1
|
Walpurgis K, Thomas A, Sato M, Okano M, Geyer H, Thevis M. Detection of the GH analog somatrogon in sports drug testing: Immunological approaches and LC-HRMS/MS. Drug Test Anal 2025; 17:634-646. [PMID: 38992930 PMCID: PMC12012408 DOI: 10.1002/dta.3766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Due to the presumed lipolytic and anabolic properties, the misuse of human growth hormone (hGH) and its synthetic analogs in sports is prohibited both in- and out-of-competition. Within this research project, the detectability of somatrogon, a recombinant fusion glycoprotein of 22 kDa hGH and the C-terminal peptide (CTP) of the human chorionic gonadotropin (hCG) β-subunit, with current WADA-approved doping control assays for hGH and hCG was investigated. For that purpose, cross-reactivity tests and a somatrogon administration study were conducted, and only "Kit 2" of the GH isoform differential immunoassays proved applicable to the detection of somatrogon administration in serum. In urine, the immunoassay specific for total hCG yielded presumptively positive findings for several post-administration samples, which can probably be attributed to the presence of an immunoreactive fragment of the hCG β-subunit. As the detectability of somatrogon with these approaches was found to be limited, a highly specific detection assay (LOD: 10 ng/mL) for the drug in serum samples was developed by using affinity purification with GH receptor (GHR)-conjugated magnetic beads, proteolytic digestion, and liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Following optimization, the approach was comprehensively characterized, and authentic post-administration serum samples were successfully analyzed as proof-of-concept, indicating a detection window of at least 96 h. Consequently, the presented method can be employed to confirm the presence of somatrogon in serum samples, where only "Kit 2" of the currently used immunoassay kits yielded an abnormally high Rec/Pit ratio.
Collapse
Affiliation(s)
- Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University CologneCologneGermany
| | - Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University CologneCologneGermany
| | - Mitsuhiko Sato
- Anti‐Doping Laboratory, LSI Medience CorporationTokyoJapan
| | - Masato Okano
- Anti‐Doping Laboratory, LSI Medience CorporationTokyoJapan
| | - Hans Geyer
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University CologneCologneGermany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping ResearchGerman Sport University CologneCologneGermany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA)Cologne/BonnGermany
| |
Collapse
|
2
|
Yang L, Li C, Song T, Zhan X. Growth hormone proteoformics atlas created to promote predictive, preventive, and personalized approach in overall management of pituitary neuroendocrine tumors. EPMA J 2023; 14:443-456. [PMID: 37605654 PMCID: PMC10439873 DOI: 10.1007/s13167-023-00329-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 08/23/2023]
Abstract
Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteoforms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predictive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.
Collapse
Affiliation(s)
- Lamei Yang
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong 250021 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, and Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
3
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
5
|
Krug O, Thomas A, Malerød-Fjeld H, Dehnes Y, Laussmann T, Feldmann I, Sickmann A, Thevis M. Analysis of new growth promoting black market products. Growth Horm IGF Res 2018; 41:1-6. [PMID: 29864719 DOI: 10.1016/j.ghir.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
Detecting agents allegedly or evidently promoting growth such as human growth hormone (GH) or growth hormone releasing peptides (GHRP) in doping controls has represented a pressing issue for sports drug testing laboratories. While GH is a recombinant protein with a molecular weight of 22 kDa, the GHRPs are short (3-6 amino acids long) peptides with GH releasing properties. The endogenously produced GH (22 kDa isoform) consists of 191 amino acids and has a monoisotopic molecular mass of 22,124 Da. Within this study, a slightly modified form of GH was discovered consisting of 192 amino acids carrying an additional alanine at the N-terminus, leading to a monoisotopic mass of 22,195 Da. This was confirmed by top-down and bottom-up experiments using liquid chromatography coupled to high resolution/high accuracy mass spectrometry. Additionally, three analogues of GHRPs were identified as Gly-GHRP-6, Gly-GHRP-2 and Gly-Ipamorelin, representing the corresponding GHRP extended by a N-terminal glycine residue. The structure of these peptides was characterised by means of high resolution (tandem) mass spectrometry, and for Gly-Ipamorelin and Gly-GHRP-2 their identity was additionally confirmed by custom synthesis. Further, established in-vitro experiments provided preliminary information considering the potential metabolism after administration.
