1
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Chen H, Wang Y, Luo J, Kang M, Hou J, Tang R, Zhao L, Shi F, Ye G, He X, Cui H, Guo H, Li Y, Tang H. Autophagy and apoptosis mediated nano-copper-induced testicular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113039. [PMID: 34922170 DOI: 10.1016/j.ecoenv.2021.113039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yanyan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China; National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ruoping Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
3
|
Wang Y, Tang H, Xu M, Luo J, Zhao L, Shi F, Ye G, Lv C, Li Y. Effect of copper nanoparticles on brain cytochrome P450 enzymes in rats. Mol Med Rep 2019; 20:771-778. [PMID: 31180561 DOI: 10.3892/mmr.2019.10302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/28/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the long‑term effect of copper nanoparticles (CuNPs) on cytochrome P450 (CYP450) enzymes in the rat brain. Rats were repeatedly gavaged with different forms of copper sources for 28 days, and the levels of oxidative stress and CYP450 mRNA and protein expression in the rat brain were subsequently analyzed. The results demonstrated that a high dose of CuNPs (200 mg/kg) induced severe oxidative stress in the rat brain along with a decrease in the levels of total superoxide dismutase and glutathione, and an increase in hydroxyl radicals and malondialdehyde. A medium dose of CuNPs reduced CYP450 2C11 and CYP450 3A1 protein expression in the rat brain, whereas high doses of CuNPs resulted in decreased expression of most CYP450 enzyme proteins, and inhibition of pregnane X receptor and constitutive androstane receptor expression. The results suggested that CuNPs may inhibit CYP450 enzyme expression by increasing the levels of oxidative stress and decreasing the expression of nuclear receptors in the rat brain, which affects the metabolism of drugs and endogenous hormones in the brain.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Huaqiao Tang
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Min Xu
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Jie Luo
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Ling Zhao
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Fei Shi
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Gang Ye
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Cheng Lv
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yinglun Li
- Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
4
|
Katsumiti A, Thorley AJ, Arostegui I, Reip P, Valsami-Jones E, Tetley TD, Cajaraville MP. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Toxicol In Vitro 2018; 48:146-158. [PMID: 29408664 DOI: 10.1016/j.tiv.2018.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 11/15/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022]
Abstract
There is a need to assess human and ecosystem health effects of copper oxide nanoparticles (CuO NPs), extensively used in many industrial products. Here, we aimed to determine the cytotoxicity and cellular mechanisms involved in the toxicity of CuO NPs in mussel cells (hemocytes and gill cells) in parallel with exposures to ionic Cu and bulk CuO, and to compare the sensitivity of mussel primary cells with a well-established human cell line (pulmonary TT1 cells). At similar doses, CuO NPs promoted dose-dependent cytotoxicity and increased reactive oxygen species (ROS) production in mussel and human cells. In mussel cells, ionic Cu was more toxic than CuO NPs and the latter more than bulk CuO. Ionic Cu and CuO NPs increased catalase and acid phosphatase activities in both mussel cells and decreased gill cells Na-K-ATPase activity. All Cu forms produced DNA damage in hemocytes, whereas in gill cells only ionic Cu and CuO NPs were genotoxic. Induction of the MXR transport activity was found in gill cells exposed to all forms of Cu and in hemocytes exposed to ionic Cu and CuO NPs. Phagocytosis increased only in hemocytes exposed to CuO NPs, indicating a nanoparticle-specific immunostimulatory effect. In conclusion, toxicity of CuO NPs is driven by ROS in human and mussel cells. Mussel cells respond to CuO NP exposure by triggering an array of defensive mechanisms.
