1
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Delaney S, Rodriguez C, Sarrett SM, Dayts EJ, Zeglis BM, Keinänen O. Unraveling the in vivo fate of inhaled micro- and nanoplastics with PET imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166320. [PMID: 37586535 PMCID: PMC10841220 DOI: 10.1016/j.scitotenv.2023.166320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Microplastics and nanoplastics have become ubiquitous environmental pollutants. The threat these plastics pose to human health has fueled research focused on their pathophysiology and toxicology, yet many of their fundamental properties - for example, their in vivo pharmacokinetics - remain poorly understood. In this investigation, we have harnessed positron emission tomography (PET) to track the in vivo fate of micro- and nanoplastics administered to mice intratracheally and intravenously. To this end, 1 μm and 20 nm diameter amine-functionalized polystyrene particles were modified with an isothiocyanate-bearing variant of desferrioxamine (DFO) and radiolabeled with the positron-emitting radiometal [89Zr]Zr4+. Both radioplastics - [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20 - were produced in ∼95% radiochemical yield and found to be >85% stable to demetallation over one week at 37 °C in human serum and simulated lung fluid. The incubation of [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20 with MH-S cells revealed that the majority of the former were phagocytosed by alveolar macrophages within 4 h, while the latter largely evaded consumption. Finally, the in vivo behavior of the radioplastics was interrogated in mice upon intravenous and intratracheal administration. PET imaging and biodistribution experiments revealed that the intravenously injected plastics accumulated primarily in the liver and spleen, yielding hepatic radioactivity concentrations of 101 ± 48 %ID/g and 92 ± 22 %ID/g at 168 h post-injection for [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20, respectively. In contrast, the mice that received the radioplastics via intratracheal installation displayed the highest uptake in the lungs at the end of one week: 4 ± 2 %ID/g for [89Zr]Zr-DFO-PS1000 and 32 ± 6 %ID/g for [89Zr]Zr-DFO-PS20. Ultimately, this work illustrates the critical role that the route of exposure plays in the bioaccumulation of plastic particles, reveals that size dramatically influences the pulmonary retention of inhaled particles, and underscores the value of PET imaging as a tool for studying the pharmacokinetics of environmental pollutants.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Samantha M Sarrett
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Eric J Dayts
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
3
|
Farooq MA, Trevaskis NL. TPGS Decorated Liposomes as Multifunctional Nano-Delivery Systems. Pharm Res 2023; 40:245-263. [PMID: 36376604 PMCID: PMC9663195 DOI: 10.1007/s11095-022-03424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Liposomes are sphere-shaped vesicles that can capture therapeutics either in the outer phospholipid bilayer or inner aqueous core. Liposomes, especially when surface-modified with functional materials, have been used to achieve many benefits in drug delivery, including improving drug solubility, oral bioavailability, pharmacokinetics, and delivery to disease target sites such as cancers. Among the functional materials used to modify the surface of liposomes, the FDA-approved non-ionic surfactant D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is increasingly being applied due to its biocompatibility, lack of toxicity, applicability to various administration routes and ability to enhance solubilization, stability, penetration and overall pharmacokinetics. TPGS decorated liposomes are emerging as a promising drug delivery system for various diseases and are expected to enter the market in the coming years. In this review article, we focus on the multifunctional properties of TPGS-coated liposomes and their beneficial therapeutic applications, including for oral drug delivery, vaccine delivery, ocular administration, and the treatment of various cancers. We also suggest future directions to optimise the manufacture and performance of TPGS liposomes and, thus, the delivery and effect of encapsulated diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
5
|
Moulahoum H, Ghorbanizamani F, Zihnioglu F, Timur S. Surface Biomodification of Liposomes and Polymersomes for Efficient Targeted Drug Delivery. Bioconjug Chem 2021; 32:1491-1502. [PMID: 34283580 DOI: 10.1021/acs.bioconjchem.1c00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotherapy has seen great progress in the development of performant treatment strategies. Nanovesicles such as liposomes and polymersomes demonstrated great potential in cancer therapy. However, these nanocarriers deliver their content passively, which faces a lot of constraints during blood circulation. The main challenge resides in degradation and random delivery to normal tissues. Hence, targeting drug delivery using specific molecules (such as antibodies) grafted over the surface of these nanocarriers came as the answer to overcome many problems faced before. The advantage of using antibodies is their antigen/antibody recognition, which provides a high level of specificity to reach treatment targets. This review discusses the many techniques of nanocarrier functionalization with antibodies. The aim is to recognize the various approaches by describing their advantages and deficiencies to create the most suitable drug delivery platform. Some methods are more suitable for other applications rather than drug delivery, which can explain the low success of some proposed targeted nanocarriers. In here, a critical analysis of how every method could impact the recognition and targeting capacity of some nanocarriers (liposomes and polymersomes) is discussed to make future research more impactful and advance the field of biomedicine further.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.,Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
6
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
7
|
Huang X, Cavalcante DP, Townley HE. Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:23. [PMID: 32435151 PMCID: PMC7223038 DOI: 10.1007/s11051-019-4720-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Nanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200-400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen. Graphical abstract.