Collapse
Affiliation(s)
- Oliver Krug
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf, 50933 Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | - Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf, 50933 Cologne, Germany.
| | - Helle Malerød-Fjeld
- Norwegian Doping Control Laboratory, Department of Pharmacology, Oslo University Hospital, 0424 Oslo, Norway
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology, Oslo University Hospital, 0424 Oslo, Norway
| | - Tim Laussmann
- Centre of Education and Science of the Federal Revenue Administration, Cologne, Germany
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf, 50933 Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
6
|
Liao S, Vickers MH, Stanley JL, Baker PN, Perry JK. Human Placental Growth Hormone Variant in Pathological Pregnancies. Endocrinology 2018; 159:2186-2198. [PMID: 29659791 DOI: 10.1210/en.2018-00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH), an endocrine hormone, primarily secreted from the anterior pituitary, stimulates growth, cell reproduction, and regeneration and is a major regulator of postnatal growth. Humans have two GH genes that encode two versions of GH proteins: a pituitary version (GH-N/GH1) and a placental GH-variant (GH-V/GH2), which are expressed in the syncytiotrophoblast and extravillous trophoblast cells of the placenta. During pregnancy, GH-V replaces GH-N in the maternal circulation at mid-late gestation as the major circulating form of GH. This remarkable change in spatial and temporal GH secretion patterns is proposed to play a role in mediating maternal adaptations to pregnancy. GH-V is associated with fetal growth, and its circulating concentrations have been investigated across a range of pregnancy complications. However, progress in this area has been hindered by a lack of readily accessible and reliable assays for measurement of GH-V. This review will discuss the potential roles of GH-V in normal and pathological pregnancies and will touch on the assays used to quantify this hormone.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
7
|
Zhan X, Huang Y, Long Y. Two-dimensional Gel Electrophoresis Coupled with Mass Spectrometry Methods for an Analysis of Human Pituitary Adenoma Tissue Proteome. J Vis Exp 2018. [PMID: 29658936 DOI: 10.3791/56739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Human pituitary adenoma (PA) is a common tumor that occurs in the human pituitary gland in the hypothalamus-pituitary-targeted organ axis systems, and may be classified as either clinically functional or nonfunctional PA (FPA and NFPA). NFPA is difficult for early stage diagnosis and therapy due to barely elevating hormones in the blood compared to FPA. Our long-term goal is to use proteomics methods to discover reliable biomarkers for clarification of PA molecular mechanisms and recognition of effective diagnostic, prognostic markers and therapeutic targets. Effective two-dimensional gel electrophoresis (2DE) coupled with mass spectrometry (MS) methods were presented here to analyze human PA proteomes, including preparation of samples, 2D gel electrophoresis, protein visualization, image analysis, in-gel trypsin digestion, peptide mass fingerprint (PMF), and tandem mass spectrometry (MS/MS). 2-Dimensional gel electrophoresis matrix-assisted laser desorption/ionization mass spectrometry PMF (2DE-MALDI MS PMF), 2DE-MALDI MS/MS, and 2DE-liquid chromatography (LC) MS/MS procedures have been successfully applied in an analysis of NFPA proteome. With the use of a high-sensitivity mass spectrometer, many proteins were identified with the 2DE-LC-MS/MS method in each 2D gel spot in an analysis of complex PA tissue to maximize the coverage of human PA proteome.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University; The State Key Laboratory of Medical Genetics, Central South University;
| | - Yuda Huang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University
| |
Collapse
|
8
|
Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 2018; 9:77-102. [PMID: 29515689 PMCID: PMC5833337 DOI: 10.1007/s13167-018-0128-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Cancer with heavily economic and social burden is the hot point in the field of medical research. Some remarkable achievements have been made; however, the exact mechanisms of tumor initiation and development remain unclear. Cancer is a complex, whole-body disease that involves multiple abnormalities in the levels of DNA, RNA, protein, metabolite and medical imaging. Biological omics including genomics, transcriptomics, proteomics, metabolomics and radiomics aims to systematically understand carcinogenesis in different biological levels, which is driving the shift of cancer research paradigm from single parameter model to multi-parameter systematical model. The rapid development of various omics technologies is driving one to conveniently get multi-omics data, which accelerates predictive, preventive and personalized medicine (PPPM) practice allowing prediction of response with substantially increased accuracy, stratification of particular patients and eventual personalization of medicine. This review article describes the methodology, advances, and clinically relevant outcomes of different "omics" technologies in cancer research, and especially emphasizes the importance and scientific merit of integrating multi-omics in cancer research and clinically relevant outcomes.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