Collapse
Affiliation(s)
- Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Andrew J Thorley
- Lung Cell Biology, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Inmaculada Arostegui
- Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Paul Reip
- Intrinsiq Materials Ltd, Cody Technology Park, Hampshire, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Teresa D Tetley
- Lung Cell Biology, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
5
|
Guan T, Sun S, Yu F, Gao Y, Fan P, Zuo P, Du C, Yin G. The degradation of LiCoO2/graphite batteries at different rates. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
A Review on Nanocomposite Materials for Rechargeable Li-ion Batteries. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7070731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Song G, Ryu J, Ko S, Bang BM, Choi S, Shin M, Lee SY, Park S. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials. Chem Asian J 2016; 11:1711-7. [PMID: 27027583 DOI: 10.1002/asia.201600249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/18/2016] [Indexed: 11/07/2022]
Abstract
Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Gyujin Song
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Jaegeon Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Seunghee Ko
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Byoung Man Bang
- R&D Center, SJ Advanced Materials Co., LTD., 92 Bancheonsaneop-ro, Eonyang-eup, Ulju-gun, Ulsan, 44936, Korea
| | - Sinho Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Myoungsoo Shin
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Sang-Young Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea.
| | - Soojin Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea.
| |
Collapse
|
8
|
Electrochemical performance of Al–Ni/MWCNTs nanocomposite anode for Li-ion batteries: the effect of MWCNT amount. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0960-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Polat B, Keles O. Improving Si Anode Performance by Forming Copper Capped Copper-Silicon Thin Film Anodes for Rechargeable Lithium Ion Batteries. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms. ENVIRONMENTAL RESEARCH 2015; 138:306-25. [PMID: 25749126 DOI: 10.1016/j.envres.2015.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 05/14/2023]
Abstract
Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major 'eco-receptors' of nanoscale particles in the terrestrial ecosystem, soil-microbiota and plants (the soil-plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil-plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil-plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil-plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil-microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil-microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the 'soil-plant system'.
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Armando C Duarte
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Muhammad Iqbal
- Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062, India
| | - Alexander S Lukatkin
- Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005, Russia
| | - Iqbal Ahmad
- CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
He M, Lu L, Zhang J, Li D. Facile preparation of L-ascorbic acid-stabilized copper-chitosan nanocomposites with high stability and antimicrobial properties. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0697-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ghosh M, Pal S, Sil PC. Taurine attenuates nano-copper-induced oxidative hepatic damage via mitochondria-dependent and NF-κB/TNF-α-mediated pathway. Toxicol Res (Camb) 2014; 3:474-486. [DOI: 10.1039/c4tx00030g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
|
13
|
Bai R, Zhang L, Liu Y, Li B, Wang L, Wang P, Autrup H, Beer C, Chen C. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol Lett 2014; 226:70-80. [DOI: 10.1016/j.toxlet.2014.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/10/2023]
|
14
|
Chu Y, Yu G, Hu B, Dong Q, Zhang J, Zhang X. Effect of hypophosphite on electrodeposition of graphite@copper powders. ADV POWDER TECHNOL 2014. [DOI: 10.1016/j.apt.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Cuillel M, Chevallet M, Charbonnier P, Fauquant C, Pignot-Paintrand I, Arnaud J, Cassio D, Michaud-Soret I, Mintz E. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. NANOSCALE 2014; 6:1707-1715. [PMID: 24343273 DOI: 10.1039/c3nr05041f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) were studied for their toxicity and mechanism of action on hepatocytes (HepG2), in relation to Cu homeostasis disruption. Indeed, hepatocytes, in the liver, are responsible for the whole body Cu balance and should be a major line of defence in the case of exposure to CuO-NP. We investigated the early responses to sub-toxic doses of CuO-NP and compared them to equivalent doses of Cu added as salt to see if there is a specific nano-effect related to Cu homeostasis in hepatocytes. The expression of the genes encoding the Cu-ATPase ATP7B, metallothionein 1X, heme oxygenase 1, heat shock protein 70, superoxide dismutase 1, glutamate cysteine ligase modifier subunit, metal responsive element-binding transcription factor 1 and zinc transporter 1 was analyzed by qRT-PCR. These genes are known to be involved in response to Cu, Zn and/or oxidative stresses. Except for MTF1, ATP7B and SOD1, we clearly observed an up regulation of these genes expression in CuO-NP treated cells, as compared to CuCl2. In addition, ATP7B trafficking from the Golgi network to the bile canaliculus membrane was observed in WIF-B9 cells, showing a need for Cu detoxification. This shows an increase in the intracellular Cu concentration, probably due to Cu release from endosomal CuO-NP solubilisation. Our data show that CuO-NP enter hepatic cells, most probably by endocytosis, bypassing the cellular defence mechanism against Cu, thus acting as a Trojan horse. Altogether, this study suggests that sub-toxic CuO-NP treatments induce successively a Cu overload, a Cu-Zn exchange on metallothioneins and MTF1 regulation on both Cu and Zn homeostasis.
