1
|
Hyatt JK. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol Rep 2022; 10:e15377. [PMID: 35808870 PMCID: PMC9270643 DOI: 10.14814/phy2.15377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle adapts to aerobic exercise training, in part, through fast-to-slow phenotypic shifts and an expansion of mitochondrial networks. Recent research suggests that the local and systemic benefits of exercise training also may be modulated by the mitochondrial-derived peptide, MOTS-c. Using a combination of acute and chronic exercise challenges, the goal of the present study was to characterize the interrelationship between MOTS-c and exercise. Compared to sedentary controls, 4-8 weeks of voluntary running increased MOTS-c protein expression ~1.5-5-fold in rodent plantaris, medial gastrocnemius, and tibialis anterior muscles and is sustained for 4-6 weeks of detraining. This MOTS-c increase coincides with elevations in mtDNA reflecting an expansion of the mitochondrial genome to aerobic training. In a second experiment, a single dose (15 mg/kg) of MOTS-c administered to untrained mice improved total running time (12% increase) and distance (15% increase) during an acute exercise test. In a final experiment, MOTS-c protein translocated from the cytoplasm into the nucleus in two of six mouse soleus muscles 1 h following a 90-min downhill running challenge; no nuclear translocation was observed in the plantaris muscles from the same animals. These findings indicate that MOTS-c protein accumulates within trained skeletal muscle likely through a concomitant increase in mtDNA. Furthermore, these data suggest that the systemic benefits of exercise are, in part, mediated by an expansion of the skeletal muscle-derived MOTS-c protein pool. The benefits of training may persist into a period of inactivity (e.g., detraining) resulting from a sustained increase in intramuscular MOTS-c proteins levels.
Collapse
|
2
|
Kato H, Miura K, Suzuki K, Bannai M. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction. Nutrients 2017; 9:nu9101159. [PMID: 29065533 PMCID: PMC5691775 DOI: 10.3390/nu9101159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP) content over several days. Leucine-enriched essential amino acids (LEAAs) enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr), adenosine di-phosphate (ADP) and ATP) in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Kyoko Miura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| |
Collapse
|
3
|
Hughes JD, Johnson NA, Brown SJ, Sachinwalla T, Walton DW, Stannard SR. Effects of eccentric exercise-induced muscle damage on intramyocellular lipid concentration and high energy phosphates. Eur J Appl Physiol 2010; 110:1135-41. [PMID: 20706732 DOI: 10.1007/s00421-010-1605-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2010] [Indexed: 01/24/2023]
Abstract
Eccentric exercise is known to cause changes to the ultrastructure of skeletal muscle and, in turn, may alter the ability of the muscle to store and utilise intracellular substrates such as intramyocellular lipid (IMCL). The purpose of this study was to test the hypothesis that exercise-induced muscle damage (EIMD) results in IMCL accumulation. Six males (31 ± 6 years; mean ± SD, and 72.3 ± 9.7 kg body mass) performed 300 unilateral, maximal, isokinetic, eccentric contractions (Ecc) (30° s(-1)) of the quadriceps on an isokinetic dynamometer, followed immediately by an equal amount of work by the contralateral leg but with concentric action (Con). Phosphate compounds and IMCL content of the vastus lateralis of both legs were measured using (31)P and (1)H magnetic resonance spectroscopy. IMCL content was higher in Ecc than Con 24 h post but the reverse was evident 48 h post-exercise (P = 0.046). A significant time × trial interaction for resting [P(i)] (P = 0.045), showed increases in Ecc across time but no change in Con. A significant main effect of trial (P = 0.002) was apparent indicating the Ecc leg had marked metabolic dysfunction. The P(i)/PCr ratio showed a significant effect of trial (P = 0.001) with an increase evident in Ecc leg, primarily due to increases in [P(i)]. The present study highlights changes in IMCL content of skeletal muscle following EIMD.