Collapse
Affiliation(s)
- Xinyue Huang
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | - Helen E Townley
- Nuffield Department of women’s and reproductive health, Oxford University, John Radcliffe Hospital, Oxford, UK
- Department of Engineering Science, Oxford University, Park’s Road, Oxford, UK
| |
Collapse
|
8
|
Ohta S, Matsuura M, Kawashima Y, Cai X, Taniguchi M, Okochi H, Asano Y, Sato S, Ito T. Facile fabrication of PEG-coated PLGA microspheres via SPG membrane emulsification for the treatment of scleroderma by ECM degrading enzymes. Colloids Surf B Biointerfaces 2019; 179:453-461. [DOI: 10.1016/j.colsurfb.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
|
9
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
10
|
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom J, Zenobi‐Wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non‐Ionic Polymer Brushes as Biointerfaces: Poly(2‐oxazine)s Outperform Both Poly(2‐oxazoline)s and PEG. Angew Chem Int Ed Engl 2018; 57:11667-11672. [DOI: 10.1002/anie.201805620] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Bart Verbraeken
- Supramolecular Chemistry GroupDepartment of Organic Chemistry and Macromolecular ChemistryGhent University Belgium
| | - Shivaprakash N. Ramakrishna
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Yvonne Gombert
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Emma Cavalli
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Jan‐Georg Rosenboom
- Institute of Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zürich Switzerland
| | - Marcy Zenobi‐Wong
- Cartilage Engineering + Regeneration LaboratoryDepartment of Health Sciences and TechnologyETH Zürich Switzerland
| | - Nicholas D. Spencer
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupDepartment of Organic Chemistry and Macromolecular ChemistryGhent University Belgium
| | - Edmondo M. Benetti
- Polymer Surfaces GroupLaboratory for Surface Science and TechnologyDepartment of MaterialsETH Zürich Switzerland
| |
Collapse
|
11
|
Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom JG, Zenobi-Wong M, Spencer ND, Hoogenboom R, Benetti EM. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Bart Verbraeken
- Supramolecular Chemistry Group; Department of Organic Chemistry and Macromolecular Chemistry; Ghent University; Belgium
| | - Shivaprakash N. Ramakrishna
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Yvonne Gombert
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Emma Cavalli
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Jan-Georg Rosenboom
- Institute of Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; ETH; Zürich Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory; Department of Health Sciences and Technology; ETH; Zürich Switzerland
| | - Nicholas D. Spencer
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic Chemistry and Macromolecular Chemistry; Ghent University; Belgium
| | - Edmondo M. Benetti
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH; Zürich Switzerland
| |
Collapse
|
12
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
13
|
Yi Y, Sanchez L, Gao Y, Lee K, Yu Y. Interrogating Cellular Functions with Designer Janus Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1448-1460. [PMID: 31530969 PMCID: PMC6748339 DOI: 10.1021/acs.chemmater.6b05322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Janus particles have two distinct surfaces or compartments. This enables novel applications that are impossible with homogeneous particles, ranging from the engineering of active colloidal metastructures to creating multimodal therapeutic materials. Recent years have witnessed a rapid development of novel Janus structures and exploration of their applications, particularly in the biomedical arena. It, therefore, becomes crucial to understand how Janus particles with surface or structural anisotropy might interact with biological systems and how such interactions may be exploited to manipulate biological responses. This perspective highlights recent studies that have employed Janus particles as novel toolsets to manipulate, measure, and understand cellular functions. Janus particles have been shown to have biological interactions different from uniform particles. Their surface anisotropy has been used to control the cell entry of synthetic particles, to spatially organize stimuli for the activation of immune cells, and to enable direct visualization and measurement of rotational dynamics of particles in living systems. The work included in this perspective showcases the significance of understanding the biological interactions of Janus particles and the tremendous potential of harnessing such interactions to advance the development of Janus structure-based biomaterials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yu
- Corresponding Author (Y.Yu)
| |
Collapse
|
14
|
Sanchez L, Yi Y, Yu Y. Effect of partial PEGylation on particle uptake by macrophages. NANOSCALE 2017; 9:288-297. [PMID: 27909711 PMCID: PMC6397647 DOI: 10.1039/c6nr07353k] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Controlling the internalization of synthetic particles by immune cells remains a grand challenge for developing successful drug carrier systems. Polyethylene glycol (PEG) is frequently used as a protective coating on particles to evade immune clearance, but it also hinders the interactions of particles with their intended target cells. In this study, we investigate a spatial decoupling strategy, in which PEGs are coated on only one hemisphere of particles, so that the other hemisphere is available for functionalization of cell-targeting ligands without the hindrance effect from the PEGs. The partial coating of PEGs is realized by creating two-faced Janus particles with different surface chemistries on opposite sides. We show that a half-coating of PEGs reduces the macrophage uptake of particles as effectively as a complete coating. Owing to the surface asymmetry, Janus particles that are internalized enter macrophage cells via a combination of ligand-guided phagocytosis and macropinocytosis. By spatially segregating PEGs and ligands for targeting T cells on Janus particles, we demonstrate that the Janus particles bind T cells uni-directionally from the ligand-coated side, bypassing the hindrance from the PEGs on the other hemisphere. The results reveal a new mechanistic understanding on how a spatial coating of PEGs on particles changes the phagocytosis of particles. This study also suggests a new design principle for therapeutic particles - the spatial decoupling of PEGs and cell-targeting moieties reduces the interference between the two functions while attaining the protective effect of PEGs for macrophage evasion.