Collapse
|
16
|
Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, Chevallet M, Collin-Faure V, Strub JM, Hanau D, Van Dorsselaer A, Herlin-Boime N, Rabilloud T. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics 2013; 12:3108-22. [PMID: 23882024 DOI: 10.1074/mcp.m113.030742] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.
Collapse
Affiliation(s)
- Sarah Triboulet
- Pro-MD team, Laboratoire de Chimie et Biologie des Métaux, UMR CNRS-CEA-UJF, Université Joseph Fourier, Grenoble 38054, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M, Conde E, de Snoo GR, Peijnenburg WJ, Navas JM. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 2013; 8:383-93. [DOI: 10.3109/17435390.2013.790997] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
|
19
|
Xu P, Xu J, Liu S, Yang Z. Nano copper induced apoptosis in podocytes via increasing oxidative stress. JOURNAL OF HAZARDOUS MATERIALS 2012; 241-242:279-86. [PMID: 23063557 DOI: 10.1016/j.jhazmat.2012.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 05/07/2023]
Abstract
Nanosized copper particles (nano-Cu), one of the representative metal nanometer materials, were used in several domains, and the potential toxicity was raised more and more attention. In order to investigate the cytotoxicity induced by nano-Cu in podocytes, which was the key player of the glomerular filtration barrier, podocytes were treated with different concentrations of nano-Cu. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the cell viability. Hoechst 33342 staining assay and Annexin V/PI double labeling assay were used to identify whether the cytotoxicity induced by nano-Cu was due to apoptosis or necrosis. The oxidative stress induced by nano-Cu and its mechanism were studied in relation to the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). As a result, while podocytes were treated with nano-Cu, the cell viability was significantly decreased and the apoptosis was significantly increased in podocytes. Results showed that nano-Cu affected the oxidant-antioxidant balance and had cytotoxicity in podocytes, resulting in the enhanced generation of ROS and MDA. Meanwhile, pretreatment with N-(2-mercaptopropionyl)-glycine (N-MPG), a type of ROS scavenger, could inhibit podocyte apoptosis induced by nano-Cu. Results suggested that the increased oxidative stress was a key mechanism in the podocyte apoptosis induced by nano-Cu, which could provide evidence for further research on the toxicity of nano-Cu.
Collapse
Affiliation(s)
- Pengjuan Xu
- College of Medicine, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
20
|
Manna P, Ghosh M, Ghosh J, Das J, Sil PC. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology 2012; 6:1-21. [PMID: 21319953 DOI: 10.3109/17435390.2011.552124] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the oxidative stress responsive cell signaling in nano-copper-induced hepatic dysfunction and cell death. Exposure to nano-copper (18 nm) dose-dependently (200-600 mg/kg bw) reduced the hepatic index, caused oxidative stress and led to hepatic dysfunction. Nano-copper burden also increased the transcriptional activity of NF-κB, up-regulated the expression of phosphorylated p38, ERK1/2 and caused the reciprocal regulation of Bcl-2 family proteins, disruption of mitochondrial membrane potential, release of cytochrome C, formation of apoptosome and activation of caspase 3. DAPI staining, immunofluorescence study, FACS analysis and histological findings also support this observation. Soluble copper (Cu(+2), 110 mg/kg bw)-exposed animals were used as a positive control. Different doses of particulate and soluble forms were used in the study because of different LD(50) values. The results suggest that nano-copper induces hepatic dysfunction and cell death via the oxidative stress-dependent signaling cascades and mitochondrial event.