9
|
Zhan X, Yang H, Peng F, Li J, Mu Y, Long Y, Cheng T, Huang Y, Li Z, Lu M, Li N, Li M, Liu J, Jungblut PR. How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome? Electrophoresis 2018; 39:965-980. [PMID: 29205401 DOI: 10.1002/elps.201700330] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- The State Key Laboratory of Medical Genetics; Central South University; Changsha Hunan P. R. China
| | - Haiyan Yang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Jianglin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, Hunan University; Changsha Hunan P. R. China
| | - Yun Mu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Yuda Huang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Zhao Li
- Department of Neurosurgery; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs; Xiangya Hospital, Central South University; Changsha Hunan P. R. China
| | - Jianping Liu
- Bio-Analytical Chemistry Research Laboratory, Modern Analytical Testing Center; Central South University; Changsha Hunan P. R. China
| | - Peter R. Jungblut
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis; Berlin Germany
| |
Collapse
|
10
|
Thomas A, Schänzer W, Thevis M. Immunoaffinity techniques coupled to mass spectrometry for the analysis of human peptide hormones: advances and applications. Expert Rev Proteomics 2017; 14:799-807. [PMID: 28758805 DOI: 10.1080/14789450.2017.1362338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The accurate and comprehensive determination of peptide hormones from biological fluids has represented a considerable challenge to analytical chemists for decades. Besides long-established bioanalytical ligand binding assays (or ELISA, RIA, etc.), more and more mass spectrometry-based methods have been developed recently for purposes commonly referred to as targeted proteomics. Eventually the combination of both, analyte extraction by immunoaffinity and subsequent detection by mass spectrometry, has shown to synergistically enhance the test methods' performance characteristics. Areas covered: The review provides an overview about the actual state of existing methods and applications concerning the analysis of endogenous peptide hormones. Here, special focus is on recent developments considering the extraction procedures with immobilized antibodies, the subsequent separation of target analytes, and their detection by mass spectrometry. Expert commentary: Key aspects of procedures aiming at the detection and/or quantification of peptidic analytes in biological matrices have experienced considerable improvements in the last decade, particularly in terms of the assays' sensitivity, the option of multiplexing target compounds, automatization, and high throughput operation. Despite these advances and progress as expected to be seen in the near future, immunoaffinity purification coupled to mass spectrometry is not yet a standard procedure in routine analysis compared to ELISA/RIA.
Collapse
Affiliation(s)
- Andreas Thomas
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Wilhelm Schänzer
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Mario Thevis
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany.,b European Monitoring Center for Emerging Doping Agents (EuMoCEDA) , Cologne/Bonn , Germany
| |
Collapse
|
11
|
Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J 2017; 8:51-60. [PMID: 28620443 DOI: 10.1007/s13167-017-0083-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
Abstract
Predictive, preventive, and personalized medicine (PPPM) is the hot spot and future direction in the field of cancer. Cancer is a complex, whole-body disease that involved multi-factors, multi-processes, and multi-consequences. A series of molecular alterations at different levels of genes (genome), RNAs (transcriptome), proteins (proteome), peptides (peptidome), metabolites (metabolome), and imaging characteristics (radiome) that resulted from exogenous and endogenous carcinogens are involved in tumorigenesis and mutually associate and function in a network system, thus determines the difficulty in the use of a single molecule as biomarker for personalized prediction, prevention, diagnosis, and treatment for cancer. A key molecule-panel is necessary for accurate PPPM practice. Pattern recognition is an effective methodology to discover key molecule-panel for cancer. The modern omics, computation biology, and systems biology technologies lead to the possibility in recognizing really reliable molecular pattern for PPPM practice in cancer. The present article reviewed the pathophysiological basis, methodology, and perspective usages of pattern recognition for PPPM in cancer so that our previous opinion on multi-parameter strategies for PPPM in cancer is translated into real research and development of PPPM or precision medicine (PM) in cancer.
