1
|
Liu D, Liu G, Li Y, Wang Y, Zheng Y, Sha S, Li W, Kameyama A, Dong W. Rapid glycosylation analysis of mouse serum glycoproteins separated by supported molecular matrix electrophoresis. J Proteomics 2021; 234:104098. [PMID: 33421637 DOI: 10.1016/j.jprot.2020.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/06/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Previously, we developed a novel separation technique, namely, supported molecular matrix electrophoresis (SMME), which separates mucins on a PVDF membrane that impregnated with a hydrophilic polymer (such as polyvinyl alcohol), so it has the characteristics that are compatible with glycan analysis of the separated bands. Here, we describe the first instance of the application of SMME to mouse sera fractionation and demonstrate their differences from the pooled human sera fractionation by SMME. Furthermore, we have developed a fixation method for the lectin blotting of SMME-separated glycoproteins by immersing the SMME membranes into acetone solvent followed by heating. It showed that the amount of protein samples required for SMME were reduced more than 4-fold than that of the process of SDS-PAGE. We applied these techniques for the detection of glycosylation patterns of serum proteins from Fut8+/+ and Fut8-/- mice, further analyzed N-linked and O-linked glycans from the separated γ-bands by mass spectrometry, and demonstrated that there are α2,8-sialylated O-glycans contained in mouse sera glycoproteins. SMME can provide simple, rapid sera fractionation, glycan profiling differences between the bands of two samples and a new insight into the underlying mechanism that responsible for related diseases. SIGNIFICANCE: We describe that the first application of SMME can separate mouse serum proteins into six bands and identify the major protein components of each fraction in mouse serum separated by SMME. Furthermore, we successfully developed a fixation method for lectin blotting of SMME-separated glycoproteins and applied to the detection of glycosylation patterns of serum glycoproteins from Fut8+/+ and Fut8-/- mice, also, the method is promising for detecting glycan profiling differences between two samples in both research and clinical settings.
Collapse
Affiliation(s)
- Dongqi Liu
- China Medical University - The Queen's University of Belfast Joint College, Shenyang 110122, Liaoning, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yue Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuanyuan Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shanshan Sha
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Open Space Laboratory C-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
2
|
Doud EH, Shetty T, Abt M, Mosley AL, Corson TW, Mehta A, Yeh ES. NF-κB Signaling Is Regulated by Fucosylation in Metastatic Breast Cancer Cells. Biomedicines 2020; 8:biomedicines8120600. [PMID: 33322811 PMCID: PMC7763959 DOI: 10.3390/biomedicines8120600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that the levels of fucosylation correlate with breast cancer progression and contribute to metastatic disease. However, very little is known about the signaling and functional outcomes that are driven by fucosylation. We performed a global proteomic analysis of 4T1 metastatic mammary tumor cells in the presence and absence of a fucosylation inhibitor, 2-fluorofucose (2FF). Of significant interest, pathway analysis based on our results revealed a reduction in the NF-κB and TNF signaling pathways, which regulate the inflammatory response. NF-κB is a transcription factor that is pro-tumorigenic and a prime target in human cancer. We validated our results, confirming that treatment of 4T1 cells with 2FF led to a decrease in NF-κB activity through increased IκBα. Based on these observations, we conclude that fucosylation is an important post-translational modification that governs breast cancer cell signaling.