Collapse
Affiliation(s)
- Jonathan D Hughes
- Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
4
|
Paglialunga S, Fisette A, Munkonda M, Gao Y, Richard D, Cianflone K. The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice. BMC PHYSIOLOGY 2010; 10:4. [PMID: 20416070 PMCID: PMC2875207 DOI: 10.1186/1472-6793-10-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 04/23/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acylation stimulating protein (ASP) is an adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP) and human recombinant ASP (rASP) were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD) to examine their effects on body weight, food intake and energy expenditure. RESULTS In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P < 0.05) while Anti-ASP neutralized the rASP response. Mice treated with Anti-ASP showed elevated energy expenditure (P < 0.0001), increased skeletal muscle glucose oxidation (+141%, P < 0.001), reduced liver glycogen (-34%, P < 0.05) and glucose-6-phosphate content (-64%, P = 0.08) compared to control mice. There was no change in body weight, food intake, fasting insulin, adiponectin, CRP or TG levels compared to controls. Interestingly, HFD mice treated with rASP showed the opposite phenotype with reduced energy expenditure (P < 0.0001) and increased body weight (P < 0.05), cumulative food intake (P < 0.0001) and liver glycogen content (+59%, P < 0.05). Again, there was no change in circulating insulin, adiponectin, CRP or TG levels, however, plasma free fatty acids were reduced (-48%, P < 0.05). CONCLUSION In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure.
Collapse
Affiliation(s)
- Sabina Paglialunga
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, G1V 4G5, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Gea J, Zhu E, Gáldiz JB, Comtois N, Salazkin I, Antonio Fiz J, Grassino A. Functional Consequences of Eccentric Contractions of the Diaphragm. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1579-2129(09)70777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Gea J, Zhu E, Gáldiz JB, Comtois N, Salazkin I, Antonio Fiz J, Grassino A. Consecuencias de las contracciones excéntricas del diafragma sobre su función. Arch Bronconeumol 2009; 45:68-74. [PMID: 19232267 DOI: 10.1016/j.arbres.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
|
7
|
Roy C, Paglialunga S, Fisette A, Schrauwen P, Moonen-Kornips E, St-Onge J, Hesselink MK, Richard D, Joanisse DR, Cianflone K. Shift in metabolic fuel in acylation-stimulating protein-deficient mice following a high-fat diet. Am J Physiol Endocrinol Metab 2008; 294:E1051-9. [PMID: 18398012 DOI: 10.1152/ajpendo.00689.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ASP-deficient mice (C3 KO) have delayed postprandial TG clearance, are hyperphagic, and display increased energy expenditure. Markers of carbohydrate and fatty acid metabolism in the skeletal muscle and heart were examined to evaluate the mechanism. On a high-fat diet, compared with wild-type mice, C3 KO mice have increased energy expenditure, decreased RQ, lower ex vivo glucose oxidation (-39%, P = 0.018), and higher ex vivo fatty acid oxidation (+68%, P = 0.019). They have lower muscle glycogen content (-25%, P < 0.05) and lower activities for the glycolytic enzymes glycogen phosphorylase (-31%, P = 0.005), hexokinase (-43%, P = 0.007), phosphofructokinase (-51%, P < 0.0001), and GAPDH (-15%, P = 0.04). Analysis of mitochondrial enzyme activities revealed that hydroxyacyl-coenzyme A dehydrogenase was higher (+25%, P = 0.004) in C3 KO mice. Furthermore, Western blot analysis of muscle revealed significantly higher fatty acid transporter CD36 (+40%, P = 0.006) and cytochrome c (a marker of mitochondrial content; +69%, P = 0.034) levels in C3 KO mice, whereas the activity of AMP kinase was lower (-48%, P = 0.003). Overall, these results demonstrate a shift in the metabolic potential of skeletal muscle toward increased fatty acid utilization. Whether this is 1) a consequence of decreased adipose tissue storage with repartitioning toward muscle or 2) a direct result of the absence of ASP interaction with the receptor C5L2 in muscle remains to be determined. However, these in vivo data suggest that ASP inhibition could be a potentially viable approach in correcting muscle metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Christian Roy
