1
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
2
|
Tholey A, Taylor NL, Heazlewood JL, Bendixen E. We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project. J Proteome Res 2017; 16:4273-4280. [DOI: 10.1021/acs.jproteome.7b00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Nicolas L. Taylor
- Australian
Research Council Centre of Excellence in Plant Energy Biology, School
of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joshua L. Heazlewood
- School
of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emøke Bendixen
- Department
of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Heazlewood JL, Schrimpf SP, Becher D, Riedel K, Tholey A, Bendixen E. Multi-Organism Proteomes (iMOP): Advancing our Understanding of Human Biology. Proteomics 2016; 15:2885-94. [PMID: 26331910 DOI: 10.1002/pmic.201570153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Joshua L Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.,Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Sabine P Schrimpf
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Katrin Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Andreas Tholey
- Systematische Proteomforschung & Bioanalytik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, University of Aarhus, Denmark
| |
Collapse
|
4
|
Janmohammadi M, Zolla L, Rinalducci S. Low temperature tolerance in plants: Changes at the protein level. PHYTOCHEMISTRY 2015; 117:76-89. [PMID: 26068669 DOI: 10.1016/j.phytochem.2015.06.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 05/19/2023]
Abstract
Low temperature (LT) is one of several important environmental stresses influencing plant performance and distribution. Adaptation to LT is a highly dynamic stress-response phenomenon and involves complex cross-talk between different regulatory levels. Although plants differ in their sensitivity to LT, in temperate species low nonfreezing temperatures cause noticeable alterations in various biochemical and physiological processes that can potentially improve freezing tolerance. This adaptation is associated with changes in the expression pattern of genes and their protein products. Proteins are the major players in most cellular events and are directly involved in plant LT responses, thereby proteome analysis could help uncover additional novel proteins associated with LT tolerance. Proteomics is recommended as an appropriate strategy for complementing transcriptome level changes and characterizing translational and post-translational regulations. In this review, we considered alterations in the expression and accumulation of proteins in response to LT stress in the three major cereal crops produced worldwide (wheat, barley, and rice). LT stress down-regulates many photosynthesis-related proteins. On the contrary, pathways/protein sets that are up-regulated by LT include carbohydrate metabolism (ATP formation), ROS scavenging, redox adjustment, cell wall remodelling, cytoskeletal rearrangements, cryoprotection, defence/detoxification. These modifications are common adaptation reactions also observed in the plant model Arabidopsis, thus representing key potential biomarkers and critical intervention points for improving LT tolerance of crop plants in cold regions with short summers. We believe that an assessment of the proteome within a broad time frame and during the different phenological stages may disclose the molecular mechanisms related to the developmental regulation of LT tolerance and facilitate the progress of genetically engineered stress-resistant plant varieties.
Collapse
Affiliation(s)
- Mohsen Janmohammadi
- Department of Agronomy and Plant Breeding, Agriculture College, University of Maragheh, Iran
| | - Lello Zolla
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
5
|
Stitt M, Gibon Y. Why measure enzyme activities in the era of systems biology? TRENDS IN PLANT SCIENCE 2014; 19:256-65. [PMID: 24332227 DOI: 10.1016/j.tplants.2013.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 05/22/2023]
Abstract
Information about the abundance and biological activities of proteins is essential to reveal how genes affect phenotypes. Over the past decade, mass spectrometry (MS)-based proteomics has revolutionized the identification and quantification of proteins, and the detection of post-translational modifications. Interpretation of proteomics data depends on information about the biological activities of proteins, which has created a bottleneck in research. This review focuses on enzymes in central metabolism. We examine the methods used for measuring enzyme activities, and discuss how these methods provide information about the kinetic and regulatory properties of enzymes, their turnover, and how this information can be integrated into metabolic models. We also discuss how robotized assays could enable the genetic networks that control enzyme abundance to be analyzed.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883 Villenave d'Ornon, France
| |
Collapse
|
6
|
Sakata K, Komatsu S. Plant proteomics: from genome sequencing to proteome databases and repositories. Methods Mol Biol 2014; 1072:29-42. [PMID: 24136512 DOI: 10.1007/978-1-62703-631-3_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteomic approaches are useful for the identification of functional proteins. These have been enhanced not only by the development of proteomic techniques but also in concert with genome sequencing. In this chapter, 30 databases and Web sites relating to plant proteomics are reviewed and recent technologies relating to data collection and annotation are surveyed.
