1
|
Qin W, Qi X, Xie Y, Wang H, Wu S, Sun MA, Bao W. LncRNA446 Regulates Tight Junctions by Inhibiting the Ubiquitinated Degradation of Alix after Porcine Epidemic Diarrhea Virus Infection. J Virol 2023; 97:e0188422. [PMID: 36790206 PMCID: PMC10062151 DOI: 10.1128/jvi.01884-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 02/16/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as in vitro models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV M gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. IMPORTANCE Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoyi Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yunxiao Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci Rep 2020; 10:19186. [PMID: 33154436 PMCID: PMC7644643 DOI: 10.1038/s41598-020-76175-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Given that sustained remission is the ultimate treatment goal in the management of patients with ulcerative colitis (UC), the decision to stop anti-tumor necrosis factor (anti-TNF) treatment in UC patients is difficult. The aim of this study was to evaluate mucosal microbiota and gene expression profiles associated with long-term remission after discontinuation of anti-TNF therapy. In nine UC patients who received anti-TNF therapy for 6 months, microbiota isolated from uninflamed mucosae and gene expression in inflamed and uninflamed mucosae were investigated at week 0 and at week 24. At treatment initiation, Fusobacterium sp. and Veillonella dispar were over-represented in the relapse group compared with the non-relapse group. After treatment, Dorea sp. and Lachnospira sp. were over-represented in the non-relapse group. In the relapse group only, a significant shift in gut bacterial community composition was found between week 0 and week 24. Gene expression of ALIX (PDCD6IP) and SLC9A3 was significantly higher in the non-relapse group than in the relapse group. Lastly, we used machine learning methods to identify relevant gene signatures associated with sustained remission. Statistical analyses of microbiota and expression profiles revealed differences between UC patients who did or did not keep remission after the discontinuation of TNF inhibitors. Trial registration: UMIN000020785: Evaluation of adalimumab therapy in mesalazine-resistant or -intolerant ulcerative colitis; an observational study (EARLY study).
Collapse
|
3
|
Lennard KS, Goosen RW, Blackburn JM. Bacterially-Associated Transcriptional Remodelling in a Distinct Genomic Subtype of Colorectal Cancer Provides a Plausible Molecular Basis for Disease Development. PLoS One 2016; 11:e0166282. [PMID: 27846243 PMCID: PMC5112903 DOI: 10.1371/journal.pone.0166282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
The relevance of specific microbial colonisation to colorectal cancer (CRC) disease pathogenesis is increasingly recognised, but our understanding of possible underlying molecular mechanisms that may link colonisation to disease in vivo remains limited. Here, we investigate the relationships between the most commonly studied CRC-associated bacteria (Enterotoxigenic Bacteroides fragilis, pks+ Escherichia coli, Fusobacterium spp., afaC+ E. coli, Enterococcus faecalis & Enteropathogenic E. coli) and altered transcriptomic and methylation profiles of CRC patients, in order to gain insight into the potential contribution of these bacteria in the aetiopathogenesis of CRC. We show that colonisation by E. faecalis and high levels of Fusobacterium is associated with a specific transcriptomic subtype of CRC that is characterised by CpG island methylation, microsatellite instability and a significant increase in inflammatory and DNA damage pathways. Analysis of the significant, bacterially-associated changes in host gene expression, both at the level of individual genes as well as pathways, revealed a transcriptional remodeling that provides a plausible mechanistic link between specific bacterial colonisation and colorectal cancer disease development and progression in this subtype; these included upregulation of REG3A, REG1A and REG1P in the case of high-level colonization by Fusobacterium, and CXCL10 and BMI1 in the case of colonisation by E. faecalis. The enrichment of both E. faecalis and Fusobacterium in this CRC subtype suggests that polymicrobial colonisation of the colonic epithelium may well be an important aspect of colonic tumourigenesis.