- Centre de Recherche Hôpital Laval, Y-2186, Chemin Ste-Foy, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sasaki A, Aizawa T, Tomiya A, Matsubara Y, Kokubun S, Itoi E. Effect of resting interval for muscle regeneration in mice. Ups J Med Sci 2007; 112:175-81. [PMID: 17578817 DOI: 10.3109/2000-1967-191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Muscle tissue has an exceptional ability to regenerate, however, unresting damage to the muscles by intense and frequent exercises occasionally causes prolonged muscle fatigue, soreness, and underperformance in sports. Taking rest is generally considered to be crucial for regular training to avoid the accumulation of muscle damage. We hypothesized that differences in the resting intervals between two periods of exercise may result in histological differences in muscle regeneration. METHOD An eccentric contraction model of mouse gastrocnemius muscle was made using percutaneus electrical stimulation. The mice received eccentric exercises twice with resting intervals of 0, 12, 24 hours, 2, and 3 days. The authors investigated the ratio of myofibers with central nuclei to whole myofibers histologically (the centronuclear cell ratio; CNCR) at 14 days after the second exercise as an index of the muscle regeneration. RESULTS The CNCR of the group that exercised one-time was 29.5%. In the groups exercised twice, it increased from 31.8% with an interval of 0 hours to a peak of 43.9% with 24 hours, then decreased to 32.8% with an interval of 3 days. The ratios of the groups with intervals of 12 and 24 hours were higher than those with one-time exercise and those with the intervals of 0 hours, 2 days, and 3 days. CONCLUSIONS The resting interval between two periods of eccentric exercises affected the histology of muscle regeneration. The amount of muscle damage and/or the recovery process of damaged muscles should vary depending on the length of resting interval between strenuous exercises. An appropriate interval for rest must be necessary in order to avoid further muscle damage.
Collapse
Affiliation(s)
- Aizawa Sasaki
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Seiryomachi, Aobaku, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Maas H, Lehti TM, Tiihonen V, Komulainen J, Huijing PA. Controlled intermittent shortening contractions of a muscle–tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL. J Muscle Res Cell Motil 2005; 26:259-73. [PMID: 16322914 DOI: 10.1007/s10974-005-9043-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/12/2005] [Indexed: 12/23/2022]
Abstract
This study was performed to examine effects of prolonged (3 h) intermittent shortening (amplitude 2 mm) contractions (muscles were excited maximally) of head III of rat extensor digitorum longus muscle (EDL III) on indices of muscle damage and on force transmission within the intact anterior crural compartment. Three hours after the EDL III exercise, muscle fibre damage, as assessed by immunohistochemical staining of structural proteins (i.e. dystrophin, desmin, titin, laminin-2), was found in EDL, tibialis anterior (TA) and extensor hallucis longus (EHL) muscles. The damaged muscle fibres were not uniformly distributed throughout the muscle cross-sections, but were located predominantly near the interface of TA and EDL muscles as well as near intra- and extramuscular neurovascular tracts. In addition, changes were observed in desmin, muscle ankyrin repeat protein 1, and muscle LIM protein gene expression: significantly (P<0.01) higher (1.3, 45.5 and 2.3-fold, respectively) transcript levels compared to the contralateral muscles. Post-EDL III exercise, length-distal force characteristics of EDL III were altered significantly (P<0.05): at high EDL III lengths, active forces decreased and the length range between active slack length and optimum length increased. For all EDL III lengths tested, proximal passive and active force of EDL decreased. The slope of the EDL III length-TA+EHL force curve decreased, which indicates a decrease of the degree of intermuscular interaction between EDL III and TA+EHL. It is concluded that prolonged intermittent shortening contractions of a single head of multi-tendoned EDL muscle results in structural damage to muscle fibres as well as altered force transmission within the compartment. A possible role of myofascial force transmission is discussed.