Collapse
Affiliation(s)
- Lucero Sanchez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
15
|
Reisbeck M, Helou MJ, Richter L, Kappes B, Friedrich O, Hayden O. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood. Sci Rep 2016; 6:32838. [PMID: 27596736 PMCID: PMC5011763 DOI: 10.1038/srep32838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 01/15/2023] Open
Abstract
Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.
Collapse
Affiliation(s)
- Mathias Reisbeck
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany.,Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Michael Johannes Helou
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| | - Lukas Richter
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Oliver Hayden
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Kumar R, Kulkarni A, Nabulsi J, Nagesha DK, Cormack R, Makrigiorgos MG, Sridhar S. Facile Synthesis of PEGylated PLGA Nanoparticles Encapsulating Doxorubicin and its In Vitro Evaluation as Potent Drug Delivery Vehicle. Drug Deliv Transl Res 2015; 3:299-308. [PMID: 23914343 DOI: 10.1007/s13346-012-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The advent of nanotechnology has bolstered a variety of nanoparticles based platforms for different biomedical applications. A better understanding for engineering novel nanoparticles for applications in cancer staging and therapy requires careful assessment of the nanoparticle's physico-chemical properties. Herein we report a facile synthesis method for PEGylated PLGA nanoparticles encapsulating anti-cancer drug doxorubicin for cancer imaging and therapy. The simple nanoprecipitation method reported here resulted in very robust PEGylated PLGA nanoparticles with close to 95% drug encapsulation efficiency. The nanoparticles showed a size of ~110 nm as characterized by TEM and DLS. The nanoparticles were further characterized by optical UV-Visible and fluorescence spectroscopy. The encapsulated doxorubicin showed a sustained release (>80%) from the nanoparticles matrix over a period of 8 days. The drug delivery efficiency of the nanoparticles was confirmed in vitro confocal imaging with PC3 and HeLa cell lines. In vitro quantitative estimation of drug accumulation in PC3 cell line showed a 22 times higher concentration of drug in case of nanoparticles based formulation in comparison to free drug and this was further reflected in the in vitro cytotoxicity assays. Overall the synthesis method reported here provides a simple and robust PLGA based platform for efficient drug delivery and imaging of cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rajiv Kumar
- Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, MA 02115 ; Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
17
|
Gao Y, Yu Y. Macrophage uptake of Janus particles depends upon Janus balance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2833-8. [PMID: 25674706 DOI: 10.1021/la504668c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Properties of synthetic particles, such as size and shape, influence how immune cells uptake vaccine and drug carriers. Here, we explore the role of a new property, anisotropic presentation of ligands, in particle uptake by macrophage cells. We use micrometer-sized Janus particles that are partially coated with ligands and investigate how the ligand patch size (Janus balance) affects their uptake by macrophages. Macrophage uptake of both 1.6 and 3 μm Janus particles is enhanced as the size of the ligand patch increases. However, presenting ligands asymmetrically reduces particle phagocytosis; Janus particles with the same amount of ligands as uniformly coated particles are internalized less efficiently. We also show that, because of the asymmetric geometry of Janus particles, the onset of ligand-mediated phagocytosis depends upon the orientation of the particles with respect to the cells. This study demonstrates Janus balance as a new parameter that we can use to manipulate the macrophage uptake of particles.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | |
Collapse
|
18
|
Prajapati VD, Jani GK, Kapadia JR. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv 2015; 12:1283-99. [DOI: 10.1517/17425247.2015.1015985] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Single cell adhesion assay using computer controlled micropipette. PLoS One 2014; 9:e111450. [PMID: 25343359 PMCID: PMC4208850 DOI: 10.1371/journal.pone.0111450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023] Open
Abstract
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.