Collapse
|
7
|
Mann GW, Calley PC, Joshi HJ, Heazlewood JL. MASCP gator: an overview of the Arabidopsis proteomic aggregation portal. FRONTIERS IN PLANT SCIENCE 2013; 4:411. [PMID: 24167507 PMCID: PMC3806167 DOI: 10.3389/fpls.2013.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/18/2023]
Abstract
A key challenge in the area of bioinformatics in the coming decades is the ability to manage the wealth of information that is being generated from the variety of high throughput methodologies currently being undertaken in laboratories across the world. While these approaches have made available large volumes of data to the research community, less attention has been given to the problem of how to intuitively present the data to enable greater biological insights. Recently, an attempt was made to tackle this problem in the area of Arabidopsis proteomics. The model plant has been the target of countless proteomics surveys producing an exhaustive array of data and online repositories. The MASCP Gator is an aggregation portal for proteomic data currently being produced by the community and unites a large collection of specialized resources to a single portal (http://gator.masc-proteomics.org/). Here we describe the latest additions, upgrades and features to this resource further expanding its role into protein modifications and genome sequence variations.
Collapse
Affiliation(s)
- Gregory W. Mann
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Paul C. Calley
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- *Correspondence: Joshua L. Heazlewood, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road MS 978-4466, Berkeley, CA 94720, USA e-mail:
| |
Collapse
|
8
|
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R. A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues. MASS SPECTROMETRY REVIEWS 2013; 32:335-65. [PMID: 23315723 DOI: 10.1002/mas.21365] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 05/21/2023]
Abstract
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, PO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Proteome coverage of the model plant Arabidopsis thaliana: implications for shotgun proteomic studies. J Proteomics 2013; 79:195-9. [PMID: 23268116 DOI: 10.1016/j.jprot.2012.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022]
Abstract
The recent aggregation of matched proteomics data for the model plant Arabidopsis has enabled the assessment of a diverse array of large scale shotgun proteomics data. A collection of over nine million matched peptides was used to assess proteome coverage and experimental parameters when compared to the theoretical tryptic peptide population. The analysis indicated that the experimentally identified median peptide mass was significantly higher than the theoretical median tryptic peptide in Arabidopsis. This finding led to a critical examination of precursor scan ranges currently being employed by shotgun proteomic studies. The analysis revealed diminishing returns at the high end scan range and opportunities for greater coverage and identifications at the low mass range. Based on these findings, a recommended basic scan range of 300 to 1200m/z would suitably capture the peptide population in shotgun proteomic analyses in Arabidopsis.
Collapse
|
10
|
Agrawal GK, Sarkar A, Agrawal R, Ndimba BK, Tanou G, Dunn MJ, Kieselbach T, Cramer R, Wienkoop S, Chen S, Rafudeen MS, Deswal R, Barkla BJ, Weckwerth W, Heazlewood JL, Renaut J, Job D, Chakraborty N, Rakwal R. Boosting the globalization of plant proteomics through INPPO: current developments and future prospects. Proteomics 2012; 12:359-68. [PMID: 22290804 DOI: 10.1002/pmic.201290018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The International Plant Proteomics Organization (INPPO) is a non-profit-organization consisting of people who are involved or interested in plant proteomics. INPPO is constantly growing in volume and activity, which is mostly due to the realization among plant proteomics researchers worldwide for the need of such a global platform. Their active participation resulted in the rapid growth within the first year of INPPO's official launch in 2011 via its website (www.inppo.com) and publication of the 'Viewpoint paper' in a special issue of PROTEOMICS (May 2011). Here, we will be highlighting the progress achieved in the year 2011 and the future targets for the year 2012 and onwards. INPPO has achieved a successful administrative structure, the Core Committee (CC; composed of President, Vice-President, and General Secretaries), Executive Council (EC), and General Body (GB) to achieve INPPO objectives. Various committees and subcommittees are in the process of being functionalized via discussion amongst scientists around the globe. INPPO's primary aim to popularize the plant proteomics research in biological sciences has also been recognized by PROTEOMICS where a section dedicated to plant proteomics has been introduced starting January 2012, following the very first issue of this journal devoted to plant proteomics in May 2011. To disseminate organizational activities to the scientific community, INPPO has launched a biannual (in January and July) newsletter entitled 'INPPO Express: News & Views' with the first issue published in January 2012. INPPO is also planning to have several activities in 2012, including programs within the Education Outreach committee in different countries, and the development of research ideas and proposals with priority on crop and horticultural plants, while keeping tight interactions with proteomics programs on model plants such as Arabidopsis thaliana, rice, and Medicago truncatula. Altogether, the INPPO progress and upcoming activities are because of immense support, dedication, and hard work of all members of the INPPO community, and also due to the wide encouragement and support from the communities (scientific and non-scientific).