Collapse
|
12
|
Zhan X, Wang X, Cheng T. Human Pituitary Adenoma Proteomics: New Progresses and Perspectives. Front Endocrinol (Lausanne) 2016; 7:54. [PMID: 27303365 PMCID: PMC4885873 DOI: 10.3389/fendo.2016.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm that impacts on human health through interfering hypothalamus-pituitary-target organ axis systems. The development of proteomics gives great promises in the clarification of molecular mechanisms of a PA and discovery of effective biomarkers for prediction, prevention, early-stage diagnosis, and treatment for a PA. A great progress in the field of PA proteomics has been made in the past 10 years, including (i) the use of laser-capture microdissection, (ii) proteomics analyses of functional PAs (such as prolactinoma), invasive and non-invasive non-functional pituitary adenomas (NFPAs), protein post-translational modifications such as phosphorylation and tyrosine nitration, NFPA heterogeneity, and hormone isoforms, (iii) the use of protein antibody array, (iv) serum proteomics and peptidomics, (v) the integration of proteomics and other omics data, and (vi) the proposal of multi-parameter systematic strategy for a PA. This review will summarize these progresses of proteomics in PAs, point out the existing drawbacks, propose the future research directions, and address the clinical relevance of PA proteomics data, in order to achieve our long-term goal that is use of proteomics to clarify molecular mechanisms, construct molecular networks, and discover effective biomarkers.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
- *Correspondence: Xianquan Zhan,
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Proteomics of the human pituitary tissue: bioanalytical methods and applications. Bioanalysis 2015; 6:1989-2003. [PMID: 25158968 DOI: 10.4155/bio.14.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The pituitary is the central endocrine gland that plays complex regulatory roles in growth, reproduction and metabolism of the body. The human pituitary tissue proteome has been the target of a number of investigations that applied various combinations of advanced separation techniques, mass spectrometry, and bioinformatics tools. This review describes the main features of the bioanalytical workflows used in pituitary proteomics, and summarizes major applications in pituitary proteome mapping, differential protein expression profiling in health and disease, and discovery of post-translational modifications in pituitary proteins.
Collapse
|
14
|
Detection and differentiation of 22kDa and 20kDa Growth Hormone proteoforms in human plasma by LC-MS/MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:284-90. [DOI: 10.1016/j.bbapap.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022]
|
15
|
Targeting prohibited substances in doping control blood samples by means of chromatographic–mass spectrometric methods. Anal Bioanal Chem 2013; 405:9655-67. [DOI: 10.1007/s00216-013-7224-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/26/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
|
16
|
Abstract
GH is believed to be widely employed in sports as a performance-enhancing substance. Its use in athletic competition is banned by the World Anti-Doping Agency, and athletes are required to submit to testing for GH exposure. Detection of GH doping is challenging for several reasons including identity/similarity of exogenous to endogenous GH, short half-life, complex and fluctuating secretory dynamics of GH, and a very low urinary excretion rate. The detection test currently in use (GH isoform test) exploits the difference between recombinant GH (pure 22K-GH) and the heterogeneous nature of endogenous GH (several isoforms). Its main limitation is the short window of opportunity for detection (~12-24 h after the last GH dose). A second test to be implemented soon (the biomarker test) is based on stimulation of IGF-I and collagen III synthesis by GH. It has a longer window of opportunity (1-2 wk) but is less specific and presents a variety of technical challenges. GH doping in a larger sense also includes doping with GH secretagogues and IGF-I and its analogs. The scientific evidence for the ergogenicity of GH is weak, a fact that is not widely appreciated in athletic circles or by the general public. Also insufficiently appreciated is the risk of serious health consequences associated with high-dose, prolonged GH use. This review discusses the GH biology relevant to GH doping; the virtues and limitations of detection tests in blood, urine, and saliva; secretagogue efficacy; IGF-I doping; and information about the effectiveness of GH as a performance-enhancing agent.