Collapse
|
20
|
Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000copolymer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:290-7. [DOI: 10.3109/21691401.2014.944646] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Hotaling NA, Cummings RD, Ratner DM, Babensee JE. Molecular factors in dendritic cell responses to adsorbed glycoconjugates. Biomaterials 2014; 35:5862-74. [PMID: 24746228 PMCID: PMC4127877 DOI: 10.1016/j.biomaterials.2014.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
Carbohydrates and glycoconjugates have been shown to exert pro-inflammatory effects on the dendritic cells (DCs), supporting pathogen-induced innate immunity and antigen processing, as well as immunosuppressive effects in the tolerance to self-proteins. Additionally, the innate inflammatory response to implanted biomaterials has been hypothesized to be mediated by inflammatory cells interacting with adsorbed proteins, many of which are glycosylated. However, the molecular factors relevant for surface displayed glycoconjugate modulation of dendritic cell (DC) phenotype are unknown. Thus, in this study, a model system was developed to establish the role of glycan composition, density, and carrier cationization state on DC response. Thiol modified glycans were covalently bound to a model protein carrier, maleimide functionalized bovine serum albumin (BSA), and the number of glycans per BSA modulated. Additionally, the carrier isoelectric point was scaled from a pI of ∼4.0 to ∼10.0 using ethylenediamine (EDA). The DC response to the neoglycoconjugates adsorbed to wells of a 384-well plate was determined via a high throughput assay. The underlying trends in DC phenotype in relation to conjugate properties were elucidated via multivariate general linear models. It was found that glycoconjugates with more than 20 glycans per carrier had the greatest impact on the pro-inflammatory response from DCs, followed by conjugates having an isoelectric point above 9.5. Surfaces displaying terminal α1-2 linked mannose structures were able to increase the inflammatory DC response to a greater extent than did any other terminal glycan structure. The results herein can be applied to inform the design of the next generation of combination products and biomaterials for use in future vaccines and implanted materials.
Collapse
Affiliation(s)
- Nathan A Hotaling
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Daniel M Ratner
- Dept. of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Julia E Babensee
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
22
|
Rahikkala A, Junnila S, Vartiainen V, Ruokolainen J, Ikkala O, Kauppinen E, Raula J. Polypeptide-based aerosol nanoparticles: self-assembly and control of conformation by solvent and thermal annealing. Biomacromolecules 2014; 15:2607-15. [PMID: 24848300 DOI: 10.1021/bm500704e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoconfined self-assemblies within aerosol nanoparticles and control of the secondary structures are shown here upon ionically complexing poly(L-lysine) (PLL) with dodecylbenzenesulfonic acid (DBSA) surfactant and using solvents chloroform, 1-propanol, or dimethylformamide. Different solvent volatilities and drying temperatures allowed tuning the kinetics of morphology formation. The supramolecular self-assembly and morphology were studied using cryo-TEM and SEM, and the secondary structures, using FT-IR. Highly volatile chloroform led to the major fraction of α-helical conformation of PLL(DBSA), whereas less volatile solvents or higher drying temperatures led to the increasing fraction of β-sheets. Added drugs budesonide and ketoprofen prevented β-sheet formation and studied PLL(DBSA)-drug nanoparticles were in the α-helical conformation. Preliminary studies showed that ketoprofen released with a slower rate than budesonide which was hypothesized to result from different localization of drugs within the PLL(DBSA) nanoparticles. These results instruct to prepare polypeptide aerosol nanoparticles with internal self-assembled structures and to control the secondary structures by aerosol solvent annealing, which we foresee to be useful, e.g., toward controlling the release of poorly soluble drug molecules.
Collapse
Affiliation(s)
- Antti Rahikkala
- Department of Applied Physics, Aalto University School of Science , P.O. Box 15100, FIN-00076 Aalto, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. Phagocytosis dynamics depends on target shape. Biophys J 2014; 105:1143-50. [PMID: 24010657 DOI: 10.1016/j.bpj.2013.07.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023] Open
Abstract
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.
Collapse
Affiliation(s)
- Debjani Paul
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zhan X, Tran KK, Shen H. Effect of the poly(ethylene glycol) (PEG) density on the access and uptake of particles by antigen-presenting cells (APCs) after subcutaneous administration. Mol Pharm 2012; 9:3442-51. [PMID: 23098233 DOI: 10.1021/mp300190g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lymphatic trafficking of particles to the secondary lymphoid organs, such as lymph nodes, and the cell types that particles access are critical factors that control the quality and quantity of immune responses. In this study, we evaluated the effect of PEGylation on the lymphatic trafficking and accumulation of particles in draining lymph nodes (dLNs) as well as the cell types that internalized particles. As a model system, 200 nm polystyrene (PS) particles were modified with different densities of poly(ethylene glycol) (PEG) and administered subcutaneously to mice. PEGylation enhanced the efficiency of particle drainage away from the injection site as well as the access of particles to dendritic cells (DCs). The accumulation of particles in dLNs was dependent on the PEG density. PEGylation also enhanced uptake by DCs while reducing internalization by B cells at the single cell level. Our results indicate that PEGylation facilitated the trafficking of particles to dLNs either through enhanced trafficking in lymphatic vessels or by enhanced internalization by migratory DCs. This study provides insight into utilizing PEGylated particles for the development of synthetic vaccines.
