10 (IL-10) increased significantly. Metabolomics results revealed that EEP and MET regulate carbohydrate metabolism and restore amino acid and lipid metabolism. Correlation analysis of intestinal flora in mouse feces showed that compared with the HC group, harmful bacteria such as Bilophila, Eubacterium_ventriosum_group, Mucispirillum and Desulfovibrio were found in the T2DM group, whereas the abundance of beneficial bacteria such as Lactobacillus was significantly reduced. Parabacteroides, Akkermansia, Leuconostoc, and Alloprevotella were abundantly present in the EEP group; however, the MET group showed an increase in the genus Parasutterella, which could regulate energy metabolism and insulin sensitivity. CONCLUSIONS The results showed that EEP and MET reduce fasting blood glucose in T2DM mice, followed by alleviating insulin resistance, improving the inflammatory reaction of mice, regulating the metabolism of mice, and affecting the steady state of gut microbiota. However, the overall therapeutic effect of EEP is better than that of MET.
Collapse
Affiliation(s)
- Rui Guan
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Ning Ma
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Guolong Liu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Qiu Wu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shufang Su
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Yue Geng
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
5
|
Armbruster M, Grady SF, Arnatt CK, Edwards JL. Isobaric 4-Plex Tagging for Absolute Quantitation of Biological Acids in Diabetic Urine Using Capillary LC-MS/MS. ACS MEASUREMENT SCIENCE AU 2022; 2:287-295. [PMID: 35726255 PMCID: PMC9204807 DOI: 10.1021/acsmeasuresciau.1c00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Isobaric labeling in mass spectrometry enables multiplexed absolute quantitation and high throughput, while minimizing full scan spectral complexity. Here, we use 4-plex isobaric labeling with a fixed positive charge tag to improve quantitation and throughput for polar carboxylic acid metabolites. The isobaric tag uses an isotope-encoded neutral loss to create mass-dependent reporters spaced 2 Da apart and was validated for both single- and double-tagged analytes. Tags were synthesized in-house using deuterated formaldehyde and methyl iodide in a total of four steps, producing cost-effective multiplexing. No chromatographic deuterium shifts were observed for single- or double-tagged analytes, producing consistent reporter ratios across each peak. Perfluoropentanoic acid was added to the sample to drastically increase retention of double-tagged analytes on a C18 column. Excess tag was scavenged and extracted using hexadecyl chloroformate after reaction completion. This allowed for removal of excess tag that typically causes ion suppression and column overloading. A total of 54 organic acids were investigated, producing an average linearity of 0.993, retention time relative standard deviation (RSD) of 0.58%, and intensity RSD of 12.1%. This method was used for absolute quantitation of acid metabolites comparing control and type 1 diabetic urine. Absolute quantitation of organic acids was achieved by using one isobaric lane for standards, thereby allowing for analysis of six urine samples in two injections. Quantified acids showed good agreement with previous work, and six significant changes were found. Overall, this method demonstrated 4-plex absolute quantitation of acids in a complex biological sample.
Collapse
|
6
|
Mostafa ME, Grinias JP, Edwards JL. Evaluation of Nanospray Capillary LC-MS Performance for Metabolomic Analysis in Complex Biological Matrices. J Chromatogr A 2022; 1670:462952. [DOI: 10.1016/j.chroma.2022.462952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
7
|
Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:7887426. [PMID: 34987703 PMCID: PMC8723873 DOI: 10.1155/2021/7887426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycemia and vascular damage are strictly related. Biomarkers of vascular damage have been intensively studied in the recent years in the quest of reliable cardiovascular risk assessment tools able to facilitate risk stratification and early detection of vascular impairment. The present study is a narrative review with the aim of revising the available evidence on current and novel markers of hyperglycemia-induced vascular damage. After a discussion of classic tools used to investigate endothelial dysfunction, we provide an in-depth description of novel circulating biomarkers (chemokines, extracellular vesicles, and epigenetic and metabolomic biomarkers). Appropriate use of a single as well as a cluster of the discussed biomarkers might enable in a near future (a) the prompt identification of targeted and customized treatment strategies and (b) the follow-up of cardiovascular treatment efficacy over time in clinical research and/or in clinical practice.
