1
|
Prunier C, Chavrier P, Boissan M. Mechanisms of action of NME metastasis suppressors - a family affair. Cancer Metastasis Rev 2023; 42:1155-1167. [PMID: 37353690 PMCID: PMC10713741 DOI: 10.1007/s10555-023-10118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.
Collapse
Affiliation(s)
- Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie - Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
- Laboratoire de Biochimie Endocrinienne Et Oncologique, Oncobiologie Cellulaire Et Moléculaire, APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
2
|
Gao H, Cao Y, Wan S, Liu J, Chen G, Li Z, Wang H, Li L. Upregulation of NM23-E2 accelerates the liver regeneration after 40% decreased-size liver transplantation in rats. J Surg Res 2017; 219:325-333. [PMID: 29078900 DOI: 10.1016/j.jss.2017.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/17/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potential of liver regeneration after living-donor liver transplantation is closely associated with the recipient's prognosis, whereas exogenous gene might regulate the liver regeneration progress. NM23 is a multifunctional gene, which inhibits tumor metastasis and regulates cell proliferation, differentiation, development, and apoptosis; however, there is little research about NM23 in promoting liver cell proliferation. METHODS To investigate the effect of NM23-E2 on the liver cell proliferation, the NM23-E2 overexpression vector or negative control vector was transfected into BRL-3A cells and donor liver, respectively. NM23-E2, Cyclin D1, and PCNA expression levels in BRL-3A cells and liver tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Cell Counting Kit-8 was used to detect cell proliferation and flow cytometry for investigating cell cycle. The liver regeneration rate was determined by calculating (regenerated-liver weight of recipient - liver weight of donor/liver weight of donor) × 100%. RESULTS NM23-E2 overexpression increased the NM23-E2, Cyclin D1, and PCNA levels significantly in BRL-3A cells and liver tissues (P < 0.05). The number of S phase cells was more than that of negative control group, and cell proliferation rate was higher than that of the control group in BRL-3A cells markedly (P < 0.05). Moreover, the liver regeneration rate in the NM23-E2 overexpression group was also higher than that in negative control group on postoperative day 1, day 3, day 5, and day 7. CONCLUSIONS Overexpression of NM23-E2 can increase Cyclin D1 and PCNA expression, shorten cell cycle, and thereby promoting the proliferation of liver cells and accelerating the regeneration of liver after 40% decreased-size rat liver transplantation.
Collapse
Affiliation(s)
- Hongqiang Gao
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Yongmei Cao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuo Wan
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical College, Zunyi City, Guzhou Province, PR China
| | - Jing Liu
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Zhiqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Hailei Wang
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China
| | - Li Li
- Department of Hepatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, Kunming City, Yunnan Province, PR China.
| |
Collapse
|
3
|
CHEN TT, TAN GL, CHU G, LIU LJ, YANG JC. Differential Expressions of the Proteins Related to Grain Filling between Superior and Inferior Spikelets of Super Rice after Anthesis. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.01471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Prabhu VV, Siddikuzzaman, Grace VMB, Guruvayoorappan C. Targeting tumor metastasis by regulating Nm23 gene expression. Asian Pac J Cancer Prev 2013; 13:3539-48. [PMID: 23098432 DOI: 10.7314/apjcp.2012.13.8.3539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Nm23 gene is a metastatic suppressor identified in a melanoma cell line and expressed in different tumors where their levels of expression are associated with reduced or increased metastatic potential. Nm23 is one of the over 20 metastasis suppressor genes (MSGs) confirmed in vivo. It is highly conserved from yeast to human, implying a critical developmental function. Tumors with alteration of the p53 gene and reduced expression of the Nm23 gene are more prone to metastasis. Nm23-H1 has 3'-5' exonuclease activity. This review focuses on the role of Nm23 in cancer progression and also a potential novel target for cancer therapy.
Collapse
Affiliation(s)
- V Vinod Prabhu
- Department of Biotechnology, Karunya University, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
5
|
Annesley SJ, Bago R, Bosnar MH, Filic V, Marinović M, Weber I, Mehta A, Fisher PR. Dictyostelium discoideum nucleoside diphosphate kinase C plays a negative regulatory role in phagocytosis, macropinocytosis and exocytosis. PLoS One 2011; 6:e26024. [PMID: 21991393 PMCID: PMC3186806 DOI: 10.1371/journal.pone.0026024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.
