1
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
Kamiya T, Omae T, Nakabayashi S, Takahashi K, Tanner A, Yoshida A. Effect of Rho Kinase Inhibitor Ripasudil (K-115) on Isolated Porcine Retinal Arterioles. J Ocul Pharmacol Ther 2020; 37:104-111. [PMID: 33351704 DOI: 10.1089/jop.2020.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose: To investigate the vasorelaxation effect of ripasudil (K-115), a novel Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, on isolated retinal arterioles. We determined whether the actions of ripasudil on the retinal microvascular diameter were dependent on the endothelium and/or potassium channels in the smooth muscle, with the goals of uncovering the signaling mechanisms required for this vasomotor activity and inhibiting the action of endothelin-1 (ET-1). Methods: In this in vitro study, we isolated porcine retinal arterioles, which were cannulated and pressurized without flow. We recorded diametric changes using videomicroscopic techniques. Results: In a dose-dependent (10 nM-30 μM) manner, retinal arterioles were relaxed in response to ripasudil [maximum % resting diameter, 160.3% ± 7.7% (mean ± standard error of the mean)]. The ripasudil-induced vasorelaxation was unaffected by endothelium removal, using nonselective potassium channel blocker tetraethylammonium, Ca2+-activated large-conductance potassium channel blocker iberiotoxin, voltage-gated potassium channel blocker 4-AP, ATP-sensitive potassium channel blocker glibenclamide, and inward rectifier potassium channel blocker BaCl2. Ripasudil prevented ET-1-caused vasoconstriction of the retinal arterioles regardless of the presence of endothelium to a similar extent. Conclusion: The ROCK inhibitor ripasudil elicits endothelium-independent relaxation and inhibits the action of ET-1 on the retinal arterioles. Determining the relaxation properties of ripasudil on the retinal microvasculature will likely support the development of potential therapies for glaucoma.
Collapse
Affiliation(s)
- Takayuki Kamiya
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Tsuneaki Omae
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Seigo Nakabayashi
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Kengo Takahashi
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Akira Tanner
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
3
|
Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJ, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q, Khawaja AP, Cheng CY, Höhn R, Yamashiro K, Wenocur A, Grazal C, Haller T, Metspalu A, Wedenoja J, Jonas JB, Wang YX, Xie J, Mitchell P, Foster PJ, Klein BE, Klein R, Paterson AD, Hosseini SM, Shah RL, Williams C, Teo YY, Tham YC, Gupta P, Zhao W, Shi Y, Saw WY, Tai ES, Sim XL, Huffman JE, Polašek O, Hayward C, Bencic G, Rudan I, Wilson JF, Joshi PK, Tsujikawa A, Matsuda F, Whisenhunt KN, Zeller T, van der Spek PJ, Haak R, Meijers-Heijboer H, van Leeuwen EM, Iyengar SK, Lass JH, Hofman A, Rivadeneira F, Uitterlinden AG, Vingerling JR, Lehtimäki T, Raitakari OT, Biino G, Concas MP, Schwantes-An TH, Igo RP, Cuellar-Partida G, Martin NG, Craig JE, Gharahkhani P, Williams KM, Nag A, Rahi JS, Cumberland PM, Delcourt C, Bellenguez C, Ried JS, Bergen AA, Meitinger T, Gieger C, Wong TY, Hewitt AW, Mackey DA, Simpson CL, Pfeiffer N, Pärssinen O, Baird PN, Vitart V, Amin N, van Duijn CM, Bailey-Wilson JE, Young TL, Saw SM, Stambolian D, MacGregor S, Guggenheim JA, Tung JY, Hammond CJ, Klaver CC. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet 2018; 50:834-848. [PMID: 29808027 PMCID: PMC5980758 DOI: 10.1038/s41588-018-0127-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Wojciechowski
- Department of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Pirro G. Hysi
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | | | | | - Virginie J.M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stuart W. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Qiao Fan
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
| | - Anthony P. Khawaja
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - René Höhn
- Department of Ophthalmology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Adam Wenocur
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clare Grazal
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Xie
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Barbara E.K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Rupal L. Shah
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, UK
| | - Cathy Williams
- Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Yik Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Yih Chung Tham
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Preeti Gupta
- Department of Health Service Research, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yuan Shi
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Woei-Yuh Saw
- Life Sciences Institute, National University of Singapore, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Xue Ling Sim
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | | | - Roxanna Haak
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M. van Leeuwen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jonathan H. Lass
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.HChan School of Public Health, Boston, Massachusetts, USA
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Sassari, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Tae-Hwi Schwantes-An
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katie M. Williams
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Jugnoo S. Rahi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Ulverscroft Vision Research Group, University College London, London, UK
| | | | - Cécile Delcourt
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F-33000 Bordeaux, France
| | - Céline Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U1167, RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
- Université de Lille, U1167 - Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Tien Yin Wong
- Academic Medicine Research Institute, Singapore
- Retino Center, Singapore National Eye Centre, Singapore, Singapore
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Claire L. Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tenessee
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Paul N. Baird
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
- Myopia Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells. PLoS One 2017; 12:e0185390. [PMID: 28938016 PMCID: PMC5609771 DOI: 10.1371/journal.pone.0185390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby generating a positive feed-forward loop of endothelin receptor activation and expression. This feed-forward regulation may contribute to RGC death and astrocyte proliferation following ET-1 treatment.
Collapse
|
5
|
Prayitnaningsih S, Sujuti H, Effendi M, Abdullah A, Anandita NW, Yohana F, Permatasari N, Widodo MA. Neuropathy optic glaucomatosa induced by systemic hypertension through activation endothelin-1 signaling pathway in central retinal artery in rats. Int J Ophthalmol 2016; 9:1568-1577. [PMID: 27990358 DOI: 10.18240/ijo.2016.11.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
AIM To evaluate effect of hypertension on retinal ganglion cell (RGC) apoptosis, intraocular pressure (IOP), and the activation of endothelin-1 (ET-1) signaling pathway in central retinal artery (CRA) in rats. METHODS The experimental study was performed on 20 male Sprague Dawley rats that were divided into control group, and hypertension groups. The hypertension was induced by subcutaneous deoxycorticoacetate (DOCA) 10 mg/kg twice a week and administered 0.9% NaCl solution daily for 2, 6, and 10wk. Blood pressure (BP) was measured using animal BP analyzer. IOP was measured by handheld tonometry. Retinal tissue preparations by paraffin blocks were made after enucleation. The expression of ET-1, eNOS, ET-1 receptor A (ETRA), ET-1 receptor B (ETRB), and phosphorylated myosin light chain kinase (MLCK), and caldesmon (CaD) in CRA and RGC apoptosis were evaluated through immunofluorescent staining method then observed using laser scanning confocal microscopy. RESULTS BP significantly increased in all of the hypertension groups compared to control (P=0.001). Peak IOP elevation (7.78±4.14 mm Hg) and RGC apoptosis (576.15±33.28 Au) occurred on 2wk of hypertension. ET-1 expression (1238.6±55.1 Au) and eNOS expression (2814.2±70.7 Au) were found highest in 2wk of hypertension, although the ratio of ET-1/eNOS decreased since 2wk. ETRA reached peak expression in 10wk of hypertension (1219.4±6.3 Au), while ETRB significantly increased only in 2 weeks group (1069.2±9.6 Au). The highest MLCK expression (1190.09±58.32 Au), CaD (1670.28±18.36 Au) were also found in 2wk of hypertension. CONCLUSION Hypertension effects to activation of ET-1 signaling pathway significantly in CRA, elevation of IOP, and RGC apoptosis. The highest value was achieved at 2wk, which is the development phase of hypertension.