Collapse
Affiliation(s)
- Gerhard P Baumann
- Partnership for Clean Competition, Colorado Springs, Colorado 80919, USA.
| |
Collapse
|
17
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
18
|
Reichel C. OMICS-strategies and methods in the fight against doping. Forensic Sci Int 2011; 213:20-34. [PMID: 21862249 DOI: 10.1016/j.forsciint.2011.07.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 01/17/2023]
Abstract
During the past decade OMICS-methods not only continued to have their impact on research strategies in life sciences and in particular molecular biology, but also started to be used for anti-doping control purposes. Research activities were mainly reasoned by the fact that several substances and methods, which were prohibited by the World Anti-Doping Agency (WADA), were or still are difficult to detect by direct methods. Transcriptomics, proteomics, and metabolomics in theory offer ideal platforms for the discovery of biomarkers for the indirect detection of the abuse of these substances and methods. Traditionally, the main focus of transcriptomics and proteomics projects has been on the prolonged detection of the misuse of human growth hormone (hGH), recombinant erythropoietin (rhEpo), and autologous blood transfusion. An additional benefit of the indirect or marker approach would also be that similarly acting substances might then be detected by a single method, without being forced to develop new direct detection methods for new but comparable prohibited substances (as has been the case, e.g. for the various forms of Epo analogs and biosimilars). While several non-OMICS-derived parameters for the indirect detection of doping are currently in use, for example the blood parameters of the hematological module of the athlete's biological passport, the outcome of most non-targeted OMICS-projects led to no direct application in routine doping control so far. The main reason is the inherent complexity of human transcriptomes, proteomes, and metabolomes and their inter-individual variability. The article reviews previous and recent research projects and their results and discusses future strategies for a more efficient application of OMICS-methods in doping control.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, A-2444 Seibersdorf, Austria
| |
Collapse
|
19
|
The importance of reference materials in doping-control analysis. Anal Bioanal Chem 2011; 401:483-92. [DOI: 10.1007/s00216-011-5049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
20
|
Surface plasmon resonance in doping analysis. Anal Bioanal Chem 2011; 401:389-403. [PMID: 21448606 DOI: 10.1007/s00216-011-4830-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Doping analysis relies on the determination of prohibited substances that should not be present in the body of an athlete or that should be below a threshold value. In the case of xenobiotics their mere presence is sufficient to establish a doping offence. However, in the case of human biotics the analytical method faces the difficulty of distinguishing between endogenous and exogenous origin. For this purpose ingenious strategies have been implemented, often aided by state-of-the-art technological advancements such as mass spectrometry in all its possible forms. For larger molecules, i.e. protein hormones, the innate structural complexity, the heterogeneous nature, and the extremely low levels in biological fluids have rendered the analytical procedures heavily dependent of immunological approaches. Although approaches these confer specificity and sensitivity to the applications, most rely on the use of two, or even three, antibody incubations with the consequent increment in assay variability. Moreover, the requirement for different antibodies that separately recognise different epitopes in screening and confirmation assays further contributes to differences encountered in either measurement. The development of analytical techniques to measure interactions directly, such as atomic force microscopy, quartz crystal microbalance or surface plasmon resonance, have greatly contributed to the accurate evaluation of molecular interactions in all fields of biology, and expectations are that this will only increase. Here, an overview is provided of surface plasmon resonance, and its particular value in application to the field of doping analysis.