Collapse
Affiliation(s)
| | - Ruzica Bago
- Department of Microbology, La Trobe University, Victoria, Australia
- Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filic
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Paul R. Fisher
- Department of Microbology, La Trobe University, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Chen Y, Qian C, Guo C, Ge F, Zhang X, Gao X, Shen S, Lian B, Kitazato K, Wang Y, Xiong S. A Cys/Ser mutation of NDPK-A stabilizes its oligomerization state and enhances its activity. J Biochem 2010; 148:149-55. [PMID: 20403806 DOI: 10.1093/jb/mvq041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleoside diphosphate phosphate transferase A (NDPK-A) has been shown to play critical roles in the regulation of proliferation, differentiation, growth and apoptosis of cells. Our previous study suggested that the disulphide cross-linkage between cysteine 4 (C4) and cysteine 145 (C145) of NDPK-A might be a possible regulator of its activity. To confirm this hypothesis, the C145 residue of NDPK-A was mutated to serine, and the isomerization and biological activities of the mutant were investigated and compared with those of its wild-type counterpart. It was found the C145S mutation eliminated the intramolecular disulphide bond (DB) and prevented the formation of intermolecular DB, which was known to dissociate the hexameric NDPK-A into dimeric one. We also demonstrated that the C145S mutation didn't affect the autologous hexamerization of this protein, and the mutant had increased bioactivities including phosphate transferase and DNase. These findings support the hypothesis that the formation of DBs in NDPK-A is involved in the regulation of the oligomerization and bioactivity of this multiple function protein, and that C145 is a key residue in the regulation of NDPK-A. In addition, the C145S mutant that we have constructed might be an attractive candidate for use in applications that require NDPK-A.
Collapse
Affiliation(s)
- Yunru Chen
- Biomedical R&D Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, P. R. China 510632
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shen Y, Han YJ, Kim JI, Song PS. Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein. BMB Rep 2008; 41:645-50. [PMID: 18823588 DOI: 10.5483/bmbrep.2008.41.9.645] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nucleoside diphosphate kinase (NDPK) is involved in multiple signaling pathways in mammalian systems, including G-protein signaling. Arabidopsis NDPK2, like its mammalian counterparts, is multifunctional despite its initial discovery phytochrome-interacting protein. This similarity raises the possibility that NDPK2 may play a role in G-protein signaling in plants. In the present study, we explore the potential relationship between NDPK2 and the small G proteins, Pra2 and Pra3, as well as the heterotrimeric G protein, GPA1. We report a physical interaction between NDPK2 and these small G proteins, and demonstrate that NDPK2 can stimulate their GTPase activities. Our results suggest that NDPK2 acts as a GTPase-activating protein for small G proteins in plants. We propose that NDPK2 might be a missing link between the phytochromemediated light signaling and G protein-mediated signaling.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
8
|
Morin-Leisk J, Lee TH. Nucleotide-dependent self-assembly of Nucleoside Diphosphate Kinase (NDPK) in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2045-51. [PMID: 18725328 DOI: 10.1016/j.bbapap.2008.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/14/2008] [Accepted: 07/29/2008] [Indexed: 12/17/2022]
Abstract
In addition to their role in nucleotide homeostasis, members of the Nucleoside Diphosphate Kinase (NDPK) family have been implicated in tumor metastasis, cell migration and vesicle trafficking. Although its role in most cases depends on nucleotide catalysis, a precise understanding of how the catalytic activity of NDPK supports its function in diverse processes is lacking. Here we report that wild type, but not catalytically inactive (H118C) NDPKB, undergoes dynamic self-assembly into ordered 20-25 nm diameter filaments in vitro. Self-assembly is nucleoside triphosphate dependent, GTP being most effective at promoting polymer formation. In addition, polymerization appears to depend on formation of the phosphoryl-Histidine intermediate of the enzyme, suggesting a previously unappreciated conformational change in NDPK during its catalytic cycle. We hypothesize that the observed nucleotide-dependent self-assembly property of NDPKB may reflect a key feature of NDPK enzymes that enables their function in diverse processes.