Collapse
Affiliation(s)
| | - Hidayat Sujuti
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Maksum Effendi
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Aulia Abdullah
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Nanda Wahyu Anandita
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Febriani Yohana
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Nur Permatasari
- Pharmacology Laboratory, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Mohamad Aris Widodo
- Pharmacology Laboratory, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| |
Collapse
|
6
|
Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury. Neuroscience 2016; 325:153-64. [PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022]
Abstract
Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
Collapse
|
7
|
He S, Park YH, Yorio T, Krishnamoorthy RR. Endothelin-Mediated Changes in Gene Expression in Isolated Purified Rat Retinal Ganglion Cells. Invest Ophthalmol Vis Sci 2015; 56:6144-61. [PMID: 26397462 DOI: 10.1167/iovs.15-16569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE A growing body of evidence suggests that the vasoactive peptides endothelins (ETs) and their receptors (primarily the ETB receptor) are contributors to neurodegeneration in glaucoma. However, actions of ETs in retinal ganglion cells (RGCs) are not fully understood. The purpose of this study was to determine the effects of ETs on gene expression in primary RGCs. METHODS Primary RGCs isolated from rat pups were treated with 100 nM of ET-1, ET-2, or ET-3 for 24 hours. Total RNA was extracted followed by cDNA synthesis. Changes in gene expression in RGCs were detected using Affymetrix Rat Genome 230 2.0 microarray and categorized by DAVID analysis. Real-time PCR was used to validate gene expression, and immunocytochemistry and immunoblotting to confirm the protein expression of regulated genes. RESULTS There was more than 2-fold upregulation of 328, 378, or 372 genes, and downregulation of 48, 33, or 28 genes with ET-1, ET-2, or ET-3 treatment, respectively, compared to untreated controls. The Bcl-2 family, S100 family, matrix metalloproteinases, c-Jun, and ET receptors were the major genes or proteins that were regulated by endothelin treatment. Immunocytochemical staining revealed a significant increase in ETA receptor, ETB receptor, growth associated protein 43 (GAP-43), phosphorylated c-Jun, c-Jun, and Bax with ET-1 treatment. Protein levels of GAP-43 and c-Jun were confirmed by immunoblotting. CONCLUSIONS Expression of key proteins having regulatory roles in apoptosis, calcium homeostasis, cell signaling, and matrix remodeling were altered by treatment with endothelins. The elucidation of molecular mechanisms underlying endothelins' actions in RGCs will help understand endothelin-mediated neurodegenerative changes during ocular hypertension.
Collapse
Affiliation(s)
- Shaoqing He
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States 2North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yong H Park
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States 3Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States 3Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Raghu R Krishnamoorthy
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States 2North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
8
|
Wong M, Huang P, Li W, Li Y, Zhang SS, Zhang C. T-helper1/T-helper2 cytokine imbalance in the iris of patients with glaucoma. PLoS One 2015; 10:e0122184. [PMID: 25811482 PMCID: PMC4374700 DOI: 10.1371/journal.pone.0122184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/08/2015] [Indexed: 12/19/2022] Open
Abstract
The mechanistic study of glaucoma pathogenesis has shifted to seeking to understand the effects of immune responses on retinal ganglion cell damage and protection. Cytokines mediate the biological effects of the immune system, and our previous study revealed an imbalance of T-helper (Th) 1-derived and Th2-derived cytokines in the serum of patients with glaucoma. In this study, we collected irises from normal individuals and patients with primary open-angle closure (POAG) or chronic angle-closure glaucoma (CACG). We used real-time polymerase chain reaction (PCR) to measure the expression of Th1 (interleukin (IL)-2, interferon-gamma (IFN-γ)), Th2 (IL-4, IL-6, IL-10), and Th3 (transforming growth factor-beta (TGF-β)) cytokines. We then performed immunohistochemical staining to characterize the localization of the upregulated cytokines in iris cryosections. We observed an upward trend in the expression of IL-2 and IFN-γ and a downward trend in IL-6 expression in the iris of POAG and CACG patients. Expression of TGF-β also increased. Immunohistochemistry revealed that IL-2 expression in POAG and CACG patients was localized in the anterior surface of the blood vessel wall in the stroma of the iris, in the cytoplasm of some cells, in the anterior epithelium, and in the posterior pigment epithelium. These findings indicate that immune status differed between the iris tissues of POAG and CACG patients and those of normal individuals. A T-helper cytokine imbalance may modulate the immune microenvironment in glaucomatous eyes and thus influence optic neuropathy.