Collapse
|
8
|
Abu Bakar Sajak A, Azlan A, Abas F, Hamzah H. The Changes in Endogenous Metabolites in Hyperlipidemic Rats Treated with Herbal Mixture Containing Lemon, Apple Cider, Garlic, Ginger, and Honey. Nutrients 2021; 13:3573. [PMID: 34684574 PMCID: PMC8539352 DOI: 10.3390/nu13103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
An herbal mixture composed of lemon, apple cider, garlic, ginger and honey as a polyphenol-rich mixture (PRM) has been reported to contain hypolipidemic activity on human subjects and hyperlipidemic rats. However, the therapeutic effects of PRM on metabolites are not clearly understood. Therefore, this study aimed to provide new information on the causal impact of PRM on the endogenous metabolites, pathways and serum biochemistry. Serum samples of hyperlipidemic rats treated with PRM were subjected to biochemistry (lipid and liver profile) and hydroxymethylglutaryl-CoA enzyme reductase (HMG-CoA reductase) analyses. In contrast, the urine samples were subjected to urine metabolomics using 1H NMR. The serum biochemistry revealed that PRM at 500 mg/kg (PRM-H) managed to lower the total cholesterol level and low-density lipoprotein (LDL-C) (p < 0.05) and reduce the HMG-CoA reductase activity. The pathway analysis from urine metabolomics reveals that PRM-H altered 17 pathways, with the TCA cycle having the highest impact (0.26). Results also showed the relationship between the serum biochemistry of LDL-C and HMG-CoA reductase and urine metabolites (trimethylamine-N-oxide, dimethylglycine, allantoin and succinate). The study's findings demonstrated the potential of PRM at 500 mg/kg as an anti-hyperlipidemic by altering the TCA cycle, inhibiting HMG-CoA reductase and lowering the LDL-C in high cholesterol rats.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Research Centre for Excellence for Nutrition and Non-Communicable Disease, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Hazilawati Hamzah
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
10
|
Gao Y, Wu Y, Liu Z, Fu J, Zhang Y, Wu J, Liu S, Song F, Liu Z. Based on urine metabolomics to study the mechanism of Qi-deficiency affecting type 2 diabetes rats using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122850. [PMID: 34364297 DOI: 10.1016/j.jchromb.2021.122850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/20/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
Qi-deficiency also called energy deficiency, which approximates to the term of sub-health in contemporary medical theory. Diabetes is similar to the symptoms of "xiaoke" in traditional Chinese medicine (TCM) which is linked with Qi-deficiency. However, the mechanism of Qi-deficiency on type 2 diabetes (T2D) has not been completely elucidated. In this study, a model on Qi-deficiency T2D rat was established by using diet with high fat and high sugar and small-dose STZ induction combined with exhaustive swimming, and the model was evaluated by pathological section, hematological index and serum biochemical parameters. Applying urine metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to explore the underlying molecular mechanism of Qi-deficiency on T2D and 32 urinary metabolites were identified as prospective biomarkers for Qi-deficiency T2D rats. Metabolic pathway analysis indicated that synthesis and degradation of ketone bodies, starch and sucrose metabolism, phenylalanine metabolism, arachidonic acid metabolism, butanoate metabolism and TCA cycle, etc., were closely related to potential mechanisms of Qi-deficiency on T2D. The metabolomics results can provide reliable data support for complex TCM syndrome diagnosis.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yuying Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jiajie Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Sanders KL, Edwards JL. Nano-liquid chromatography-mass spectrometry and recent applications in omics investigations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4404-4417. [PMID: 32901622 PMCID: PMC7530103 DOI: 10.1039/d0ay01194k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.
Collapse
|
12
|
Guo Q, Niu W, Li X, Guo H, Zhang N, Wang X, Wu L. Study on Hypoglycemic Effect of the Drug Pair of Astragalus Radix and Dioscoreae Rhizoma in T2DM Rats by Network Pharmacology and Metabonomics. Molecules 2019; 24:E4050. [PMID: 31717456 PMCID: PMC6891682 DOI: 10.3390/molecules24224050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease accompanied by a series of diseases such as diabetic nephropathy. The drug pair (HS) of Astragalus Radix (HQ) and Dioscoreae Rhizoma (SY) was designed by Dr. Shi Jinmo to improve the treatment of T2DM. However, the exact mechanism involved requires further clarification. In this work, 1H-NMR-based metabonomics and network pharmacology were adopted. Metabolic profiling indicated that the metabolic perturbation was reduced after HS treatment. The results found 21 biomarkers. According to the network pharmacology, we found that the regulation of T2DM was primarily associated with 18 active compounds in HS. These active compounds mainly had an effect on 135 targets. Subsequently, combining network pharmacology and metabonomics, we found four target proteins, which indicated that HS has potential hypoglycemic effects through regulating monoamine oxidases B (MAOB), acetyl-CoA carboxylase 1 (ACACA), carbonic anhydrase 2 (CA2), and catalase (CAT). In conclusion, the result showed that these four targets might be the most relevant targets for the treatment of T2DM with HS. This study clarified the mechanism of HS in the treatment of T2DM and also confirmed the feasibility of combining metabonomics and network pharmacology to study the mechanisms of traditional Chinese medicine (TCM). In the future, this approach may be a potentially powerful tool to discovery active components of traditional Chinese medicines and elucidate their mechanisms.
