1
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
2
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
3
|
Carew NT, Nelson AM, Liang Z, Smith SM, Milcarek C. Linking Endoplasmic Reticular Stress and Alternative Splicing. Int J Mol Sci 2018; 19:ijms19123919. [PMID: 30544499 PMCID: PMC6321306 DOI: 10.3390/ijms19123919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, ELL2 (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of snRNAs. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the >4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and >5000 other genes.
Collapse
Affiliation(s)
- Nolan T Carew
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Ashley M Nelson
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Zhitao Liang
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Sage M Smith
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Christine Milcarek
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Nelson AM, Carew NT, Smith SM, Milcarek C. RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3073-3083. [PMID: 30297340 PMCID: PMC6219926 DOI: 10.4049/jimmunol.1800557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
In the transition from B cells to Ab-secreting cells (ASCs) many genes are induced, such as ELL2, Irf4, Prdm1, Xbp1, whereas other mRNAs do not change in abundance. Nonetheless, using splicing array technology and mouse splenic B cells plus or minus LPS, we found that induced and "uninduced" genes can show large differences in splicing patterns between the cell stages, which could influence ASC development. We found that ∼55% of these splicing changes depend on ELL2, a transcription elongation factor that influences expression levels and splicing patterns of ASC signature genes, genes in the cell-cycle and N-glycan biosynthesis and processing pathways, and the secretory versus membrane forms of the IgH mRNA. Some of these changes occur when ELL2 binds directly to the genes encoding those mRNAs, whereas some of the changes are indirect. To attempt to account for the changes that occur in RNA splicing before or without ELL2 induction, we examined the amount of the small nuclear RNA molecules and found that they were significantly decreased within 18 h of LPS stimulation and stayed low until 72 h. Correlating with this, at 18 h after LPS, endoplasmic reticulum stress and Ire1 phosphorylation are induced. Inhibiting the regulated Ire1-dependent mRNA decay with 4u8C correlates with the reduction in small nuclear RNA and changes in the normal splicing patterns at 18 h. Thus, we conclude that the RNA splicing patterns in ASCs are shaped early by endoplasmic reticulum stress and Ire1 phosphorylation and later by ELL2 induction.
Collapse
Affiliation(s)
- Ashley M Nelson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Nolan T Carew
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sage M Smith
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
5
|
Abstract
Much evidence is now accumulating that, in addition to their general role in splicing, the components of the core splicing machinery have extensive regulatory potential. In particular, recent evidence has demonstrated that de-regulation of these factors cause the highest extent of alternative splicing changes compared to de-regulation of the classical splicing regulators. This lack of a general inhibition of splicing resonates the differential splicing effects observed in different disease pathologies associated with specific mutations targeting core spliceosomal components. In this review we will summarize what is currently known regarding the involvement of core spliceosomal U-snRNP complexes in perturbed tissue development and human diseases and argue for the existence of a compensatory mechanism enabling cells to cope with drastic perturbations in core splicing components. This system maintains the correct balance of spliceosomal snRNPs through differential expression of variant (v)U-snRNPs.
Collapse
Affiliation(s)
- Pilar Vazquez-Arango
- a Nuffield Department of Obstetrics and Gynaecology, Level 3 , Women's Centre, John Radcliffe Hospital , Oxford , England
| | - Dawn O'Reilly
- b Sir William Dunn School of pathology , University of Oxford , South Parks Road, Oxford , England
| |
Collapse
|
6
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
7
|
Abstract
The recessive disorder poikiloderma with neutropenia (PN) is caused by mutations in the C16orf57 gene that encodes the highly conserved USB1 protein. Here, we present the 1.1 Å resolution crystal structure of human USB1, defining it as a member of the LigT-like superfamily of 2H phosphoesterases. We show that human USB1 is a distributive 3'-5' exoribonuclease that posttranscriptionally removes uridine and adenosine nucleosides from the 3' end of spliceosomal U6 small nuclear RNA (snRNA), directly catalyzing terminal 2', 3' cyclic phosphate formation. USB1 measures the appropriate length of the U6 oligo(U) tail by reading the position of a key adenine nucleotide (A102) and pausing 5 uridine residues downstream.We show that the 3' ends of U6 snRNA in PN patient lymphoblasts are elongated and unexpectedly carry nontemplated 3' oligo(A) tails that are characteristic of nuclear RNA surveillance targets. Thus, our study reveals a novel quality control pathway in which posttranscriptional 3'-end processing by USB1 protects U6 snRNA from targeting and destruction by the nuclear exosome. Our data implicate aberrant oligoadenylation of U6 snRNA in the pathogenesis of the leukemia predisposition disorder PN.