Collapse
Affiliation(s)
- Katie S. Lennard
- Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ryan W. Goosen
- Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
4
|
Ericsson AC, Akter S, Hanson MM, Busi SB, Parker TW, Schehr RJ, Hankins MA, Ahner CE, Davis JW, Franklin CL, Amos-Landgraf JM, Bryda EC. Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget 2016; 6:33689-704. [PMID: 26378041 PMCID: PMC4741795 DOI: 10.18632/oncotarget.5604] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/27/2015] [Indexed: 01/14/2023] Open
Abstract
Recent studies investigating the human microbiome have identified particular bacterial species that correlate with the presence of colorectal cancer. To evaluate the role of qualitatively different but naturally occurring gut microbiota and the relationship with colorectal cancer development, genetically identical embryos from the Polyposis in Rat Colon (Pirc) rat model of colorectal cancer were transferred into recipients of three different genetic backgrounds (F344/NHsd, LEW/SsNHsd, and Crl:SD). Tumor development in the pups was tracked longitudinally via colonoscopy, and end-stage tumor burden was determined. To confirm vertical transmission and identify associations between the gut microbiota and disease phenotype, the fecal microbiota was characterized in recipient dams 24 hours pre-partum, and in Pirc rat offspring prior to and during disease progression. Our data show that the gut microbiota varies between rat strains, with LEW/SsNHsd having a greater relative abundance of the bacteria Prevotella copri. The mature gut microbiota of pups resembled the profile of their dams, indicating that the dam is the primary determinant of the developing microbiota. Both male and female F344-Pirc rats harboring the Lewis microbiota had decreased tumor burden relative to genetically identical rats harboring F344 or SD microbiota. Significant negative correlations were detected between tumor burden and the relative abundance of specific taxa from samples taken at weaning and shortly thereafter, prior to observable adenoma development. Notably, this naturally occurring variation in the gut microbiota is associated with a significant difference in severity of colorectal cancer, and the abundance of certain taxa is associated with decreased tumor burden.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA.,MU Metagenomics Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sadia Akter
- MU Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Marina M Hanson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Susheel B Busi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Taybor W Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rebecca J Schehr
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Miriam A Hankins
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Carin E Ahner
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Justin W Davis
- MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Health Management and Informatics, University of Missouri, Columbia, MO, USA
| | - Craig L Franklin
- MU Metagenomics Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - James M Amos-Landgraf
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Elizabeth C Bryda
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Lv Z, Wang Y, Yang T, Zhan X, Li Z, Hu H, Li T, Chen J. Vitamin A deficiency impacts the structural segregation of gut microbiota in children with persistent diarrhea. J Clin Biochem Nutr 2016; 59:113-121. [PMID: 27698538 PMCID: PMC5018569 DOI: 10.3164/jcbn.15-148] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/23/2016] [Indexed: 01/07/2023] Open
Abstract
To investigate whether gut microbiota is associated with vitamin A nutritional levels in children with persistent diarrhea, a total of 59 pediatric patients with persistent diarrhea aged 1-12 months were selected from the Department of Gastroenterology at the Children's Hospital of Chongqing Medical University, China. Subjects were hospitalized and divided into VA-deficient (n = 30) and VA-normal (n = 29) groups according to their venous serum retinol levels. Fecal samples from all 59 subjects were collected immediately after admission and analyzed by Illumina MiSeq for 16S rRNA genes to characterize the overall microbiota of the samples. The gut microbiota of the VA-deficient and VA-normal groups were compared using a bioinformatic statistical approach. The Shannon index (p = 0.02), Simpson index (p = 0.01) and component diagram data indicated significantly lower diversity in the VA-deficient than the VA-normal group. A metagenome analysis (LEfSe) and a differentially abundant features approach using Metastats revealed that Escherichia coli and Clostridium butyricum were the key phylotypes of the VA-normal group, while Enterococcus predominated the VA-deficient group. In conclusion, the diversity of gut microbiota and the key phylotypes are significantly different in children with persistent diarrhea at different VA nutritional levels.
Collapse
Affiliation(s)
- Zeyu Lv
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Yuting Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Xue Zhan
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Zhongyue Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Huajian Hu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Zhongshan Second Road of Yuzhong District, Chongqing 400014, China
| |
Collapse
|
6
|
Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, Han YG, Solecki D, Frase S, Bongiovanni A, d'Azzo A. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun 2016; 7:11876. [PMID: 27336173 PMCID: PMC4931029 DOI: 10.1038/ncomms11876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.