Collapse
Affiliation(s)
- Jeanne Morin-Leisk
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
9
|
Abstract
One of the most aggressive cancers is hepatocellular carcinoma, which is associated with a very poor patient outcome due to a high recurrence rate and metastatic spread. NM23, the first metastasis suppressor gene to be identified, has been widely studied in human cancers. However, conflicting results have been obtained depending on the tumor type and the evaluation protocol. The current knowledge of NM23 as a diagnostic and/or prognostic marker in hepatocellular carcinoma is reviewed herein. Most studies demonstrate an inverse association between the expression of NM23-H1 and the metastatic potential, which is not observed with the closely related NM23-H2 isoform. Transfection of metastatic hepatoma cells with NM23 reduced their metastatic potential, as for other tumor cell lines. The demonstration of a causative role of NM23 in metastatic dissemination in a mouse model of hepatocarcinoma suggests that hepatocarcinoma-derived cells could be good models for the analysis of the molecular mechanisms involved in NM23 action.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM U680, Faculté de Médecine, Université P. et M. Curie (UPMC-Paris 6), 27 rue Chaligny, Paris, F-75012, France
| | | |
Collapse
|
10
|
Wang HC, Wang HC, Leu JH, Kou GH, Wang AHJ, Lo CF. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:672-86. [PMID: 17188354 DOI: 10.1016/j.dci.2006.11.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 05/13/2023]
Abstract
To better understand the pathogenesis of white spot syndrome virus (WSSV) and to determine which cell pathways might be affected after WSSV infection, two-dimensional gel electrophoresis (2-DE) was used to produce protein expression profiles from samples taken at 48 h post-infection (hpi) from the stomachs of Litopenaeus vannamei (also called Penaeus vannamei) that were either specific pathogen free or else infected with WSSV. Seventy-five protein spots that consistently showed either a marked change (>50%) in accumulated levels or else were highly expressed throughout the course of WSSV infection were selected for further study. After in-gel trypsin digestion followed by LC-nanoESI-MS/MS, bioinformatics databases were searched for matches. A total of 53 proteins were identified, with functions that included energy production, calcium homeostasis, nucleic acid synthesis, signaling/communication, oxygen carrier/transportation, and SUMO-related modification. 2-DE results were shown to be consistent with relative EST database data from a previously developed EST database of two Penaeus monodon cDNA libraries. For seven selected genes, 2-DE and EST data were also compared with transcriptional time-course RT-PCR data. This study is the first global analysis of differentially expressed proteins in WSSV-infected shrimp, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated shrimp disease, the results presented here should be useful both for identifying potential biomarkers and for developing antiviral measures.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
11
|
Bosnar MH, Bago R, Gall-Troselj K, Streichert T, Pavelić J. Downstream targets of Nm23-H1: gene expression profiling of CAL 27 cells using DNA microarray. Mol Carcinog 2006; 45:627-33. [PMID: 16739125 DOI: 10.1002/mc.20243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human nm23-H1 was discovered as a tumor metastasis suppressor based on its reduced expression in melanoma cell lines with low versus high metastatic potential. It encodes for one of two subunits of the nucleoside-diphosphate kinase. Besides its role in the maintenance of the cells NTP pool, nm23 plays a key role in different cellular processes. The role of nm23-H1 in these processes still has to be elucidated. Our goal was to identify Nm23-H1 downstream targets by subjecting Nm23-H1 overexpressing CAL 27 cells oral squamous cell carcinoma (OSSC) to microarray analysis. The genes with changed expression patterns could be clustered into several groups: transforming growth factor beta (TGFbeta) signaling pathway, cell adhesion, invasion and motility, proteasome machinery, cell-cycle, epithelial structural and related molecules and others. Based on the expression patterns observed we presume that nm23-H1 might have a role in OSSCs, which should be confirmed by future experiments.
Collapse
Affiliation(s)
- Maja Herak Bosnar
- Division of Molecular Medicine, Rudjer Bosković Institute, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
12
|
Braun S, Mauch C, Boukamp P, Werner S. Novel roles of NM23 proteins in skin homeostasis, repair and disease. Oncogene 2006; 26:532-42. [PMID: 16862176 DOI: 10.1038/sj.onc.1209822] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keratinocyte growth factor (KGF) is an important regulator of epidermal homeostasis and repair. Therefore, the identification of KGF target genes in keratinocytes should contribute to our understanding of the molecular mechanisms underlying these processes. In a search for KGF-regulated genes, we identified the gene encoding the nucleoside diphosphate kinase NM23-H1. Apart from a housekeeping function, NM23 proteins are involved in the regulation of many cellular processes as well as in tumor metastasis, but their functions in epidermal homeostasis and repair are largely unknown. Here, we show a high expression of NM23-H1 and NM23-H2 in the KGF-responsive keratinocytes of the hyperproliferative epidermis of mouse skin wounds and of patients suffering from the skin disease psoriasis. To determine if this overexpression is functionally important, we generated HaCaT keratinocyte cell lines overexpressing NM23-H1 and/or -H2. Whereas the enhanced levels of NM23 did not affect cell proliferation in monoculture, NM23-H2 and double transfectants but not NM23-H1 transfectants formed a strongly hyperthickened epithelium in three-dimensional organotypic cultures. The abnormal epithelial morphology resulted from enhanced proliferation, reduced apoptosis and alterations in the differentiation pattern. These findings suggest that epidermal homeostasis depends on a tight regulation of the levels of NM23 isoforms.