Collapse
Affiliation(s)
- Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
| | - Trupti Shetty
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
3
|
Samal J, Saldova R, Rudd PM, Pandit A, O'Flaherty R. Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain. Anal Chem 2020; 92:12842-12851. [PMID: 32815717 DOI: 10.1021/acs.analchem.0c01206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson's disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying "brain-type" glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Radka Saldova
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland.,GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,UCD School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Co. Dublin A94X099, Ireland
| | - Pauline M Rudd
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland.,Analytics Group, Bioprocessing Technology Institute (AStar), 20 Biopolis Way, 06-01 Centros, Singapore 138668
| | - Abhay Pandit
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland, Co. Galway H91W2TY, Ireland
| | - Róisín O'Flaherty
- GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94X099, Ireland
| |
Collapse
|
4
|
Reiding KR, Hipgrave Ederveen AL, Rombouts Y, Wuhrer M. Murine Plasma N-Glycosylation Traits Associated with Sex and Strain. J Proteome Res 2016; 15:3489-3499. [PMID: 27546880 DOI: 10.1021/acs.jproteome.6b00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation is an abundant and important protein modification with large influence on the properties and interactions of glycoconjugates. Human plasma N-glycosylation has been the subject of frequent investigation, revealing strong associations with physiological and pathological conditions. Less well-characterized is the plasma N-glycosylation of the mouse, the most commonly used animal model for studying human diseases, particularly with regard to differences between strains and sexes. For this reason, we used MALDI-TOF(/TOF)-MS(/MS) assisted by linkage-specific derivatization of the sialic acids to comparatively analyze the plasma N-glycosylation of both male and female mice originating from BALB/c, CD57BL/6, CD-1, and Swiss Webster strains. The combined use of this analytical method and the recently developed data processing software named MassyTools allowed the relative quantification of the N-glycan species within plasma, the distinction between α2,3- and α2,6-linked N-glycolylneuraminic acids (due to respective lactonization and ethyl esterification), the detection of sialic acid O-acetylation, as well as the characterization of branching sialylation (Neu5Gcα2,3-Hex-[Neu5Gcα2,6-]HexNAc). When analyzing the glycosylation according to mouse sex, we found that female mice present a considerably higher degree of core fucosylation (2-4-fold depending on the strain), galactosylation, α2,6-linked sialylation, and larger high-mannose type glycan species compared with their male counterparts. Male mice, on the contrary, showed on average higher α2,3-linked sialylation, branching sialylation, and putative bisection. These differences together with sialic acid acetylation proved to be strain-specific as well. Interestingly, the outbred strains CD-1 and Swiss Webster displayed considerably larger interindividual variation than inbred strains BALB/c and CD57BL/6, suggesting a strong hereditable component of the observed plasma N-glycome.
Collapse
Affiliation(s)
- Karli R Reiding
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| | - Yoann Rombouts
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse 31077, France
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics, Leiden 2333ZA, The Netherlands
| |
Collapse
|
5
|
Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I. With or without you — Proteomics with or without major plasma/serum proteins. J Proteomics 2016; 140:62-80. [PMID: 27072114 DOI: 10.1016/j.jprot.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/26/2022]
|
6
|
Acute phase inflammation is characterized by rapid changes in plasma/peritoneal fluid N-glycosylation in mice. Glycoconj J 2016; 33:457-70. [PMID: 26924641 PMCID: PMC4891370 DOI: 10.1007/s10719-015-9648-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (>95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae (“branching sialylation”) characterized by the presence of α2-6-linked NeuGc on the GlcNAc of the NeuGcα2-3-Galβ1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both α2-3-linked NeuGc and “branching sialylation” were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.
Collapse
|
7
|
Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum. Sci Rep 2015; 5:12844. [PMID: 26248949 PMCID: PMC4650694 DOI: 10.1038/srep12844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/03/2015] [Indexed: 12/30/2022] Open
Abstract
The rat is an important alternative for studying human pathology owing to certain similarities to humans. Glycomic studies on rat serum have revealed that variations in the N-glycans of glycoproteins correlated with disease progression, which is consistent with the findings in human serum. Therefore, we comprehensively characterized the rat serum N-glycome using microfluidic chip-LC-ESI-QTOF MS and MS/MS techniques. In total, 282 N-glycans, including isomers, were identified. This study is the first to present comprehensive profiling of N-glycans containing O-acetylated sialic acid, among which 27 N-glycans are novel. In addition, the co-existence of N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) in a single N-glycan ('mixed' N-glycan) was detected and represents a new type of N-glycan in rat serum. The existence of O-acetylated sialic acid is the characteristic feature of rat serum that distinguishes it from mouse and human sera. Comparisons between the rat, mouse, and human serum glycomes revealed that the rat glycome is more similar to that of human sera than to that of mouse sera. Our findings highlight the similarities between the glycomic profile of rat and human sera and provided important selection criteria for choosing an appropriate animal model for pathological and pharmacological studies.