Collapse
Affiliation(s)
- ManSin Wong
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Ping Huang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
- * E-mail:
| | - Weiyi Li
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Li
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Samuel S. Zhang
- Department of Neural & Behavioral Sciences, Penn State University, Hershey, Pennsylvania, United States of America
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| |
Collapse
|
9
|
He S, Minton AZ, Ma HY, Stankowska DL, Sun X, Krishnamoorthy RR. Involvement of AP-1 and C/EBPβ in upregulation of endothelin B (ETB) receptor expression in a rodent model of glaucoma. PLoS One 2013; 8:e79183. [PMID: 24265756 PMCID: PMC3827153 DOI: 10.1371/journal.pone.0079183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
Previous studies showed that the endothelin B receptor (ETB) expression was upregulated and played a key role in neurodegeneration in rodent models of glaucoma. However, the mechanisms underlying upregulation of ETB receptor expression remain largely unknown. Using promoter-reporter assays, the 1258 bp upstream the human ETB promoter region was found to be essential for constitutive expression of ETB receptor gene in human non-pigmented ciliary epithelial cells (HNPE). The −300 to −1 bp and −1258 to −600 bp upstream promoter regions of the ETB receptor appeared to be the key binding regions for transcription factors. In addition, the crucial AP-1 binding site located at −615 to −624 bp upstream promoter was confirmed by luciferase assays and CHIP assays which were performed following overexpression of c-Jun in HNPE cells. Overexpression of either c-Jun or C/EBPβ enhanced the ETB receptor promoter activity, which was reflected in increased mRNA and protein levels of ETB receptor. Furthermore, knock-down of either c-Jun or C/EBPβ in HNPE cells was significantly correlated to decreased mRNA levels of both ETB and ETA receptor. These observations suggest that c-Jun and C/EBPβ are important for regulated expression of the ETB receptor in HNPE cells. In separate experiments, intraocular pressure (IOP) was elevated in one eye of Brown Norway rats while the corresponding contralateral eye served as control. Two weeks of IOP elevation produced increased expression of c-Jun and C/EBPβ in the retinal ganglion cell (RGC) layer from IOP-elevated eyes. The mRNA levels of c-Jun, ETA and ETB receptor were upregulated by 2.2-, 3.1- and 4.4-fold in RGC layers obtained by laser capture microdissection from retinas of eyes with elevated IOP, compared to those from contralateral eyes. Taken together, these data suggest that transcription factor AP-1 plays a key role in elevation of ETB receptor in a rodent model of ocular hypertension.
Collapse
Affiliation(s)
- Shaoqing He
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| | - Alena Z. Minton
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Dorota L. Stankowska
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Xiangle Sun
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Raghu R. Krishnamoorthy
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
10
|
Cai J, Chen J, Cao M, Wang P, Feng C, Ji M. Design, synthesis, and biological evaluation of benzofuran derivatives as ET receptor antagonists. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0542-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Bramall AN, Szego MJ, Pacione LR, Chang I, Diez E, D'Orleans-Juste P, Stewart DJ, Hauswirth WW, Yanagisawa M, McInnes RR. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 2013; 8:e58023. [PMID: 23469133 PMCID: PMC3585171 DOI: 10.1371/journal.pone.0058023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022] Open
Abstract
Expression of the Endothelin-2 (Edn2) mRNA is greatly increased in the photoreceptors (PRs) of mouse models of inherited PR degeneration (IPD). To examine the role of Edn2 in mutant PR survival, we generated Edn2−/− mice carrying homozygous Pde6brd1 alleles or the Tg(RHO P347S) transgene. In the Edn2−/− background, PR survival increased 110% in Pde6brd1/rd1 mice at post-natal (PN) day 15, and 60% in Tg(RHO P347S) mice at PN40. In contrast, PR survival was not increased in retinal explants of Pde6brd1/rd1; Edn2−/− mice. This finding, together with systemic abnormalities in Edn2−/− mice, suggested that the increased survival of mutant PRs in the Edn2−/− background resulted at least partly from the systemic EDN2 loss of function. To examine directly the role of EDN2 in mutant PRs, we used a scAAV5-Edn2 cDNA vector to restore Edn2 expression in Pde6brd1/rd1; Edn2−/− PRs and observed an 18% increase in PR survival at PN14. Importantly, PR survival was also increased after injection of scAAV5-Edn2 into Pde6brd1/rd1 retinas, by 31% at PN15. Together, these findings suggest that increased Edn2 expression is protective to mutant PRs. To begin to elucidate Edn2-mediated mechanisms that contribute to PR survival, we used microarray analysis and identified a cohort of 20 genes with >4-fold increased expression in Tg(RHO P347S) retinas, including Fgf2. Notably, increased expression of the FGF2 protein in Tg(RHO P347S) PRs was ablated in Tg(RHO P347S); Edn2−/− retinas. Our findings indicate that the increased expression of PR Edn2 increases PR survival, and suggest that the Edn2-dependent increase in PR expression of FGF2 may contribute to the augmented survival.