Collapse
Affiliation(s)
- Prasenjit Manna
- Division of Molecular Medicine, Bose Institute, Calcutta, West Bengal, India
| | | | | | | | | |
Collapse
|
21
|
Yu G, Huang X, Zou C, Chen L, Hu B, Ye L. Preparation of graphite@Cu powders from ultrasonic powdering technique. ADV POWDER TECHNOL 2012. [DOI: 10.1016/j.apt.2010.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Abstract
Nanotechnology deals with the construction of new materials, devices, and different technological systems with a wide range of potential applications at the atomic and molecular level. Nanomaterials have attracted great attention for numerous applications in chemical, biological, and industrial world because of their fascinating physicochemical properties. Nanomaterials and nanodevices are being produced intentionally, unintentionally, and manufactured or engineered by different methods and released into the environment without any safety test. Nantoxicity has become the subject of concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on the living organisms. Nanomaterials can move freely as compared to the large-sized particles; therefore, they can be more toxic than bulky materials. This review article delineates the toxic effects of different types of nanomaterials on the living organisms through different sources, like water, air, contact with skin, and the methods of determinations of these toxic effects.
Collapse
|
23
|
|
24
|
Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 2009; 4:150-160. [PMID: 20543894 DOI: 10.3109/17435390903337693] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metal nanoparticles, due to their unique properties and important applications in optical, magnetic, thermal, electrical, sensor devices and cosmetics, are beginning to be widely manufactured and used. This new and rapidly growing field of technology warrants a thorough examination of the material's bio-compatibility and safety. Ultra-small particles may adversely affect living cells and organisms since they can easily penetrate the body through skin contact, inhalation and ingestion. Retrograde transport of copper nanoparticles from nerve endings on the skin can reach the somatosensory neurons in dorsal root ganglion (DRG). Since copper nanoparticles have industrial and healthcare applications, we determined the concentration and size-dependant effects of their exposure on survival of DRG neurons of rat in cell culture. The neurons were exposed to copper nanoparticles of increasing concentrations (10-100 muM) and sizes (40, 60 and 80 nm) for 24 h. Light microscopy, histochemical staining for copper, lactate dehydrogenase (LDH) assay for cell death, and MTS [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay for cell viability were performed to measure the resultant toxicity and cell survival. DRG neurons exposed to copper nanoparticles displayed vacuoles and detachment of some neurons from the substratum. Neurons also exhibited disrupted neurite network. LDH and MTS assays revealed that exposure to copper nanoparticles had significant toxic effect with all the sizes tested when compared to unexposed control cultures. Further analysis of the results showed that copper nanoparticles of smaller size and higher concentration exerted the maximum toxic effects. Rubeanic acid staining showed intracellular deposition of copper. These results demonstrate that copper nanoparticles are toxic in a size- and concentration-dependent manner to DRG neurons.
Collapse
Affiliation(s)
- Badanavalu M Prabhu
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163:109-20. [PMID: 16289865 DOI: 10.1016/j.toxlet.2005.10.003] [Citation(s) in RCA: 532] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/10/2005] [Accepted: 10/04/2005] [Indexed: 01/28/2023]
Abstract
To assess the toxicity of copper nanoparticles (23.5 nm) in vivo, LD(50), morphological changes, pathological examinations and blood biochemical indexes of experimental mice are studied comparatively with micro-copper particles (17 microm) and cupric ions (CuCl(2).2H(2)O). The LD(50) for the nano-, micro-copper particles and cupric ions exposed to mice via oral gavage are 413, >5000 and 110 mg/kg body weight, respectively. The toxicity classes of nano and ionic copper particles both are class 3 (moderately toxic), and micro-copper is class 5 (practically non-toxic) of Hodge and Sterner Scale. Kidney, liver and spleen are found to be target organs of nano-copper particles. Nanoparticles induce gravely toxicological effects and heavy injuries on kidney, liver and spleen of experimental mice, but micro-copper particles do not, on mass basis. Results indicate a gender dependent feature of nanotoxicity. Several factors such as huge specific surface area, ultrahigh reactivity, exceeding consumption of H(+), etc. that likely cause the grave nanotoxicity observed in vivo are discussed.
Collapse
Affiliation(s)
- Zhen Chen
- Lab for Bio-Environmental Health Sciences of Nanoscale Materials, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, Beijing 100049, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effects of copper trifluoromethanesulphonate as an additive to propylene carbonate-based electrolyte for lithium-ion batteries. Electrochim Acta 2004. [DOI: 10.1016/j.electacta.2004.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Impedance Study on Graphite Encapsulated with Ionic Conducting Polymer for Lithium-Ion Batteries. ACTA ACUST UNITED AC 2003. [DOI: 10.1149/1.1621752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|