Collapse
Affiliation(s)
- S Braun
- Institute of Cell Biology, ETH Zurich, Hönggerberg, Zurich, Switzerland
| | | | | | | |
Collapse
|
13
|
Boissan M, Wendum D, Arnaud-Dabernat S, Munier A, Debray M, Lascu I, Daniel JY, Lacombe ML. Increased lung metastasis in transgenic NM23-Null/SV40 mice with hepatocellular carcinoma. J Natl Cancer Inst 2005; 97:836-45. [PMID: 15928304 DOI: 10.1093/jnci/dji143] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The metastasis-suppressing role of the NM23 gene in the metastatic spread of solid tumors is still debated. We examined the role of NM23 in tumor development and metastatic dissemination by using transgenic mice that lack mouse NM23 (NM23-M1) in two mouse models of hepatocellular carcinoma (HCC) that recapitulate all steps of tumor progression. METHODS We induced HCC in mice that contained (NM23-M1(+/+)) or lacked (NM23-M1(-/-)) NM23-M1 by diethylnitrosamine injection or by a crossing scheme that transferred a transgene that leads to liver expression of simian virus 40 large T antigen (ASV mice). We used microscopic examination and immunohistochemistry to analyze tumor progression. Expression of Nm23 protein isoforms (Nm23-M1 and Nm23-M2) and several tumor markers was analyzed in the primary tumor and in metastases by Western blotting. The statistical significance of differences in the incidence of Nm23-M2 overexpression in null mice relative to that in wild-type mice was tested by a one-sided Fisher's exact test. The statistical significance of differences in the incidence of metastases was examined using one-sided chi-square tests. All other statistical tests were two-sided. RESULTS In both models, Nm23-M1 and/or Nm23-M2 were overexpressed in the primary liver tumors compared with nontumor liver tissue; however, the lack of the NM23-M1 gene had no effect on primary tumor formation in either model. ASV mice developed pulmonary metastases that were positive for the Hep-Par 1 antibody, which recognizes a specific hepatocyte antigen, whereas the few pulmonary nodules that developed in diethylnitrosamine-injected mice were negative for this antigen. Statistically significantly more ASV/NM23-M1(-/-) mice than ASV/NM23-M1(+/+) mice developed lung metastases (69.2% versus 37.5%; difference = 31.7%, 95% confidence interval = 13.1% to 50.3%; P<.001). In ASV/NM23-M1(+/+) mice, immunohistochemical staining for Nm23-M1 was highly heterogeneous among the primary liver tumors, but weak or negative among lung metastases. CONCLUSIONS The lack of NM23-M1 expression promotes metastasis in the SV40 animal model of liver carcinogenesis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- Antigens, Viral, Tumor/metabolism
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Chi-Square Distribution
- Cyclin A/analysis
- Diethylnitrosamine
- Disease Progression
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Incidence
- Liver/enzymology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/enzymology
- Liver Neoplasms, Experimental/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/secondary
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NM23 Nucleoside Diphosphate Kinases
- Nucleoside-Diphosphate Kinase/genetics
- Simian virus 40/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Mathieu Boissan
- Unité Institut National de la Santé et de la Recherche Médicale 680, Faculté de Médecine Saint-Antoine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chang HC, Hull M, Mellman I. The J-domain protein Rme-8 interacts with Hsc70 to control clathrin-dependent endocytosis in Drosophila. ACTA ACUST UNITED AC 2004; 164:1055-64. [PMID: 15051737 PMCID: PMC2172058 DOI: 10.1083/jcb.200311084] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.
Collapse
Affiliation(s)
- Henry C Chang
- Dept. of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, PO Box 208002, New Haven, CT 06520-8002, USA
| | | | | |
Collapse
|