Collapse
Affiliation(s)
- Huub Maas
- Instituut voor Fundamentele and Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit , Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Schaart G, Hesselink RP, Keizer HA, van Kranenburg G, Drost MR, Hesselink MKC. A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol 2004; 122:161-9. [PMID: 15322861 DOI: 10.1007/s00418-004-0690-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Simultaneous analyses of glycogen in sections with other subcellular constituents within the same section will provide detailed information on glycogen deposition and the processes involved. To date, staining protocols for quantitative glycogen analyses together with immunofluorescence in the same section are lacking. We aimed to: (1) optimise PAS staining for combination with immunofluorescence, (2) perform quantitative glycogen analyses in tissue sections, (3) evaluate the effect of section thickness on PAS-derived data and (4) examine if semiquantitative glycogen data were convertible to genuine glycogen values. Conventional PAS was successfully modified for combined use with immunofluorescence. Transmitted light microscopic examination of glycogen was successfully followed by semiquantification of glycogen using microdensitometry. Semiquantitative data correlated perfectly with glycogen content measured biochemically in the same sample (r2=0.993, P<0.001). Using a calibration curve (r2=0.945, P<0.001) derived from a custom-made external standard with incremental glycogen content, we converted the semiquantitative data to genuine glycogen values. The converted semiquantitative data were comparable with the glycogen values assessed biochemically (P=0.786). In addition we showed that for valid comparison of glycogen content between sections, thickness should remain constant. In conclusion, the novel protocol permits the combined use of PAS with immunofluorescence and shows valid conversion of data obtained by microdensitometry to genuine glycogen data.
Collapse
Affiliation(s)
- Gert Schaart
- Department of Movement Sciences, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Geronilla KB, Miller GR, Mowrey KF, Wu JZ, Kashon ML, Brumbaugh K, Reynolds J, Hubbs A, Cutlip RG. Dynamic force responses of skeletal muscle during stretch-shortening cycles. Eur J Appl Physiol 2003; 90:144-53. [PMID: 14504946 DOI: 10.1007/s00421-003-0849-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2003] [Indexed: 11/29/2022]
Abstract
Muscle damage due to stretch-shortening cycles (i.e., cyclic eccentric/concentric muscle actions) is one of the major concerns in sports and occupational related activities. Mechanical responses of whole muscle have been associated with damage in neural motor units, in connective tissues, and the force generation mechanism. The objective of this study was to introduce a new method to quantify the real-time changes in skeletal muscle forces of rats during injurious stretch-shortening cycles. Male Sprague Dawley rats ( n=24) were selected for use in this study. The dorsi flexor muscle group was exposed to either 150 stretch-shortening cycles ( n=12) or 15 isometric contractions ( n=12) in vivo using a dynamometer and electrical stimulation. Muscle damage after exposure to stretch-shortening cycles was verified by the non-recoverable force deficit at 48 h and the presence of myofiber necrosis. Variations of the dynamic forces during stretch-shortening cycles were analyzed by decomposing the dynamic force signature into peak force ( F(peak)), minimum force ( F(min)), average force ( F(mean)), and cyclic force ( F(a)). After the 15th set of stretch-shortening cycles, the decrease in the stretch-shortening parameters, F(peak), F(min), F(mean), and F(a), was 50% ( P<0.0001), 26% ( P=0.0055), 68% ( P<0.0001), and 50% ( P<0.0001), respectively. Our results showed that both isometric contractions and stretch-shortening cycles induce a reduction in the isometric force. However, the force reduction induced by isometric contractions fully recovered after a break of 48 h while that induced by stretch-shortening cycles did not. Histopathologic assessment of the tibialis anterior exposed to stretch-shortening cycles showed significant myofiber degeneration and necrosis with associated inflammation, while muscles exposed to isometric contractions showed no myofiber degeneration and necrosis, and limited inflammation. Our results suggest that muscle damage can be identified by the non-recoverable isometric force decrement and also by the variations in the dynamic force signature during stretch-shortening cycles.
Collapse
Affiliation(s)
- K B Geronilla
- Engineering and Control Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|