Collapse
|
21
|
Kohler M, Thomas A, Walpurgis K, Terlouw K, Schänzer W, Thevis M. Detection of His-tagged Long-R³-IGF-I in a black market product. Growth Horm IGF Res 2010; 20:386-390. [PMID: 20675162 DOI: 10.1016/j.ghir.2010.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/28/2010] [Accepted: 07/10/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Performance-enhancing substances are illicitly used in elite or amateur sports and may be obtained from the black market due to a cheaper and easier availability. Although various studies have shown that black market products frequently do not contain the declared substances, enormous amounts of illegally produced and/or imported drugs are confiscated from athletes or at customs with alarming results concerning the outcome of the analyses of the ingredients. This case report describes the identification of His-tagged Long-R³-IGF-I, which is usually produced for biochemical studies, in an injection vial. DESIGN The ingredients were isolated by immunoaffinity purification and identified by nano-UPLC, high-resolution/high accuracy mass spectrometry of the intact and trypsinated substance and by an enzyme-linked immunosorbent assay. RESULTS (Tandem) mass spectra characterized the protein as Long-R³-IGF-I with a His₆-tag attached to the C-terminus by the linker amino acids Leu-Glu. CONCLUSION His-tags are commonly added to proteins during synthesis to allow a convenient and complete purification of the final product and His-tags are subsequently removed by specific enzymes when being attached to the N-terminus. The effects of His-tagged Long-R³-IGF-I in humans have not been elucidated or described and the product may rather be a by-product from biochemical studies than synthesized for injection purposes.
Collapse
Affiliation(s)
- Maxie Kohler
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Quantification of growth hormone in serum by isotope dilution mass spectrometry. Anal Biochem 2010; 401:228-35. [DOI: 10.1016/j.ab.2010.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/08/2010] [Accepted: 03/05/2010] [Indexed: 11/21/2022]
|
23
|
Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2010; 2:149-61. [DOI: 10.1002/dta.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Abstract
Catching athletes abusing human growth hormone (GH) by official antidoping tests is challenging because of specific properties of the hormone. Furthermore, the chemical structure of recombinant GH (rGH) is identical to that of the main GH isoform secreted by the pituitary, making it difficult to discriminate between endogenous and injected GH molecules by biochemical tests. The approaches developed to solve the problem include the "marker approach," which measures changes in concentration of GH-dependent proteins that are inappropriately elevated after rGH injection, and the "isoform approach," which detects changes in the spectrum of circulating GH isoforms after administration of rGH. A more widespread use of these tests in out-of-competition controls will enhance the likelihood to detect GH doping.
Collapse
Affiliation(s)
- Martin Bidlingmaier
- Endocrine Research Laboratories, Medizinische Klinik-Innenstadt, Ludwig-Maximilians University, Munich, Germany.
| | | |
Collapse
|
25
|
Thevis M, Bredehöft M, Kohler M, Schänzer W. Mass spectrometry-based analysis of IGF-1 and hGH. Handb Exp Pharmacol 2010:201-207. [PMID: 20020366 DOI: 10.1007/978-3-540-79088-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mass spectrometric approaches have been used to determine various peptide hormones in sports drug testing. While insulin-like growth factor-1 (IGF-1) and its synthetic analogs are qualitatively and/or quantitatively measured by liquid chromatography-tandem mass spectrometry after immunoaffinity purification, methods of uncovering doping rule violations with illegal applications of human growth hormone (hGH) have not yet been established using mass spectrometry-based assays. However, substantial information on the heterogeneity of hGH, splice variants and post-translational modifications with respective locations as elucidated by mass spectrometry are of utmost importance for improving currently employed immunological procedures.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | | | | | | |
Collapse
|
26
|
Such-Sanmartín G, Bosch J, Segura J, Gutiérrez-Gallego R. Generation of 5 and 17 kDa human growth hormone fragments through limited proteolysis. Growth Factors 2009; 27:255-64. [PMID: 19603307 DOI: 10.1080/08977190903110121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The reported presence of two fragments of 5 and 17 kDa originating from the 22 kDa human growth hormone (hGH) in blood and tissues, postulated as the sequences AA 1-43 and AA 44-191, has led to the hypothesis of a post-translational proteolytic origin with respect to the abundant 22 kDa variant (AA 1-191). To evaluate this hypothesis, the activity of several endo-proteases on the 22 kDa hGH protein has been evaluated. METHODS Proteolysis using pepsin, trypsin, V8-protease, proteinase K and thermolysin were explored under several conditions, including incubation time and pH. Results were monitored by MALDI-TOF and HPLC-ESI mass spectrometry. Proteolytic 5 and 17 kDa fragments were purified through reversed phase HPLC-UV, and their immuno-affinity properties evaluated by surface plasmon resonance. RESULTS Thermolysin was shown to target mainly the AA 43-44 bond of the 22 kDa sequence at physiological pH. Interaction studies of the purified fragments with anti-GH antibodies showed some reactivity for the 17 kDa fragment. CONCLUSIONS Thermolysin processes hGH generating 5 and 17 kDa fragments, demonstrating the feasibility of this reaction, although the enzyme responsible for this process in humans is still unknown. Specific antibodies should be used to detect these fragments in human specimens, and, at the same time, the 17 kDa fragment could constitute an interference in some hGH immunoassays.