Collapse
Affiliation(s)
- Xi Zhan
- Department of Chemical Engineering, University of Washington, Campus Box 351750, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
26
|
Aravind A, Yoshida Y, Maekawa T, Kumar DS. Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy. Drug Deliv Transl Res 2012; 2:418-36. [DOI: 10.1007/s13346-012-0104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Wang XY, Pichl C, Gabor F, Wirth M. A novel cell-based microfluidic multichannel setup-impact of hydrodynamics and surface characteristics on the bioadhesion of polystyrene microspheres. Colloids Surf B Biointerfaces 2012; 102:849-56. [PMID: 23107963 DOI: 10.1016/j.colsurfb.2012.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/15/2022]
Abstract
Carboxylated polystyrene microspheres with 1 μm in diameter were surface-modified either by coating with poly(ethyleneimine) (PEI) as cationic polyelectrolyte leading to a conversion of the surface charge from negative to positive, or by covalent immobilization of wheat germ agglutinin (WGA) via a carbodiimide method to obtain a carbohydrate specific biorecognitive surface. To characterize the impact of the binding mechanism on the particle-cell interaction, the binding efficiencies to Caco-2 cells were investigated for both, the biorecognitive WGA-grafted particles and the positively charged PEI-microspheres, and compared to the unmodified negatively charged polystyrene particles. As a result, WGA-grafted particles exhibited the highest binding rates to single cells as well as monolayers as compared to positive and negative particles under stationary conditions. Concerning ionic interactions, PEI-coated particles suffered from a critical agglomeration tendency leading to a high variance in cell binding. Furthermore, in order to elucidate the bioadhesive properties under flow conditions, an acoustically-driven microfluidic multichannel system was applied. Using different setups, it could be demonstrated that the hydrodynamics exerted almost no impact on cell-bound particles with a size of 1 μm at a flow velocity of 2000 μm s(-1). Using this novel microfluidic system, it was thus possible to prove that the omnipresent hydrodynamic drag in vivo is mostly negligible for microparticulate drug delivery systems in the size range of 1 μm or below.
Collapse
Affiliation(s)
- Xue-Yan Wang
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Hu HM, Zhang X, Zhong NQ, Pan SR. Study on Galactose–Poly(Ethylene Glycol)–Poly(L-Lysine) as Novel Gene Vector for Targeting Hepatocytes In Vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:677-95. [PMID: 21375808 DOI: 10.1163/092050611x558297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hai-Mei Hu
- a Guang Dong Pharmaceutical University, Guangzhou 510006, P. R. China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China.
| | - Xuan Zhang
- b The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China; Shenzhen Mental Health Center, Shenzhen 518020, P. R. China
| | - Nv-Qi Zhong
- c School of Pharmaceutical Sciences, Sun Yet-sen University, Guangzhou 510080, P. R. China
| | - Shi-Rong Pan
- d The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
29
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Magenau A, Benzing C, Proschogo N, Don AS, Hejazi L, Karunakaran D, Jessup W, Gaus K. Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order. Traffic 2011; 12:1730-43. [PMID: 21883764 DOI: 10.1111/j.1600-0854.2011.01272.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.
Collapse
Affiliation(s)
- Astrid Magenau
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Álvarez AL, Espinar FO, Méndez JB. The Application of Microencapsulation Techniques in the Treatment of Endodontic and Periodontal Diseases. Pharmaceutics 2011; 3:538-71. [PMID: 24310596 PMCID: PMC3857082 DOI: 10.3390/pharmaceutics3030538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/09/2011] [Accepted: 08/24/2011] [Indexed: 11/12/2022] Open
Abstract
In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side effects. Microparticles made from biodegradable polymers have been reported to be an effective means of delivering antibacterial drugs in endodontic and periodontal therapy. The aim of this review article is to assess recent therapeutic strategies in which biocompatible microparticles are used for effective management of periodontal and endodontic diseases. In vitro and in vivo studies that have investigated the biocompatibility or efficacy of certain microparticle formulations and devices are presented. Future directions in the application of microencapsulation techniques in endodontic and periodontal therapies are discussed.