Collapse
|
8
|
Ji IJ, Hua S, Shin DH, Seo N, Hwang JY, Jang IS, Kang MG, Choi JS, An HJ. Spatially-Resolved Exploration of the Mouse Brain Glycome by Tissue Glyco-Capture (TGC) and Nano-LC/MS. Anal Chem 2015; 87:2869-77. [DOI: 10.1021/ac504339t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- In Jung Ji
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Serenus Hua
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Dong Hee Shin
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Nari Seo
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Jae Yun Hwang
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Ik-Soon Jang
- Division
of Life Science, Korea Basic Science Institute, Daejeon 305-764, Korea
| | - Myoung-Goo Kang
- Center
for Cognition and Sociality, Institute for Basic Science, Daejeon 305-764, Korea
| | - Jong-Soon Choi
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
- Division
of Life Science, Korea Basic Science Institute, Daejeon 305-764, Korea
| | - Hyun Joo An
- Asia Glycomics Reference Site, Daejeon 305-764, Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
9
|
Saldova R, Piccard H, Pérez-Garay M, Harvey DJ, Struwe WB, Galligan MC, Berghmans N, Madden SF, Peracaula R, Opdenakker G, Rudd PM. Increase in sialylation and branching in the mouse serum N-glycome correlates with inflammation and ovarian tumour progression. PLoS One 2013; 8:e71159. [PMID: 24023608 PMCID: PMC3758313 DOI: 10.1371/journal.pone.0071159] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and is often diagnosed in late stage, often as the result of the unavailability of sufficiently sensitive biomarkers for early detection, tumour progression and tumour-associated inflammation. Glycosylation is the most common posttranslational modification of proteins; it is altered in cancer and therefore is a potential source of biomarkers. We investigated the quantitative and qualitative effects of anti-inflammatory (acetylsalicylic acid) and pro-inflammatory (thioglycolate and chlorite-oxidized oxyamylose) drugs on glycosylation in mouse cancer serum. A significant increase in sialylation and branching of glycans in mice treated with an inflammation-inducing compound was observed. Moreover, the increases in sialylation correlated with increased tumour sizes. Increases in sialylation and branching were consistent with increased expression of sialyltransferases and the branching enzyme MGAT5. Because the sialyltransferases are highly conserved among species, the described changes in the ovarian cancer mouse model are relevant to humans and serum N-glycome analysis for monitoring disease treatment and progression might be a useful biomarker.
Collapse
Affiliation(s)
- Radka Saldova
- National Institute for Bioprocessing Research and Training (NIBRT) GlycoScience Group, Dublin, Ireland
| | - Helene Piccard
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Marta Pérez-Garay
- Unitat de Bioquímica i Biologia Molecular, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - David J. Harvey
- National Institute for Bioprocessing Research and Training (NIBRT) GlycoScience Group, Dublin, Ireland
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Weston B. Struwe
- National Institute for Bioprocessing Research and Training (NIBRT) GlycoScience Group, Dublin, Ireland
| | - Marie C. Galligan
- School of Mathematical Sciences, University College Dublin, Dublin, Ireland
| | - Nele Berghmans
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Stephen F. Madden
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Rosa Peracaula
- Unitat de Bioquímica i Biologia Molecular, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training (NIBRT) GlycoScience Group, Dublin, Ireland
- * E-mail:
| |
Collapse
|
10
|
Lu YW, Chien CW, Lin PC, Huang LD, Chen CY, Wu SW, Han CL, Khoo KH, Lin CC, Chen YJ. BAD-lectins: boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins. Anal Chem 2013; 85:8268-76. [PMID: 23895469 DOI: 10.1021/ac401581u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The weak and variable binding affinities exhibited by lectin-carbohydrate interactions have often compromised the practical utility of lectin in capturing glycoproteins for glycoproteomic applications. We report here the development and applications of a new type of hybrid biomaterial, namely a boronic acid-decorated lectin (BAD-lectin), for efficient bifunctional glycoprotein labeling and enrichment. Our binding studies showed an enhanced affinity by BAD-lectin, likely to be mediated via the formation of boronate ester linkages between the lectin and glycan subsequent to the initial recognition process and thus preserving its glycan-specificity. Moreover, when attached to magnetic nanoparticles (BAD-lectin@MNPs), 2 to 60-fold improvement on detection sensitivity and enrichment efficiency for specific glycoproteins was observed over the independent use of either lectin or BA. Tested at the level of whole cell lysates for glycoproteomic applications, three different types of BAD-lectin@MNPs exhibited excellent specificities with only 6% overlapping among the 295 N-linked glycopeptides identified. As many as 236 N-linked glycopeptides (80%) were uniquely identified by one of the BAD-lectin@MNPs. These results indicated that the enhanced glycan-selective recognition and binding affinity of BAD-lectin@MNPs will facilitate a complementary identification of the under-explored glycoproteome.