Collapse
Affiliation(s)
- Qian Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; (Q.G.); (W.N.); (X.L.)
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Wanlin Niu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; (Q.G.); (W.N.); (X.L.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China;
| | - Xuejia Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; (Q.G.); (W.N.); (X.L.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China;
| | - Hongru Guo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China;
| | - Na Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China;
| | - Xiufeng Wang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; (Q.G.); (W.N.); (X.L.)
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
13
|
Rerick MT, Groskreutz SR, Weber SG. Multiplicative On-Column Solute Focusing Using Spatially Dependent Temperature Programming for Capillary HPLC. Anal Chem 2019; 91:2854-2860. [DOI: 10.1021/acs.analchem.8b04826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael T. Rerick
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Huang T, Armbruster M, Lee R, Hui DS, Edwards JL. Metabolomic analysis of mammalian cells and human tissue through one-pot two stage derivatizations using sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. J Chromatogr A 2018; 1567:219-225. [PMID: 30005940 DOI: 10.1016/j.chroma.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022]
Abstract
Analysis of metabolites is often performed using separations coupled to mass spectrometry which is challenging due to their vast structural heterogeneity and variable charge states. Metabolites are often separated based on their class/functional group which in large part determine their acidity or basicity. This charge state dictates the ionization mode and efficiency of the molecule. To improve the sensitivity and expand the coverage of the mammalian metabolome, multifunctional derivatization with sheathless CE-ESI-MS was undertaken. In this work, amines, hydroxyls and carboxylates were labeled with tertiary amines tags. This derivatization was performed in under 100 min and resulted in high positive charge states for all analytes investigated. Amino acids and organic acids showed average limits of detection of 76 nM with good linearity of 0.96 and 10% RSD for peak area. Applying this metabolomic profiling system to bovine aortic endothelial cells showed changes in 15 metabolites after treatment with high glucose. The sample injection volume on-capillary was <300 cells for quantitative analyses. Targeted metabolites were found in human tissue, which indicates possible application of the system complex metabolome quantitation.
Collapse
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Michael Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Richard Lee
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - Dawn S Hui
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA.
| |
Collapse
|
15
|
Zhao X, Hui DS, Lee R, Edwards JL. Ratiometric quantitation of thiol metabolites using non-isotopic mass tags. Anal Chim Acta 2018; 1037:274-280. [PMID: 30292302 DOI: 10.1016/j.aca.2018.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Ratiometric quantitation is used in mass spectrometry to account for variations in ionization efficiencies due to heterogenous sample matrixes. Isotopes are most commonly used to achieve ratiometric quantitation because of their ability to co-elute chromatographically with each other and to have similar ionization efficiencies. In the work presented here, a new non-isotopic quantitative tagging approach is presented which allows chromatographic co-elution and similar ionization efficiencies. Using two variations of maleimide tags, t-butyl and cyclohexyl maleimide, thiols are quantified with a high degree of linearity up to five-fold concentration differences. Because these two tags have similar hydrophobcities, they elute simultaneously which allows them to be used for ratiometric quantitation. Beyond the five-fold linear range, signal compression is observed. This technique was able to quantify thiol changes in both in vitro pharmacological treatments as well as in vivo diabetic tissue.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, United States
| | - Dawn S Hui
- Department of Surgery, Center for Comprehensive Cardiovascular Care, Saint Louis University, St Louis, MO 63110, United States
| | - Richard Lee
- Department of Surgery, Center for Comprehensive Cardiovascular Care, Saint Louis University, St Louis, MO 63110, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, United States.