Collapse
Affiliation(s)
- Gerard Such-Sanmartín
- Bio-Analysis Group, Neuropsychopharmacology Program, Municipal Institute for Medical Research-Hospital del Mar, Parque de Investigación Biomédica de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Kay RG, Barton C, Velloso CP, Brown PR, Bartlett C, Blazevich AJ, Godfrey RJ, Goldspink G, Rees R, Ball GR, Cowan DA, Harridge SD, Roberts J, Teale P, Creaser CS. High-throughput ultra-high-performance liquid chromatography/tandem mass spectrometry quantitation of insulin-like growth factor-I and leucine-rich alpha-2-glycoprotein in serum as biomarkers of recombinant human growth hormone administration. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3173-3182. [PMID: 19718777 DOI: 10.1002/rcm.4237] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is a known biomarker of recombinant human growth hormone (rhGH) abuse, and is also used clinically to confirm acromegaly. The protein leucine-rich alpha-2-glycoprotein (LRG) was recently identified as a putative biomarker of rhGH administration. The combination of an ACN depletion method and a 5-min ultra-high-performance liquid chromatography/tandem mass spectrometry (uHPLC/MS/MS)-based selected reaction monitoring (SRM) assay detected both IGF-I and LRG at endogenous concentrations. Four eight-point standard addition curves of IGF-I (16-2000 ng/mL) demonstrated good linearity (r(2) = 0.9991 and coefficients of variance (CVs) <13%). Serum samples from two rhGH administrations were extracted and their uHPLC/MS/MS-derived IGF-I concentrations correlated well against immunochemistry-derived values. Combining IGF-I and LRG data improved the separation of treated and placebo states compared with IGF-I alone, further strengthening the hypothesis that LRG is a biomarker of rhGH administration. Artificial neural networks (ANNs) analysis of the LRG and IGF-I data demonstrated an improved model over that developed using IGF-I alone, with a predictive accuracy of 97%, specificity of 96% and sensitivity of 100%. Receiver operator characteristic (ROC) analysis gave an AUC value of 0.98. This study demonstrates the first large scale and high throughput uHPLC/MS/MS-based quantitation of a medium abundance protein (IGF-I) in human serum. Furthermore, the data we have presented for the quantitative analysis of IGF-I suggest that, in this case, monitoring a single SRM transition to a trypsin peptide surrogate is a valid approach to protein quantitation by LC/MS/MS.
Collapse
Affiliation(s)
- R G Kay
- Drug Development Services, Quotient Bioresearch Ltd., Fordham CB7 5WW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Current Awareness in Drug Testing and Analysis. Drug Test Anal 2009. [DOI: 10.1002/dta.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Abstract
Detection of doping with recombinant human growth hormone is one of the challenges for antidoping analysis. This review focuses on the most important relevant publications that provide insight into the laboratory measurement of human growth hormone (hGH), antibodies and standards, the isoform approach and the biomarker approach. The isoform approach monitors the changes of hGH molecular isoform composition in serum and was applied at the Olympic Games in Athens in 2004, Turin in 2006 and Beijing in 2008. The markers approach detects a formula score, which reflects the changes in concentration of IGF-1 and P-III-P. All these methodologies measure the concentrations of growth hormone and its isoforms for isoform approach, or the concentrations of IGF-1 and P-III-P. All factors that affect these measurements should be taken into account for the development of methods to detect doping with recombinant hGH.
Collapse
|