Collapse
|
8
|
Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2012; 2:855-65. [PMID: 23022480 DOI: 10.1016/j.celrep.2012.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/09/2023] Open
Abstract
Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.
Collapse
|
9
|
Mukherjee S, Manna S, Mukherjee P, Panda CK. Differential alterations in metabolic pattern of the spliceosomal uridylic acid-rich small nuclear RNAs (UsnRNAs) during malignant transformation of 20-methylcholanthrene-induced mouse CNCI-PM-20 embryonic fibroblasts. Mol Carcinog 2009; 48:773-8. [PMID: 19496104 DOI: 10.1002/mc.20556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Differential alterations of the spliceosomal Uridylic acid rich small nuclear RNAs (UsnRNAs) (U1, U2, U4, U5, and U6) are reported to be associated with cellular proliferation and development, but definitive information is scarce and also elusive. An attempt is made in this study to analyze the metabolic patterns of major spliceosomal UsnRNAs, during tumor development, in an in vitro carcinogenesis model of 20-methylcholanthrene (MCA)-transformed Swiss Mouse Embryonic Fibroblast (MEF), designated as CNCI-PM-20. MEF cells, after treatment with 20-MCA, progressed through a sequence of passages with distinct and heritable changes, finally becoming neoplastic at passage-42 (P42). A differential expression pattern of major UsnRNAs was observed during this process. The abundance of U1 was 20% below control (P1) at passage-20 (P20), followed by a gradual increase up until P42 (approximately 12% above the P1 value). The abundance of U2 was more or less constant during the cellular transformation. U4 showed a trend of increase, with above 30% abundance than control at P20, followed by a significant increase at P36 and P42 (1.5- and 2-fold, respectively, P-value <0.01). U5 also followed an identical pattern, with an increase of 70% compared to control (P-value <0.05) at P42. Interestingly, U6 gradually decreased from P20 onwards up until P42, with 22% at P20 and 67% at P42 (P-value <0.01). An overall significant quantitative alteration in abundance of U4, U5, and U6, observed in our study, contributes to the understanding of the fact that, the metabolism of major spliceosomal UsnRNAs is differentially regulated during the process of neoplastic transformation.
Collapse
Affiliation(s)
- Sudeshna Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | | | | |
Collapse
|
10
|
Ohtani M, Demura T, Sugiyama M. Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. PLANT MOLECULAR BIOLOGY 2008; 66:303-314. [PMID: 18064403 DOI: 10.1007/s11103-007-9271-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 11/25/2007] [Indexed: 05/25/2023]
Abstract
Small nuclear RNA (snRNA) is a class of eukaryotic noncoding RNAs, which have essential roles in pre-mRNA splicing and rRNA processing. As these functions are fundamental to cell activities, the regulation of snRNA transcription should be a vital issue for all eukaryotes. Here we address developmental control of snRNA transcription and its significance through the analysis of the SRD2 gene of Arabidopsis (Arabidopsis thaliana), which encodes an activator of snRNA transcription. In young seedlings, a high level of SRD2 expression was observed in shoot and root apical meristems, leaf primordia, and root stele tissues, where a large amount of snRNA accumulated. In mature plants, SRD2 was highly expressed in developing leaves and flowers as well as apical meristems. Mutations in the SRD2 gene interfered with many, but not all, aspects of development in the regions that showed strong expression of SRD2. Of note, establishment of the fully active state of apical meristems in the seedling stage was very sensitive to the srd2-1 mutation, while maintenance of the established meristems was substantially insensitive. These results demonstrated differential requirement for the SRD2 function in various stages of plant development.