Collapse
Affiliation(s)
- Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Randall Wakefield
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Young-Goo Han
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - David Solecki
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90146 Palermo, Italy
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
7
|
In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE-tagged Enterococcus faecalis strains in murine gastrointestinal and intravenous infection models. Appl Environ Microbiol 2013; 79:3986-97. [PMID: 23603680 DOI: 10.1128/aem.00831-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolysin and gelatinase are prominent pathogenicity determinants associated with highly virulent Enterococcus faecalis strains. In an effort to explore the expression profiles of these virulence traits in vivo, we have employed E. faecalis variants expressing the luxABCDE cassette under the control of either the P16S, cytolysin, or gelatinase promoter for infections of Galleria mellonella caterpillars and mice. Systemic infection of G. mellonella with bioluminescence-tagged E. faecalis MMH594 revealed temporal regulation of both gelatinase and cytolysin promoters and demonstrated that these traits were induced in response to the host environment. Gavage of mice pretreated perorally with antibiotics resulted in efficient colonization of the murine gastrointestinal tract (GIT) in a strain-dependent manner, where the commensal baby isolate EF62 was more persistent than the nosocomial isolate MMH594. A highly significant correlation (R(2) > 0.94) was found between bioluminescence and the CFU counts in mouse fecal samples. Both strains showed similar preferences for growth and persistence in the ileum, cecum, and colon. Cytolysin expression was uniform in these compartments of the intestinal lumen. In spite of high numbers (10(9) CFU/g of intestinal matter) in the ileum, cecum, and colon, no evidence of translocation or systemic infection could be observed. In the murine intravenous infection model, cytolysin expression was readily detected in the liver, kidneys, and bladder. At 72 h postinfection, the highest bacterial loads were found in the liver, kidneys, and spleen, with organ-specific expression levels of cytolysin ~400- and ~900-fold higher in the spleen and heart, respectively, than in the liver and kidneys. Taken together, this system based on the bioluminescence imaging technology is established as a new, powerful method to monitor the differential regulation of E. faecalis virulence determinants and to study the spatiotemporal course of infection in living animals in real time.
Collapse
|
8
|
Nemoto H, Kataoka K, Ishikawa H, Ikata K, Arimochi H, Iwasaki T, Ohnishi Y, Kuwahara T, Yasutomo K. Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis. Dig Dis Sci 2012; 57:2955-64. [PMID: 22623042 DOI: 10.1007/s10620-012-2236-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/02/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinical observations and experimental colitis models have indicated the importance of intestinal bacteria in the etiology of ulcerative colitis (UC), but a causative bacterial agent has not been identified. AIM To determine how intestinal bacteria are associated with UC, fecal microbiota and other components were compared for UC patients and healthy adults. METHODS Fresh feces were collected from 48 UC patients. Fecal microbiota were analyzed by use of terminal-restriction fragment length polymorphism (T-RFLP), real-time PCR, and culture. The concentrations of organic acids, indole, and ammonia, and pH and moisture, which are indicators of the intestinal environment, were measured and compared with healthy control data. RESULTS T-RFLP data divided the UC patients into four clusters; one cluster was obtained for healthy subjects. The diversity of fecal microbiota was significantly lower in UC patients. There were significantly fewer Bacteroides and Clostridium subcluster XIVab, and the amount of Enterococcus was higher in UC patients than in healthy subjects. The fecal concentration of organic acids was significantly lower in UC patients who were in remission. CONCLUSION UC patients have imbalances in the intestinal environment-less diversity of fecal microbiota, lower levels of major anaerobic bacteria (Bacteroides and Clostridium subcluster XIVab), and a lower concentration of organic acids.