Collapse
Affiliation(s)
- Asteria Luzardo Álvarez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; E-Mail:
| | - Francisco Otero Espinar
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; E-Mail:
| | - José Blanco Méndez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; E-Mail:
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; E-Mail:
| |
Collapse
|
32
|
Lim SP, Neilsen P, Kumar R, Abell A, Callen DF. The Application of Delivery Systems for DNA Methyltransferase Inhibitors. BioDrugs 2011; 25:227-42. [DOI: 10.2165/11592770-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Kolesnikova TA, Fedorova IA, Gusev AA, Gorin DA. Acute toxicity analysis of polyelectrolyte microcapsules with zinc oxide nanoparticles and microcapsule shell components using aquatic organisms. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1995078011020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Keselowsky BG, Xia CQ, Clare-Salzler M. Multifunctional dendritic cell-targeting polymeric microparticles: engineering new vaccines for type 1 diabetes. HUMAN VACCINES 2011; 7:37-44. [PMID: 21157186 DOI: 10.4161/hv.7.1.12916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Benjamin G Keselowsky
- J Crayton Pruitt Family Department of Biomedical Engineering, College of Medicine; University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
35
|
Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets. Biomed Microdevices 2010; 13:221-30. [DOI: 10.1007/s10544-010-9487-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Rosenbauer EM, Wagner M, Musyanovych A, Landfester K. Controlled Release from Polyurethane Nanocapsules via pH-, UV-Light- or Temperature-Induced Stimuli. Macromolecules 2010. [DOI: 10.1021/ma100481s] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Eva-Maria Rosenbauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55021 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55021 Mainz, Germany
| | - Anna Musyanovych
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55021 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55021 Mainz, Germany
| |
Collapse
|
37
|
Gal N, Weihs D. Experimental evidence of strong anomalous diffusion in living cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:020903. [PMID: 20365523 DOI: 10.1103/physreve.81.020903] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 12/01/2009] [Indexed: 05/29/2023]
Abstract
We evaluated the transport of polymeric particles internalized into living cancer cells. The mean-square displacement demonstrates superdiffusion with a scaling exponent of 1.25. Scaling exponents of a range of displacement moments are bilinear with moment order, exhibiting slopes of 0.6 and 0.8. Thus, we present experimental evidence of strong anomalous diffusion. Bilinearity indicates that particle motion is composed of subdiffusive regimes separated by active yet nonballistic flights. We discuss the results in terms of particle interactions with their microenvironment.
Collapse
Affiliation(s)
- Naama Gal
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
38
|
Landfester K, Musyanovych A, Mailänder V. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23786] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Fernández-Rosas E, Gómez R, Ibañez E, Barrios L, Duch M, Esteve J, Plaza JA, Nogués C. Internalization and cytotoxicity analysis of silicon-based microparticles in macrophages and embryos. Biomed Microdevices 2010; 12:371-9. [DOI: 10.1007/s10544-009-9393-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Qi W, Wang A, Yang Y, Du M, Bouchu MN, Boullanger P, Li J. The lectin binding and targetable cellular uptake of lipid-coated polysaccharide microcapsules. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b920469p] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2009; 5:410-8. [PMID: 19341815 PMCID: PMC2789916 DOI: 10.1016/j.nano.2009.02.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 12/24/2022]
Abstract
We hypothesize that the efficacy of doxorubicin (DOX) can be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. To test this hypothesis, a unique surface modification technique was used to create PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating DOX. An avidin-biotin coupling system was used to control poly(ethylene glycol) conjugation to the surface of PLGA nanoparticles, of diameter approximately 130 nm, loaded with DOX to 5% (wt/wt). Encapsulation in nanoparticles did not compromise the efficacy of DOX; drug-loaded nanoparticles were found to be at least as potent as free DOX against A20 murine B-cell lymphoma cells in culture and of comparable efficacy against subcutaneously implanted tumors. Cardiotoxicity in mice as measured by echocardiography, serum creatine phosphokinase (CPK), and histopathology was reduced for DOX-loaded nanoparticles as compared with free DOX. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening over control animals, whereas nanoparticle-encapsulated DOX produced none of these pathological changes. FROM THE CLINICAL EDITOR The efficacy of doxorubicin (DOX) may be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening in mice, whereas nanoparticle-encapsulated DOX produced none of these pathological changes.