Collapse
Affiliation(s)
- Ying-Wei Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-71, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu X, Baruah K, Harvey D, Vasiljevic S, Alonzi DS, Song BD, Higgins M, Bowden TA, Scanlan CN, Crispin M. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J Am Chem Soc 2013; 135:9723-32. [PMID: 23745692 PMCID: PMC3788586 DOI: 10.1021/ja4014375] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 12/20/2022]
Abstract
Biologically active conformations of the IgG1 Fc homodimer are maintained by multiple hydrophobic interactions between the protein surface and the N-glycan. The Fc glycan modulates biological effector functions, including antibody-dependent cellular cytotoxicity (ADCC) which is mediated in part through the activatory Fc receptor, FcγRIIIA. Consistent with previous reports, we found that site-directed mutations disrupting the protein-carbohydrate interface (F241A, F243A, V262E, and V264E) increased galactosylation and sialylation of the Fc and, concomitantly, reduced the affinity for FcγRIIIA. We rationalized this effect by crystallographic analysis of the IgG1 Fc F241A mutant, determined here to a resolution of 1.9 Å, which revealed localized destabilization of this glycan-protein interface. Given that sialylation of Fc glycans decreases ADCC, one explanation for the effect of these mutants on FcγRIIIA binding is their increased sialylation. However, a glycan-engineered IgG1 with hypergalactosylated and hypersialylated glycans exhibited unchanged binding affinity to FcγRIIIA. Moreover, when we expressed these mutants as a chemically uniform (Man5GlcNAc2) glycoform, the individual effect of each mutation on FcγRIIIA affinity was preserved. This effect was broadly recapitulated for other Fc receptors (FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIB). These data indicate that destabilization of the glycan-protein interactions, rather than increased galactosylation and sialylation, modifies the Fc conformation(s) relevant for FcγR binding. Engineering of the protein-carbohydrate interface thus provides an independent parameter in the engineering of Fc effector functions and a route to the synthesis of new classes of Fc domain with novel combinations of affinities for activatory and inhibitory Fc receptors.
Collapse
Affiliation(s)
- Xiaojie Yu
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Kavitha Baruah
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - David
J. Harvey
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Snezana Vasiljevic
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Dominic S. Alonzi
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Byeong-Doo Song
- Scripps Korea Antibody
Institute, 192-1 Hyoja-dong, Chuncheon, Gangwon 200-701,
Korea
| | - Matthew
K. Higgins
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Thomas A. Bowden
- Division of Structural
Biology, University of Oxford, Wellcome
Trust Centre for Human
Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Christopher N. Scanlan
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| | - Max Crispin
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1
3QU, United Kingdom
| |
Collapse
|
12
|
Hua S, Jeong HN, Dimapasoc LM, Kang I, Han C, Choi JS, Lebrilla CB, An HJ. Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem 2013; 85:4636-43. [PMID: 23534819 DOI: 10.1021/ac400195h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mice are the premier mammalian models for studies of human physiology and disease, bearing extensive biological similarity to humans with far fewer ethical, economic, or logistic complications. To facilitate glycomic studies based on the mouse model, we comprehensively profiled the mouse serum N-glycome using isomer-specific nano-LC/MS and -LC/MS/MS. N-Glycans were identified by accurate mass MS and structurally elucidated by MS/MS. Porous graphitized carbon nano-LC was able to separate out nearly 300 N-linked glycan compounds (including isomers) from just over 100 distinct N-linked glycan compositions. Additional MS/MS structural analysis was performed on a number of novel N-glycans, revealing the structural characteristics of modifications such as dehydration, O-acetylation, and lactylation. Experimental findings were combined with known glycobiology to generate a theoretical library of all biologically possible mouse serum N-glycan compositions. The library may be used for automated identification of complex mixtures of mouse N-glycans, with possible applications to a wide range of mouse-related research endeavors, including pharmaceutical drug development and biomarker discovery.