Collapse
Affiliation(s)
- Alexa N. Bramall
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael J. Szego
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Laura R. Pacione
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Inik Chang
- Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Eduardo Diez
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pedro D'Orleans-Juste
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Duncan J. Stewart
- The Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - William W. Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Masashi Yanagisawa
- Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Roderick R. McInnes
- Program in Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Nakabayashi S, Nagaoka T, Tani T, Sogawa K, Hein TW, Kuo L, Yoshida A. Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors. Exp Eye Res 2012; 103:63-70. [PMID: 22940370 DOI: 10.1016/j.exer.2012.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the roles of endothelium-derived factors in the retinal arteriolar responses to acute severe elevation in systemic blood pressure (BP) in cats. Acute elevation of mean arterial BP by 60% for 5 min was achieved by inflating a balloon-tipped catheter in the descending aorta. The retinal arteriolar diameter, flow velocity, wall shear rate (WSR) and blood flow (RBF) changes during BP elevation were assessed with laser Doppler velocimetry 2 h after intravitreal injections of nitric oxide (NO) synthase inhibitor l-NAME, cyclooxygenase inhibitor indomethacin, endothelin-1 receptor antagonists (BQ-123 for type A and BQ-788 for type B), or Rho kinase inhibitor fasudil. BP elevation caused a marked increase in retinal arteriolar flow velocity and WSR with slight vasoconstriction, resulting in an increase in RBF. The increases in velocity, WSR and RBF, but not diameter, were correlated with the increase in ocular perfusion pressure. With l-NAME or indomethacin, the increase in RBF upon BP elevation was significantly attenuated due to enhanced retinal arteriolar vasoconstriction. In contrast, BQ-123 and fasudil potentiated the increased RBF. BQ-788 had no effect on arteriolar diameter and hemodynamics. Our data suggest that acute elevation of BP by 60% leads to an increase in RBF due to the release of NO and prostanoids probably through a shear stress-induced vasodilation mechanism. The release of endothelin-1 and Rho kinase activation help to limit RBF augmentation by counteracting the vasodilation. It appears that the retinal endothelium, by releasing vasoactive substances, contributes to RBF regulation during acute severe elevation of systemic blood pressure.
Collapse
Affiliation(s)
- Seigo Nakabayashi
- Department of Ophthalmology, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Minton AZ, Phatak NR, Stankowska DL, He S, Ma HY, Mueller BH, Jiang M, Luedtke R, Yang S, Brownlee C, Krishnamoorthy RR. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma. PLoS One 2012; 7:e43199. [PMID: 22916224 PMCID: PMC3423444 DOI: 10.1371/journal.pone.0043199] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/18/2012] [Indexed: 12/29/2022] Open
Abstract
Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP) characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ETB) receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ETB receptors in the retina, mainly in retinal ganglion cells (RGCs), nerve fiber layer (NFL), and also in the inner plexiform layer (IPL) and inner nuclear layer (INL). To determine the role of ETB receptors in neurodegeneration, Wistar-Kyoto wild type (WT) and ETB receptor-deficient (KO) rats were subjected to retrograde labeling with Fluoro-Gold (FG), following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ETB receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.