Collapse
Affiliation(s)
- Jason Park
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Peter M. Fong
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Jing Lu
- Carigent Therapeutics, Inc., 5 Science Park, Suite 13, New Haven, CT 06520, Phone: (203) 752 0808, Fax: (203) 752 0882
| | - Kerry S. Russell
- Dept. of Internal Medicine, Cardiology, Yale Cardiology, The Anylan Center, 1 Gilbert Street, Room S469, New Haven, CT 06519, Phone: (203) 785 2241, Fax: (203) 785 7567
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale Medical School 123 LSOG, P.O. Box 208016, 375 Congress Avenue, New Haven, CT 06519-1404, Phone: (203) 785 2872, Fax: (203) 785 7499
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Tarek M. Fahmy
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| |
Collapse
|
42
|
Yin W, Yates M. Encapsulation and sustained release from biodegradable microcapsules made by emulsification/freeze drying and spray/freeze drying. J Colloid Interface Sci 2009; 336:155-61. [DOI: 10.1016/j.jcis.2009.03.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/17/2022]
|
43
|
Woo JH, Kim DY, Jo SY, Kang H, Noh I. Modification of the bulk properties of the porous poly(lactide-
co
-glycolide) scaffold by irradiation with a cyclotron ion beam with high energy for its application in tissue engineering. Biomed Mater 2009; 4:044101. [DOI: 10.1088/1748-6041/4/4/044101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Acharya AP, Clare-Salzler MJ, Keselowsky BG. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines. Biomaterials 2009; 30:4168-77. [PMID: 19477505 DOI: 10.1016/j.biomaterials.2009.04.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/20/2009] [Indexed: 01/09/2023]
Abstract
Immunogenomic approaches combined with advances in adjuvant immunology are guiding progress toward rational design of vaccines. Furthermore, drug delivery platforms (e.g., synthetic particles) are demonstrating promise for increasing vaccine efficacy. Currently there are scores of known antigenic epitopes and adjuvants, and numerous synthetic delivery systems accessible for formulation of vaccines for various applications. However, the lack of an efficient means to test immune cell responses to the abundant combinations available represents a significant blockade on the development of new vaccines. In order to overcome this barrier, we report fabrication of a new class of microarray consisting of antigen/adjuvant-loadable poly(D,L lactide-co-glycolide) microparticles (PLGA MPs), identified as a promising carrier for immunotherapeutics, which are co-localized with dendritic cells (DCs), key regulators of the immune system and prime targets for vaccines. The intention is to utilize this high-throughput platform to optimize particle-based vaccines designed to target DCs in vivo for immune system-related disorders, such as autoimmune diseases, cancer and infection. Fabrication of DC/MP arrays leverages the use of standard contact printing miniarraying equipment in conjunction with surface modification to achieve co-localization of particles/cells on isolated islands while providing background non-adhesive surfaces to prevent off-island cell migration. We optimized MP overspotting pin diameter, accounting for alignment error, to allow construction of large, high-fidelity arrays. Reproducible, quantitative delivery of as few as 16+/-2 MPs per spot was demonstrated and two-component MP dosing arrays were constructed, achieving MP delivery which was independent of formulation, with minimal cross-contamination. Furthermore, quantification of spotted, surface-adsorbed MP degradation was demonstrated, potentially useful for optimizing MP release properties. Finally, we demonstrate DC co-localization with PLGA MPs on isolated islands and that DCs do not migrate between islands for up to 24 h. Using this platform, we intend to analyze modulation of DC function by providing multi-parameter combinatorial cues in the form of proteins, peptides and other immuno-modulatory molecules encapsulated in or tethered on MPs. Critically, the miniaturization attained enables high-throughput investigation of rare cell populations by reducing the requirement for cells and reagents by many-fold, facilitating advances in personalized vaccines which target DCs in vivo.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Materials Science and Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, FL 32611-6131, USA
| | | | | |
Collapse
|
45
|
Pelletier V, Gal N, Fournier P, Kilfoil ML. Microrheology of microtubule solutions and actin-microtubule composite networks. PHYSICAL REVIEW LETTERS 2009; 102:188303. [PMID: 19518917 DOI: 10.1103/physrevlett.102.188303] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Indexed: 05/25/2023]
Abstract
We perform local or microrheological measurements on microtubule solutions, as well as composite networks. The viscoelastic properties of microtubules as reported from two-point microrheology agree with the macroscopic measurement at high frequencies, but appear to show a discrepancy at low frequencies, at time scales on the order of a second. A composite of filamentous actin (F-actin) and microtubules has viscoelastic behavior between that of F-actin and pure microtubules. We further show that the Poisson ratio of the composite, measured by the length-scale dependent two-point microrheology, is robustly smaller than that of the F-actin network at time scales tau>1 s, suggesting that a local compressibility is conferred by the addition of microtubules to the F-actin network.