Collapse
Affiliation(s)
- Hideyuki Nemoto
- Department of Immunology and Parasitology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
CHEN JINGLI, YAN HONG. Dicaine represses apoptosis-linked gene 2-interacting protein X expression to induce airway epithelial barrier dysfunction. Mol Med Rep 2012; 12:238-42. [DOI: 10.3892/mmr.2015.3433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/11/2015] [Indexed: 11/05/2022] Open
|
10
|
Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, Mair K, Krueger D, Pruteanu M, Shanahan F, Vogelmann R, Schemann M, Kuster B, Sartor RB, Haller D. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 2011; 141:959-71. [PMID: 21699778 DOI: 10.1053/j.gastro.2011.05.035] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 05/01/2011] [Accepted: 05/12/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Matrix metalloproteases (MMPs) mediate pathogenesis of chronic intestinal inflammation. We characterized the role of the gelatinase (GelE), a metalloprotease from Enterococcus faecalis, in the development of colitis in mice. METHODS Germ-free, interleukin-10-deficient (IL-10(-/-)) mice were monoassociated with the colitogenic E faecalis strain OG1RF and isogenic, GelE-mutant strains. Barrier function was determined by measuring E-cadherin expression, transepithelial electrical resistance (TER), and translocation of permeability markers in colonic epithelial cells and colon segments from IL-10(-/-) and TNF(ΔARE/Wt) mice. GelE specificity was shown with the MMP inhibitor marimastat. RESULTS Histologic analysis (score 0-4) of E faecalis monoassociated IL-10(-/-) mice revealed a significant reduction in colonic tissue inflammation in the absence of bacteria-derived GelE. We identified cleavage sites for GelE in the sequence of recombinant mouse E-cadherin, indicating that it might be degraded by GelE. Experiments with Ussing chambers and purified GelE revealed the loss of barrier function and extracellular E-cadherin in mice susceptible to intestinal inflammation (IL-10(-/-) and TNF(ΔARE/Wt) mice) before inflammation developed. Colonic epithelial cells had reduced TER and increased translocation of permeability markers after stimulation with GelE from OG1RF or strains of E faecalis isolated from patients with Crohn's disease and ulcerative colitis. CONCLUSIONS The metalloprotease GelE, produced by commensal strains of E faecalis, contributes to development of chronic intestinal inflammation in mice that are susceptible to intestinal inflammation (IL-10(-/-) and TNF(ΔARE/Wt) mice) by impairing epithelial barrier integrity.
Collapse
Affiliation(s)
- Natalie Steck
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, CDD Center for Diet and Disease, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hoffmann M, Messlik A, Kim SC, Sartor RB, Haller D. Impact of a probiotic Enterococcus faecalis
in a gnotobiotic mouse model of experimental colitis. Mol Nutr Food Res 2011; 55:703-13. [DOI: 10.1002/mnfr.201000361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 12/12/2022]
|
12
|
Chumanevich AA, Poudyal D, Cui X, Davis T, Wood PA, Smith CD, Hofseth LJ. Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 2010; 31:1787-93. [PMID: 20688834 DOI: 10.1093/carcin/bgq158] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sphingolipid metabolism is driven by inflammatory cytokines. These cascade of events include the activation of sphingosine kinase (SK), and subsequent production of the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). Overall, S1P is one of the crucial components in inflammation, making SK an excellent target for the development of new anti-inflammatory drugs. We have recently shown that SK inhibitors suppress colitis and hypothesize here that the novel SK inhibitor, ABC294640, prevents the development of colon cancer. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model, there was a dose-dependent decrease in tumor incidence with SK inhibitor treatment. The tumor incidence (number of animals with tumors per group) in the vehicle, ABC294640 (20 mg/kg) and ABC294640 (50 mg/kg) groups were 80, 40 and 30%, respectively. Tumor multiplicity (number of tumors per animal) also decreased from 2.1 ± 0.23 tumors per animal in the AOM + DSS + vehicle group to 1.2 ± 0 tumors per animal in the AOM + DSS + ABC294640 (20 mg/kg) and to 0.8 ± 0.4 tumors per animal in the AOM + DSS + ABC294640 (50 mg/kg) group. Importantly, with ABC294640, there were no observed toxic side effects. To explore mechanisms, we isolated cells from the colon (CD45-, representing primarily colon epithelial cells) and (CD45+, representing primarily colon inflammatory cells) then measured known targets of SK that control cell survival. Results are consistent with the hypothesis that the inhibition of SK activity by our novel SK inhibitor modulates key pathways involved in cell survival and may be a viable treatment strategy for the chemoprevention colitis-driven colon cancer.
Collapse
Affiliation(s)
- Alexander A Chumanevich
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina and Medical University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|