| |
Collapse
|
16
|
Rhee SY, Jung ES, Park HM, Jeong SJ, Kim K, Chon S, Yu SY, Woo JT, Lee CH. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 2018; 14:89. [PMID: 29950956 PMCID: PMC6013531 DOI: 10.1007/s11306-018-1383-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Diabetic patients with a long disease duration usually accompanied complication such as diabetic retinopathy, but in some patients had no complication. OBJECTIVES We analyzed differences in plasma metabolites according to the presence or absence of diabetic retinopathy (DR) in type 2 diabetic (T2D) patients with disease duration ≥ 15 years. METHODS A cohort of 183 T2D patients was established. Their biospecimens and clinical information were collected in accordance with the guidelines of the National Biobank of Korea, and the Korean Diabetes Association. DR phenotypes of the subjects were verified by ophthalmologic specialists. Plasma metabolites were analyzed using gas chromatography time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. And these results were analyzed using multivariate statistics. RESULTS For metabolomic study, propensity score matched case and control subjects were chosen. Mean age of the subjects was 66.4 years and mean T2D duration was 22.2 years. Metabolomic identification revealed various carbohydrates, amino acids, and organic compounds that distinguished between age- and sex-matched non-diabetic controls and T2D subjects. Among these, glutamine and glutamic acid were suggested as the most distinctive metabolites for the presence of DR. Receiver operating characteristics curves showed an excellent diagnostic value of combined (AUC = 0.739) and the ratio (AUC = 0.742) of glutamine and glutamic acid for DR. And these results were consistent in validation analyses. CONCLUSION Our results imply that plasma glutamine, glutamic acid, and their ratio may be valuable as novel biomarkers for anticipating DR in T2D subjects.
Collapse
Affiliation(s)
- Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye Min Park
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Su Jin Jeong
- Statistics Support Department, Kyung Hee University Medical Center Medical Science Research Institute, Seoul, Republic of Korea
| | - Kiyoung Kim
- Department of Ophthalmology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung-Young Yu
- Department of Ophthalmology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Choong Hwan Lee
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
17
|
Abu Bakar Sajak A, Mediani A, Mohd Dom NS, Machap C, Hamid M, Ismail A, Khatib A, Abas F. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via 1H NMR-based metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:201-209. [PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. PURPOSE This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. METHODS By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. RESULTS The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. CONCLUSION I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Sumirah Mohd Dom
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chandradevan Machap
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Biotechnology and Nanotechnology Research Centre, Persiaran Mardi-UPM, 43400 Mardi Serdang, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Islamic University, Bandar Indera Mahkota, Kuantan, Pahang 25200, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Leufken J, Niehues A, Sarin LP, Wessel F, Hippler M, Leidel SA, Fufezan C. pyQms enables universal and accurate quantification of mass spectrometry data. Mol Cell Proteomics 2017; 16:1736-1745. [PMID: 28729385 PMCID: PMC5629261 DOI: 10.1074/mcp.m117.068007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm.
Collapse
Affiliation(s)
- Johannes Leufken
- From the ‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany.,§Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
| | - Anna Niehues
- From the ‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany
| | - L Peter Sarin
- §Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
| | - Florian Wessel
- From the ‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany.,¶Deutsches Krebsforschungszentrum, G181 DKFZ-Bayer Joint Immunotherapy Laboratory, 69120 Heidelberg, Germany
| | - Michael Hippler
- From the ‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany
| | - Sebastian A Leidel
- §Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; .,‖Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany.,**Faculty of Medicine, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Christian Fufezan
- From the ‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; .,‡‡Cellzome A GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
19
|
Matsuura Y, Yamashita A, Zhao Y, Iwakiri T, Yamasaki K, Sugita C, Koshimoto C, Kitamura K, Kawai K, Tamaki N, Zhao S, Kuge Y, Asada Y. Altered glucose metabolism and hypoxic response in alloxan-induced diabetic atherosclerosis in rabbits. PLoS One 2017; 12:e0175976. [PMID: 28410399 PMCID: PMC5391952 DOI: 10.1371/journal.pone.0175976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus accelerates atherosclerosis that causes most cardiovascular events. Several metabolic pathways are considered to contribute to the development of atherosclerosis, but comprehensive metabolic alterations to atherosclerotic arterial cells remain unknown. The present study investigated metabolic changes and their relationship to vascular histopathological changes in the atherosclerotic arteries of rabbits with alloxan-induced diabetes. Diabetic atherosclerosis was induced in rabbit ilio-femoral arteries by injecting alloxan (100 mg/kg), injuring the arteries using a balloon, and feeding with a 0.5% cholesterol diet. We histologically assessed the atherosclerotic lesion development, cellular content, pimonidazole positive-hypoxic area, the nuclear localization of hypoxia-inducible factor-1α, and apoptosis. We evaluated comprehensive arterial metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using 18F-fluorodeoxyglucose and