Collapse
Affiliation(s)
- Serenus Hua
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu DY, Lu TR, Wu HY. Development of antimetastatic drugs by targeting tumor sialic acids. Sci Pharm 2012; 80:497-508. [PMID: 23008802 PMCID: PMC3447616 DOI: 10.3797/scipharm.1205-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023] Open
Abstract
One-third of all cancer categories in clinics have a high incidence of neoplasm metastasis. Neoplasm metastasis is one of the leading causes of cancer deaths. However, the prevailing therapeutic approach to this pathogenic process is presently unsatisfactory. Paradoxically to our efforts and expectations, except for some antibodies, no obvious improvements and therapeutic benefits in currently used drugs have been achieved until now. Therapeutic benefits in late-stage or elderly cancer patients are especially poor and useless. One of the reasons for this, we would guess, is the lack of therapeutic targets specifically related to neoplasm metastasis. In order to enhance the therapeutic efficacy, the development of antimetastatic drugs transcending from current drug-screening pathways is urgently needed. Antimetastatic drugs targeting aberrantly sialylated in tumors have evolved for about a quarter of a century and might be a future therapeutic option other than the currently utilized antimetastatic drugs, such as antivascular and MMP inhibitors. Since neoplasm tissues often manifest high levels of sialic acids and sialyl antigens or glycoligands, some types of sialic acid analogue, such as N-glycolylneuraminic acid (Nau5Gc), occurred in most tumor tissues which is normally absent in most humans. Consequently, more attention is needed to work with new therapeutic approaches to target these changes. This review addresses and discusses the latest six types of therapeutic approaches targeting sialic acids in metastatic tissues.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | |
Collapse
|
14
|
Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal Bioanal Chem 2012; 402:2765-76. [PMID: 22287049 DOI: 10.1007/s00216-012-5724-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Glycoproteins secreted or expressed on the cell surface at specific pathophysiological stages are well-recognized disease biomarkers and therapeutic targets. While mapping of specific glycan structures can be performed at the level of released glycans, site-specific glycosylation and identification of specific protein carriers can only be determined by analysis of glycopeptides. A key enabling step in mass spectrometry (MS)-based glycoproteomics is the ability to selectively or non-selectively enrich for the glycopeptides from a total pool of a digested proteome for MS analysis since the highly heterogeneous glycopeptides are usually present at low abundance and ionize poorly compared with non-glycosylated peptides. Among the most common approaches for non-destructive and non-glycan-selective glycopeptide enrichment are strategies based on various forms of hydrophilic interaction liquid chromatography (HILIC). We present here a variation of this method using amine-derivatized Fe(3)O(4) nanoparticles, in concert with in situ peptide N-glycosidase F digestion for direct matrix-assisted laser desorption/ionization–mass spectrometry analysis of N-glycosylation sites and the released glycans. Conditions were also optimized for efficient elution of the enriched glycopeptides from the nanoparticles for on-line nanoflow liquid chromatography–MS/MS analysis. Successful applications to single glycoproteins as well as total proteomic mixtures derived from biological fluids established the unrivaled practical versatility of this method, with enrichment efficiency comparable to other HILIC-based methods.
Collapse
|
15
|
Recent advances in sialic acid-focused glycomics. J Proteomics 2012; 75:3098-112. [PMID: 22513219 DOI: 10.1016/j.jprot.2012.03.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/24/2023]
Abstract
Recent emergences of glycobiology, glycotechnology and glycomics have been clarifying enormous roles of carbohydrates in biological recognition systems. For example, cell surface carbohydrates existing as glycoconjugates (glycolipids, glycoproteins and proteoglycans) play crucial roles in cell-cell communication, cell proliferation and differentiation, tumor metastasis, inflammatory response or viral infection. In particular, sialic acids (SAs) existing as terminal residues in carbohydrate chains on cell surface are involved in signal recognition and adhesion to ligands, antibodies, enzymes and microbes. In addition, plasma free SAs and sialoglycans have shown great potential for disease biomarker discovery. Therefore, the development of efficient analytical methods for structural and functional studies of SAs and sialylglycans are very important and highly demanded. The problems of SAs and sialylglycans analysis are vanishingly small sample amount, complicated and unstable structures, and complex mixtures. Nevertheless, in the past decade, mass spectrometry in combination with chemical derivatization and modern separation methodologies has become a powerful and versatile technique for structural analysis of SAs and sialylglycans. This review summarizes these recent advances in glycomic studies on SAs and sialylglycans. Specially, derivatization and capturing of SAs and sialylglycans combined with mass spectrometry analysis are highlighted.