Collapse
Affiliation(s)
- Misato Ohtani
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
11
|
Manna S, Banerjee S, Mukherjee S, Das S, Panda CK. Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression. Apoptosis 2007; 11:2267-76. [PMID: 17041754 DOI: 10.1007/s10495-006-0198-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to understand the mode of action of tea polyphenol epigallocatechin gallate (EGCG) in vivo. Swiss albino mice were treated i.p. with EGCG at two different doses i.e. 12-mg/kg body weight and 15-mg/kg body weight, for 7 days prior to inoculation of Sarcoma180 (S180) cells and continued for another 7 days. The growth of the S180, harvested 7 days after inoculation, was significantly reduced due to treatment with EGCG. The flowcytometric analysis of S180 cells, showed significant increase in apoptosis and reduction in the number of cells in G2/M phase of cell cycle due to treatment with EGCG. The induction of apoptosis has also been confirmed by the TUNEL and DNA fragmentation assays. Both RT-PCR and Western blot analysis showed significant up-regulation of p53 and bax, and down-regulation of bcl-2 and c-myc due to EGCG treatment. No changes in the expression pattern of p21, p27, bcl-xl, mdm2 and cyclin D1 were seen. Interestingly, there was significant down-regulation of spliceosomal uridylic acid rich small nuclear RNAs (UsnRNAs) U1B and U4-U6 due to EGCG treatment. This indicates that these UsnRNAs may be involved in the apoptosis process. Taken together, our study suggests that in vivo EGCG could induce apoptosis in S180 cells through alteration in G2/M phase of the cell cycle by up-regulation of p53, bax and down-regulation of c-myc, bcl-2 and U1B, U4-U6 UsnRNAs.
Collapse
Affiliation(s)
- Sugata Manna
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | |
Collapse
|
12
|
Manna S, Banerjee S, Saha P, Roy A, Das S, Panda CK. Differential Alterations in Metabolic Pattern of the Spliceosomal UsnRNAs during Pre-Malignant Lung Lesions Induced by Benzo(a)pyrene: Modulation by Tea Polyphenols. Mol Cell Biochem 2006; 289:149-57. [PMID: 16718374 DOI: 10.1007/s11010-006-9158-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The differential alterations of the spliceosomal UsnRNAs (U1, U2, U4, U5, and U6) were reported to be associated with cellular proliferation and development. The attempt was made in this study to analyze the metabolic pattern of the spliceosomal UsnRNAs during the development of pre-malignant lung lesions induced in experimental mice model system by benzo(a)pyrene (BP) and also to see how tea polyphenols, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), modulate the metabolism of these UsnRNAs during the lung carcinogenesis. No significant changes in the level of the UsnRNAs were seen in the inflammatory lung lesions at 9th week due to treatment of BP. However, there was significant increase in the level of U1 ( approximately 2.5 fold) and U5 ( approximately 47%) in the hyperplastic lung lesions at 17th week. But in the mild dysplastic lung lesions at 26th week, the level of UsnRNAs did not change significantly. Whereas, in the dysplastic lung lesions at 36th week there was significant increase in the level of the U2 ( approximately 2 fold), U4 ( approximately 2.5 fold) and U5 ( approximately 2 fold). Due to the EGCG and ECG treatment the lung lesions at 9th week appeared normal and in the 17th, 26th, and 36th week it appeared as hyperplasia. The level of the UsnRNAs was significantly low in the lung lesions at 9th week (only U2 and U4 by EGCG), at 17th week (only U1 by EGCG/ECG), at 26th week (U1 by ECG; U2, U4 and U5 by EGCG/ECG) and at 36th week (U1 by ECG, U2 and U4 by EGCG/ECG). Whereas, there was significant increase in the level of U5 (by EGCG/ECG) and U6 (by EGCG only) in the lung lesions at 36th and 26th week respectively. This indicates that the metabolism of the spliceosomal UsnRNAs differentially altered during the development of pre-malignant lung lesions by BP as well as during the modulation of the lung lesions by the tea polyphenols.
Collapse
Affiliation(s)
- Sugata Manna
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | |
Collapse
|
13
|
Ohtani M, Sugiyama M. Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:479-90. [PMID: 16098103 DOI: 10.1111/j.1365-313x.2005.02469.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transcription machinery of small nuclear RNA (snRNA) genes has been investigated extensively in human cell-free systems, but its physiological function in vivo has not been addressed. This paper demonstrates the physiological role of an activator of snRNA transcription using a temperature-sensitive mutant of Arabidopsis thaliana, srd2. Phenotypic characteristics of the srd2 mutant suggest that the SRD2 gene participates in the control of competence in cell proliferation. The SRD2 gene encodes a nuclear protein that shares sequence similarity with the human SNAP50 protein, which is a subunit of SNAPc and is required for snRNA transcription in vitro. Our results, obtained from analysis of snRNA expression in the srd2 mutant, indicate that the SRD2 protein functions in the upregulation of transcription of snRNA genes, the promoters of which contain the upstream sequence element, to elevate cell proliferation competence.
Collapse
Affiliation(s)
- Misato Ohtani
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
| | | |
Collapse
|