Collapse
|
46
|
Brandhonneur N, Chevanne F, Vié V, Frisch B, Primault R, Le Potier MF, Le Corre P. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 2009; 36:474-85. [DOI: 10.1016/j.ejps.2008.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 12/26/2022]
|
47
|
Wattendorf U, Merkle HP. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci 2009; 97:4655-69. [PMID: 18306270 DOI: 10.1002/jps.21350] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microparticles are of considerable interest for drug delivery, vaccination and diagnostic imaging. In order to obtain microparticles with long circulation times, or to provide the prerequisite for tissue specific targeting through decoration with suitable ligands, their surfaces need to be modified such that they become repellent to the adsorption of opsonic proteins and resistant to unspecific phagocytosis. The currently most considered strategy relies on the immobilisation of a poly(ethylene glycol) (PEG) corona onto the microparticles' surface. In the first chapter of this review, we discuss the unique physicochemical properties of PEG, which make it the polymer of choice to render the surfaces of microparticles repellent to the adsorption of proteins and resistant to cellular recognition. Furthermore, we present various technologies for the preparation of microparticles with PEGylated surfaces. Another aspect is the decoration of the PEGylated surfaces with suitable ligands for cell specific recognition and targeting. Finally, we review miscellaneous applications of PEGylated microparticles, mainly focusing on the fields of drug delivery, targeting and vaccination. Although still in its infancy, the PEGylation of microparticles holds promise towards future biomedical applications.
Collapse
Affiliation(s)
- Uta Wattendorf
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
48
|
McCarron PA, Marouf WM, Donnelly RF, Scott C. Enhanced surface attachment of protein-type targeting ligands to poly(lactide-co-glycolide) nanoparticles using variable expression of polymeric acid functionality. J Biomed Mater Res A 2008; 87:873-84. [DOI: 10.1002/jbm.a.31835] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Wattendorf U, Coullerez G, Vörös J, Textor M, Merkle HP. Mannose-based molecular patterns on stealth microspheres for receptor-specific targeting of human antigen-presenting cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11790-11802. [PMID: 18785716 DOI: 10.1021/la801085d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The targeting of antigen-presenting cells has recently gained strong attention for both targeted vaccine delivery and immunomodulation. We prepared surface-modified stealth microspheres that display various mannose-based ligands at graded ligand densities to target phagocytic C-type lectin receptors (CLRs) on human dendritic cells (DCs) and macrophages. Decoration of microspheres with carbohydrate ligands was achieved (i) by electrostatic surface assembly of mannan onto previously formed adlayers of poly( l-lysine) (PLL) or a mix of PLL and poly( l-lysine)- graft-poly(ethylene glycol) (PLL-PEG), or (ii) through assembly of PLL-PEG equipped with small substructure mannoside ligands, such as mono- and trimannose, as terminal substitution of the PEG chains. Microspheres carrying mannoside ligands were also studied in combination with an integrin-targeting RGD peptide ligand. Because of the presence of a mannan or PEG corona, such microspheres were protected against protein adsorption and opsonization, thus allowing the formation of specific ligand-receptor interactions. Mannoside density was the major factor for the phagocytosis of mannoside-decorated microspheres, although with limited efficiency. This strengthens the recent hypothesis by other authors that the mannose receptor (MR) only acts as a phagocytic receptor when in conjunction with yet unidentified partner receptor(s). Analysis of DC surface markers for maturation revealed that neither surface-assembled mannan nor mannoside-modified surfaces on the microspheres could stimulate DC maturation. Thus, phagocytosis upon recognition by CLRs alone cannot trigger DC activation toward a T helper response. The microparticulate platform established in this work represents a promising tool for systematic investigations of specific ligand-receptor interactions upon phagocytosis, including the screening for potential ligands and ligand combinations in the context of vaccine delivery and immunomodulation.
Collapse
Affiliation(s)
- Uta Wattendorf
- Institute for Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Semmling M, Kreft O, Muñoz Javier A, Sukhorukov GB, Käs J, Parak WJ. A novel flow-cytometry-based assay for cellular uptake studies of polyelectrolyte microcapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1763-1768. [PMID: 18819140 DOI: 10.1002/smll.200800596] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A flow-cytometry-based assay is presented with which the uptake of polyelectrolyte capsules can be quantified. The cavity of the capsules is loaded with the pH-sensitive dye SNARF, which emits in the red and green in alkaline and acidic environments, respectively. By recording the fluorescence intensities in the red and green channels, the localization of capsules associated with cells can be determined. Capsules adherent to the outer cell membrane fluoresce in the red due to the alkaline pH of the cell medium, whereas capsules internalized by cells fluoresce in the green due to the acidic pH in the endosomal/lysosomal/phagosomal compartments in which incorporated capsules are located. Adding the SNARF readout to the scattering signal typically derived with flow cytometry analysis allows for a more detailed quantitative analysis of particle uptake, which can also distinguish between adherent and ingested particles.
Collapse
Affiliation(s)
- Maximilian Semmling
- Institut für Experimentelle Physik I and Paul Flechsig Institut, Universität Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|