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Tsai WH, Wang PW, Lin SY, Wu IL, Ko YC, Chen YL, Li M, Lin SF. Ser-634 and Ser-636 of Kaposi's Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites. Front Microbiol 2012; 3:60. [PMID: 22371709 PMCID: PMC3283893 DOI: 10.3389/fmicb.2012.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/05/2012] [Indexed: 11/13/2022] Open
Abstract
The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes Zhunan Town, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ko YC, Tsai WH, Wang PW, Wu IL, Lin SY, Chen YL, Chen JY, Lin SF. Suppressive regulation of KSHV RTA with O-GlcNAcylation. J Biomed Sci 2012; 19:12. [PMID: 22300411 PMCID: PMC3395832 DOI: 10.1186/1423-0127-19-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored. METHODS By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA. RESULTS We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes. CONCLUSIONS KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Amano M, Hashimoto R, Nishimura SI. Effects of single genetic damage in carbohydrate-recognizing proteins in mouse serum N-glycan profile revealed by simple glycotyping analysis. Chembiochem 2012; 13:451-64. [PMID: 22271523 DOI: 10.1002/cbic.201100595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Indexed: 12/29/2022]
Abstract
Gene knock-out of C-type lectin receptors expressed in dendritic cells induced significant alteration of serum N-glycans compared with that of gender-matched controls. Glycotyping analysis suggested that putative-core fucosylation is strongly influenced by differences in the dominant mechanisms after carbohydrate recognition by pattern-recognition receptors, endocytosis of ligands, or induction of cytokines/chemokines. However, the loss of galectin-9, a ligand for T-helper type 1-specific cell-surface molecule, did not affect most N-glycan profiles. Interestingly, lack of the Chst3 gene (chondroitin 6-sulfotransferase) appeared to influence markedly the expression of most N-glycans, especially highly modified glycoforms bearing multiple Neu5Gc, Fuc, and LacNAc units. In contrast, genetic mutations in B4galnt1 and B4galnt2 (GalNAc transferase, responsible for the synthesis of many gangliosides) induced no discernable alteration. These results indicate that the biosynthesis of N-glycans of serum glycoproteins can be affected not only by direct genetic mutations in the glycosyltransferases but also by changes in metabolite availability in sugar nucleotide synthesis and Golgi N-glycosylation pathways caused concertedly in whole cells, tissues, and organs by milder deficiencies in immune cell-surface lectins. Many common chronic conditions, such as autoimmunity, metabolic syndrome, and aging/dementia result.
Collapse
Affiliation(s)
- Maho Amano
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021, Japan.
| | | | | |
Collapse
|
20
|
Gianazza E, Vegeto E, Eberini I, Sensi C, Miller I. Neglected markers: Altered serum proteome in murine models of disease. Proteomics 2012; 12:691-707. [DOI: 10.1002/pmic.201100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/28/2011] [Indexed: 11/09/2022]
|
21
|
Vafadar-Isfahani B, Laversin SAS, Ahmad M, Ball G, Coveney C, Lemetre C, Kathleen Miles A, van Schalkwyk G, Rees R, Matharoo-Ball B. Serum biomarkers which correlate with failure to respond to immunotherapy and tumor progression in a murine colorectal cancer model. Proteomics Clin Appl 2011; 4:682-96. [PMID: 21137086 DOI: 10.1002/prca.200900218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To advance our understanding of mechanisms involved in tumor progression/regression, a CT26 colorectal mouse model treated intra-tumorally with DISC-herpes simplex virus as immunotherapy was used in the discovery and validation phases to investigate and ultimately identify biomarkers correlating with the failure to respond to immunotherapy. EXPERIMENTAL DESIGN For the discovery phase, serum protein/peptide profiles of a retrospective sample collection (total n=70) were analyzed using MALDI-TOF-MS combined with artificial neural networks. Following identification of the key predictive peptides using ESI-MS/MS, validation of the identified proteins was carried out on serum and tissues collected in an independent sample set (total n=60). RESULTS Artificial neural network analysis resulted in four discriminatory peaks with an accuracy of 86%, sensitivity of 90% and specificity of 81% between the progressor/regressor groups. Three of the identified discriminatory markers were upregulated and demonstrated a positive correlation with tumor progression following DISC-herpes simplex virus therapy. Immunovalidation studies corroborated the MALDI-TOF-MS findings. Immunohistochemistry revealed that serum amyloid A-1 and serum amyloid P produced in the liver localized intracellularly in CT26 tumor tissue. CONCLUSIONS MALDI-TOF-MS and BI analysis of the serum proteome of tumor-bearer mice undergoing immunotherapy, identified biomarkers associating with "failure to respond" and biological arrays confirmed these findings.