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Joshi HJ, Christiansen KM, Fitz J, Cao J, Lipzen A, Martin J, Smith-Moritz AM, Pennacchio LA, Schackwitz WS, Weigel D, Heazlewood JL. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. ACTA ACUST UNITED AC 2012; 28:1303-6. [PMID: 22451271 DOI: 10.1093/bioinformatics/bts133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. RESULTS The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/
Collapse
Affiliation(s)
- Hiren J Joshi
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jones AME, Aebersold R, Ahrens CH, Apweiler R, Baerenfaller K, Baker M, Bendixen E, Briggs S, Brownridge P, Brunner E, Daube M, Deutsch EW, Grossniklaus U, Heazlewood J, Hengartner MO, Hermjakob H, Jovanovic M, Lawless C, Lochnit G, Martens L, Ravnsborg C, Schrimpf SP, Shim YH, Subasic D, Tholey A, van Wijk K, von Mering C, Weiss M, Zheng X. The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics 2012; 12:340-5. [DOI: 10.1002/pmic.201290014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Weckwerth W. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 2011; 75:284-305. [PMID: 21802534 DOI: 10.1016/j.jprot.2011.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 12/13/2022]
Abstract
Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution.
Collapse
Affiliation(s)
- Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Zhang Y, Gao P, Yuan JS. Plant protein-protein interaction network and interactome. Curr Genomics 2011; 11:40-6. [PMID: 20808522 PMCID: PMC2851115 DOI: 10.2174/138920210790218016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/22/2022] Open
Abstract
Protein-protein interaction network represents an important aspect of systems biology. The understanding of the plant protein-protein interaction network and interactome will provide crucial insights into the regulation of plant developmental, physiological, and pathological processes. In this review, we will first define the concept of plant interactome and the protein-protein interaction network. The significance of the plant interactome study will be discussed. We will then compare the pros and cons for different strategies for interactome mapping including yeast two-hybrid system (Y2H), affinity purification mass spectrometry (AP-MS), bimolecular fluorescence complementation (BiFC), and in silico prediction. The application of these platforms on specific plant biology questions will be further discussed. The recent advancements revealed the great potential for plant protein-protein interaction network and interactome to elucidate molecular mechanisms for signal transduction, stress responses, cell cycle control, pattern formation, and others. Mapping the plant interactome in model species will provide important guideline for the future study of plant biology.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
16
|
Abril N, Gion JM, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV. Proteomics research on forest trees, the most recalcitrant and orphan plant species. PHYTOCHEMISTRY 2011; 72:1219-42. [PMID: 21353265 DOI: 10.1016/j.phytochem.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/06/2011] [Indexed: 05/06/2023]
Abstract
The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes.
Collapse
Affiliation(s)
- Nieves Abril
- Dpt. of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw RA, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R. Time to articulate a vision for the future of plant proteomics - A global perspective: An initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 2011; 11:1559-68. [DOI: 10.1002/pmic.201000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/23/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
|
18
|
Heazlewood JL. The green proteome: challenges in plant proteomics. FRONTIERS IN PLANT SCIENCE 2011; 2:6. [PMID: 22639573 PMCID: PMC3355608 DOI: 10.3389/fpls.2011.00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Joshua L. Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- *Correspondence:
| |
Collapse
|
19
|
Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 2010; 73:2239-48. [DOI: 10.1016/j.jprot.2010.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
|
20
|
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants. ANNALS OF BOTANY 2010; 105:1081-102. [PMID: 20410048 PMCID: PMC2887064 DOI: 10.1093/aob/mcq027] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/16/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.
Collapse
Affiliation(s)
- Simon Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
21
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|