pimonidazole. Plaque burden, macrophage content, and hypoxic areas were more prevalent in arteries with diabetic, than non-diabetic atherosclerosis. Metabolomic analyses highlighted 12 metabolites that were significantly altered between diabetic and non-diabetic atherosclerosis. A half of them were associated with glycolysis metabolites, and their levels were decreased in diabetic atherosclerosis. The uptake of glucose evaluated as 18F-fluorodeoxyglucose in atherosclerotic lesions increased according to increased macrophage content or hypoxic areas in non-diabetic, but not diabetic rabbits. Despite profound hypoxic areas, the nuclear localization of hypoxia-inducible factor-1α decreased and the number of apoptotic cells increased in diabetic atherosclerotic lesions. Altered glycolysis metabolism and an impaired response to hypoxia in atherosclerotic lesions under conditions of insulin-dependent diabetes might be involved in the development of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Yunosuke Matsuura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- * E-mail:
| | - Yan Zhao
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Iwakiri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuaki Yamasaki
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Chihiro Sugita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Kyusyu University of Health and Welfare, Nobeoka, Japan
| | - Chihiro Koshimoto
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Songji Zhao
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
20
|
Qiao X, Zhang N, Han M, Li X, Qin X, Shen S. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity. J Sep Sci 2017; 40:1024-1031. [DOI: 10.1002/jssc.201601014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoqiang Qiao
- College of Pharmaceutical Sciences; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education; Hebei University; Baoding China
| | - Niu Zhang
- College of Pharmaceutical Sciences; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education; Hebei University; Baoding China
| | - Manman Han
- College of Pharmaceutical Sciences; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education; Hebei University; Baoding China
| | - Xueyun Li
- College of Pharmaceutical Sciences; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis; Ministry of Education; Hebei University; Baoding China
| | - Xinying Qin
- Chemical Biology Key Laboratory of Hebei Province; College of Chemistry & Environmental Science; Hebei University; Baoding China
| | - Shigang Shen
- College of Chemistry & Environmental Science; Hebei University; Baoding China
| |
Collapse
|
21
|
Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F. Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via 1H NMR-Based Metabolomics Approach. Appl Biochem Biotechnol 2016; 182:653-668. [PMID: 27995574 DOI: 10.1007/s12010-016-2352-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using 1H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Groskreutz SR, Weber SG. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. J Chromatogr A 2016; 1474:95-108. [PMID: 27836226 PMCID: PMC5115952 DOI: 10.1016/j.chroma.2016.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF.
Collapse
Affiliation(s)
- Stephen R Groskreutz
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
23
|
Filla LA, Sanders KL, Filla RT, Edwards JL. Automated sample preparation in a microfluidic culture device for cellular metabolomics. Analyst 2016; 141:3858-65. [PMID: 27118418 PMCID: PMC4902300 DOI: 10.1039/c6an00237d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sample pretreatment in conventional cellular metabolomics entails rigorous lysis and extraction steps which increase the duration as well as limit the consistency of these experiments. We report a biomimetic cell culture microfluidic device (MFD) which is coupled with an automated system for rapid, reproducible cell lysis using a combination of electrical and chemical mechanisms. In-channel microelectrodes were created using facile fabrication methods, enabling the application of electric fields up to 1000 V cm(-1). Using this platform, average lysing times were 7.12 s and 3.03 s for chips with no electric fields and electric fields above 200 V cm(-1), respectively. Overall, the electroporation MFDs yielded a ∼10-fold improvement in lysing time over standard chemical approaches. Detection of multiple intracellular nucleotides and energy metabolites in MFD lysates was demonstrated using two different MS platforms. This work will allow for the integrated culture, automated lysis, and metabolic analysis of cells in an MFD which doubles as a biomimetic model of the vasculature.
Collapse
Affiliation(s)
- Laura A Filla
- Department of Chemistry, Saint Louis University, St Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
24
|
Wilson RE, Groskreutz SR, Weber SG. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal Chem 2016; 88:5112-21. [PMID: 27033165 PMCID: PMC4940048 DOI: 10.1021/acs.analchem.5b04793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method, the effects of TASF can be predicted, allowing determination of the usefulness of this technique for a particular application.
Collapse
Affiliation(s)
- Rachael E. Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
Abstract
With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.
Collapse
Affiliation(s)
- Laura A Filla
- Saint Louis University Department of Chemistry, 3501 Laclede Ave. St. Louis, MO 63103, USA.
| | | |
Collapse
|
26
|
Yuan W, Li S, Edwards JL. Extraction and Quantitation of Ketones and Aldehydes from Mammalian Cells Using Fluorous Tagging and Capillary LC-MS. Anal Chem 2015; 87:7660-6. [DOI: 10.1021/acs.analchem.5b01000] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Yuan
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States,
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuwei Li
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States,
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - James L. Edwards
- Department
of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|