Collapse
Affiliation(s)
- Baharak Vafadar-Isfahani
- The John Van Geest Cancer Research Centre, Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu X, Qiu H, Lee RK, Chen W, Li J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both α2,3- and α2,6-linked sialic acids. Anal Chem 2011; 82:8300-6. [PMID: 20831242 DOI: 10.1021/ac101831t] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutralization of carboxylic acid is an important means to avoid sialic acid dissociation when sialylated glycans are analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). In this paper, we describe a simple and rapid method to modify the sialic acids of sialylated glycans in the presence of methylamine and (7-azabenzotriazol-1-yloxy) trispyrrolidinophosphonium hexafluorophosphate (PyAOP). After methylamidation, sialylated glycans can be analyzed by MALDI-MS without loss of the sialic acid moiety. The electrospray ionization mass spectrometry (ESI-MS) and MALDI-MS analysis of both 3'- and 6'-sialyllactose derivatives indicated that the quantitative conversion of sialic acids was achieved, regardless of their linkage types. This derivatization strategy was further validated with the N-glycans released from three standard glycoproteins (fetuin, human acid glycoprotein, and bovine acid glycoprotein) containing different types of complex glycans. Most importantly, this derivatization method enabled the successful characterization of N-glycans of sera from different species (human, mouse, and rat) by MALDI-MS. Because of the mild reaction conditions, the modification in sialic acid residues can be retained. This improvement makes it possible to detect sialylated glycans containing O-acetylated sialic acid moieties using MALDI-MS in positive-ion mode.
Collapse
Affiliation(s)
- Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | |
Collapse
|
23
|
Cortes DF, Kabulski JL, Lazar AC, Lazar IM. Recent advances in the MS analysis of glycoproteins: Capillary and microfluidic workflows. Electrophoresis 2011; 32:14-29. [PMID: 21171110 PMCID: PMC3717299 DOI: 10.1002/elps.201000394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/26/2022]
Abstract
Recent developments in bioanalytical instrumentation, MS detection, and computational data analysis approaches have provided researchers with capabilities for interrogating the complex cellular glycoproteome, to help gain a better insight into the cellular and physiological processes that are associated with a disease and to facilitate the efforts centered on identifying disease-specific biomarkers. This review describes the progress achieved in the characterization of protein glycosylation by using advanced capillary and microfluidic MS technologies. The major steps involved in large-scale glycoproteomic analysis approaches are discussed, with special emphasis given to workflows that have evolved around complex MS detection functions. In addition, quantitative analysis strategies are assessed, and the bioinformatics aspects of glycoproteomic data processing are summarized. The developments in commercial and custom fabricated microfluidic front-end platforms to ESI- and MALDI-MS instrumentation, for addressing major challenges in carbohydrate analysis such as sensitivity, throughput, and ability to perform structural characterization, are further evaluated and illustrated with relevant examples.
