1
|
Mahul-Mellier AL, Strappazzon F, Petiot A, Chatellard-Causse C, Torch S, Blot B, Freeman K, Kuhn L, Garin J, Verna JM, Fraboulet S, Sadoul R. Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol Chem 2008; 283:34954-65. [PMID: 18936101 PMCID: PMC3259881 DOI: 10.1074/jbc.m803140200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/01/2008] [Indexed: 12/29/2022] Open
Abstract
Alix/AIP1 regulates cell death in a way involving interactions with the calcium-binding protein ALG-2 and with proteins of ESCRT (endosomal sorting complex required for transport). Using mass spectrometry we identified caspase-8 among proteins co-immunoprecipitating with Alix in dying neurons. We next demonstrated that Alix and ALG-2 interact with pro-caspase-8 and that Alix forms a complex with the TNFalpha receptor-1 (TNF-R1), depending on its capacity to bind ESCRT proteins. Thus, Alix and ALG-2 may allow the recruitment of pro-caspase-8 onto endosomes containing TNF-R1, a step thought to be necessary for activation of the apical caspase. In line with this, expression of Alix deleted of its ALG-2-binding site (AlixDeltaALG-2) significantly reduced TNF-R1-induced cell death, without affecting endocytosis of the receptor. In a more physiological setting, we found that programmed cell death of motoneurons, which can be inhibited by AlixDeltaALG-2, is regulated by TNF-R1. Taken together, these results highlight Alix and ALG-2 as new actors of the TNF-R1 pathway.
Collapse
Affiliation(s)
- Anne-Laure Mahul-Mellier
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Flavie Strappazzon
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Anne Petiot
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Christine Chatellard-Causse
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Sakina Torch
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Béatrice Blot
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Kimberley Freeman
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Loriane Kuhn
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Jérome Garin
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Jean-Marc Verna
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Sandrine Fraboulet
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| | - Rémy Sadoul
- INSERM, U836, Equipe 2,
Neurodégénérescence et Plasticité, Grenoble
F-38042, France, Commissariat à
l'Énergie Atomique, Departement des Sciences du Vivant Laboratoire
d'Etude de la Dynamique des Protéomes, Grenoble F-38054, France,
INSERM, U880, Grenoble F-38054, France, and the
Université Joseph Fourier, Grenoble
Institut des Neurosciences, Grenoble F-38042, France
| |
Collapse
|
2
|
Novgorodov SA, Gudz TI, Obeid LM. Long-chain ceramide is a potent inhibitor of the mitochondrial permeability transition pore. J Biol Chem 2008; 283:24707-17. [PMID: 18596045 PMCID: PMC2529003 DOI: 10.1074/jbc.m801810200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/03/2008] [Indexed: 11/06/2022] Open
Abstract
The sphingolipid ceramide has been implicated in mediating cell death that is accompanied by mitochondrial functional alterations. Moreover, ceramide has been shown to accumulate in mitochondria upon induction of apoptotic processes. In this study, we sought to evaluate the effects of natural, highly hydrophobic long-chain ceramides on mitochondrial function in vitro. Ceramide in a dodecane/ethanol delivery system inhibited the opening of the mitochondrial permeability transition pore (PTP) induced by either oxidative stress, SH group cross-linking, or high Ca2+ load, suggesting that the inhibitory point is at a level at which major PTP regulatory pathways converge. Moreover, ceramide had no effect on well known mitochondrial components that modulate PTP activity, such as cyclophilin D, voltage-dependent anion channel, adenine nucleotide transporter, and ATP synthase. The inhibitory effect of ceramide on PTP was not stereospecific, nor was there a preference for ceramide over dihydroceramide. However, the effect of ceramide on PTP was significantly influenced by the fatty acid moiety chain length. These studies are the first to show that long-chain ceramide can influence PTP at physiologically relevant concentrations, suggesting that it is the only known potent natural inhibitor of PTP. These results suggest a novel mechanism of ceramide regulation of mitochondrial function.
Collapse
Affiliation(s)
- Sergei A. Novgorodov
- Ralph H. Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29401 and the Departments of
Medicine,
Neuroscience, and
Biochemistry and Molecular Biology, Medical
University of South Carolina, Charleston, South Carolina 29425
| | - Tatyana I. Gudz
- Ralph H. Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29401 and the Departments of
Medicine,
Neuroscience, and
Biochemistry and Molecular Biology, Medical
University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Ralph H. Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29401 and the Departments of
Medicine,
Neuroscience, and
Biochemistry and Molecular Biology, Medical
University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|