Collapse
Affiliation(s)
- Diego F. Cortes
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | - Jarod L. Kabulski
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | | | - Iulia M. Lazar
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| |
Collapse
|
24
|
Lin CW, Chen JM, Wang YM, Wu SW, Tsai IH, Khoo KH. Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology 2010; 21:530-42. [DOI: 10.1093/glycob/cwq195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Lee A, Chick JM, Kolarich D, Haynes PA, Robertson GR, Tsoli M, Jankova L, Clarke SJ, Packer NH, Baker MS. Liver membrane proteome glycosylation changes in mice bearing an extra-hepatic tumor. Mol Cell Proteomics 2010; 10:M900538MCP200. [PMID: 20167946 DOI: 10.1074/mcp.m900538-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer is well known to be associated with alterations in membrane protein glycosylation (Bird, N. C., Mangnall, D., and Majeed, A. W. (2006) Biology of colorectal liver metastases: A review. J. Surg. Oncol. 94, 68-80; Dimitroff, C. J., Pera, P., Dall'Olio, F., Matta, K. L., Chandrasekaran, E. V., Lau, J. T., and Bernacki, R. J. (1999) Cell surface n-acetylneuraminic acid alpha2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Commun. 256, 631-636; and Arcinas, A., Yen, T. Y., Kebebew, E., and Macher, B. A. (2009) Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8, 3958-3968). Equally, it has been well established that tumor-associated inflammation through the release of pro-inflammatory cytokines is a common cause of reduced hepatic drug metabolism and increased toxicity in advanced cancer patients being treated with cytotoxic chemotherapies. However, little is known about the impact of bearing a tumor (and downstream effects like inflammation) on liver membrane protein glycosylation. In this study, proteomic and glycomic analyses were used in combination to determine whether liver membrane protein glycosylation was affected in mice bearing the Engelbreth-Holm Swarm sarcoma. Peptide IPG-IEF and label-free quantitation determined that many enzymes involved in the protein glycosylation pathway specifically; mannosidases (Man1a-I, Man1b-I and Man2a-I), mannoside N-acetylglucosaminyltransferases (Mgat-I and Mgat-II), galactosyltransferases (B3GalT-VII, B4GalT-I, B4GalT-III, C1GalT-I, C1GalT-II, and GalNT-I), and sialyltransferases (ST3Gal-I, ST6Gal-I, and ST6GalNAc-VI) were up-regulated in all livers of tumor-bearing mice (n = 3) compared with nontumor bearing controls (n = 3). In addition, many cell surface lectins: Sialoadhesin-1 (Siglec-1), C-type lectin family 4f (Kupffer cell receptor), and Galactose-binding lectin 9 (Galectin-9) were determined to be up-regulated in the liver of tumor-bearing compared with control mice. Global glycan analysis identified seven N-glycans and two O-glycans that had changed on the liver membrane proteins derived from tumor-bearing mice. Interestingly, α (2,3) sialic acid was found to be up-regulated on the liver membrane of tumor-bearing mice, which reflected the increased expression of its associated sialyltransferase and lectin receptor (siglec-1). The overall increased sialylation on the liver membrane of Engelbreth-Holm Swarm bearing mice correlates with the increased expression of their associated glycosyltransferases and suggests that glycosylation of proteins in the liver plays a role in tumor-induced liver inflammation.
Collapse
Affiliation(s)
- Albert Lee
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Barderas R, Babel I, Casal JI. Colorectal cancer proteomics, molecular characterization and biomarker discovery. Proteomics Clin Appl 2010; 4:159-78. [PMID: 21137041 DOI: 10.1002/prca.200900131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/24/2009] [Accepted: 08/24/2009] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) is a widespread disease, whose major genetic changes and mutations have been well characterized in the sporadic form. Much less is known at the protein and proteome level. Still, CRC has been the subject of multiple proteomic studies due to the urgent necessity of finding clinically relevant markers and to elucidate the molecular mechanisms underlying the progression of the disease. These proteomic approaches have been limited by different technical issues, mainly related with sensitivity and reproducibility. However, recent advances in proteomic techniques and MS systems have rekindled the quest for new biomarkers in CRC and an improved molecular characterization. In this review, we will discuss the application of different proteomic approaches to the identification of differentially expressed proteins in CRC. In particular, we will make a critical assessment about the use of 2-D DIGE, MS and protein microarray technologies, in their different formats, to identify up- or downregulated proteins and/or autoantibodies profiles that could be useful for CRC characterization and diagnosis. Despite a wide list of potential biomarkers, it is clear that more scientific efforts and technical advances are still needed to cover the range of low-abundant proteins, which may play a key role in CRC diagnostics and progression.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Functional Proteomics Laboratory, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|