Collapse
Affiliation(s)
- Alena Z. Minton
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Nitasha R. Phatak
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Dorota L. Stankowska
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Shaoqing He
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Brett H. Mueller
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ming Jiang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Robert Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Shaohua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Colby Brownlee
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Raghu R. Krishnamoorthy
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Mi XS, Chiu K, Van G, Leung JWC, Lo ACY, Chung SK, Chang RCC, So KF. Effect of Lycium barbarum Polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma. Neural Regen Res 2012; 7:645-51. [PMID: 25745457 PMCID: PMC4347002 DOI: 10.3969/j.issn.1673-5374.2012.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/01/2012] [Indexed: 12/15/2022] Open
Abstract
Lycium barbarum, a traditional Chinese anti-aging herb, has been shown to protect retinal ganglion cells (RGCs) in a rat chronic ocular hypertension (COH) model. Here, we investigated the expression of endothelin-1 (ET-1), a strong vasoconstrictor, and its receptors, ETA and ETB, in the COH model and assessed the effects of Lycium barbarum on the ET-1 axis. Elevated intraocular pressure (IOP) was induced in the right eye of SD rats using argon laser photocoagulation. (1) The expression of ET-1, ETA and ETB in normal and COH retinas was studied. (2) Some COH rats were fed daily with Lycium barbarum Polysaccharides (LBP) using 1 mg/kg or phosphate-buffered saline (PBS) for 3 weeks (started 1 week before photocoagulation). The effects of LBP on the expression of ET-1 and its receptors, ETA and ETB, in COH retina were evaluated. A semi-quantitative analysis of staining intensity was used to evaluate the expression levels of ET-1, ETA and ETB in retinal vasculature. We found that (1) Under COH condition, the immunoreactivity of ET-1 was increased in retina associated with an increase of ETB receptor immunoreactivity and a decrease of ETA receptor immunoreactivity. (2) After feeding COH rats with LBP, the expression of ET-1 was decreased with an increase of ETA expression and a decrease of ETB expression in the retina, especially in RGCs. (3) By comparing the staining intensity in the vasculature of COH retina in LBP-fed group with PBS-fed group, there was a decrease in the expression of ET-1 and ETA and an increase in ETB. In summary, ET-1 expression was up-regulated in the retina in COH model. LBP could decrease the expression of ET-1 and modulate the expression of its receptors, ETA and ETB, under the condition of COH. The neuroprotective effect of LBP on RGCs might be related to its ability to regulate the ET-1-mediated biological effects on RGCs and retinal vasculature.
Collapse
Affiliation(s)
- Xue-Song Mi
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kin Chiu
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Geoffrey Van
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Justin Wai Chung Leung
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Amy Cheuk Yin Lo
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Sookja Kim Chung
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Raymond Chuen-Chung Chang
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Fai So
- Department of Anatomy and the State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
15
|
Rosenthal R, Fromm M. Endothelin antagonism as an active principle for glaucoma therapy. Br J Pharmacol 2011; 162:806-16. [PMID: 21054341 DOI: 10.1111/j.1476-5381.2010.01103.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endothelin, the most potent vasoactive peptide known to date, has been suggested to play a potential role in the pathogenesis of open-angle glaucoma. Open-angle glaucoma is the most common optic nerve head neuropathy and is associated with a loss of retinal ganglion cells and visual field damage. Although an increased intraocular pressure is a major risk factor for glaucomatous optic neuropathy, other factors such as a reduced ocular blood flow play an important role for appearance of the disease. Thus, treatment of glaucoma is focused on lowering of intraocular pressure and preventing the occurrence or progression of glaucomatous optic neuropathy. Endothelin participates in the regulation of intraocular pressure by an effect on trabecular outflow, the main route for aqueous humour outflow from the eye. Trabecular outflow is modulated by trabecular meshwork contractility which is affected by endothelin. In addition to the effects of endothelin in the anterior part of the eye, the vasoconstrictor causes a decrease in ocular blood flow followed by pathological changes in the retina and the optic nerve head which is assumed to contribute to the degeneration of retinal ganglion cells. In sum, inhibition of endothelin signalling leads to lowering of intraocular pressure and exerts neuroprotective effects. Thus, endothelin antagonism in the eye represents a promising approach for pharmacological treatment of glaucoma.
Collapse
Affiliation(s)
- Rita Rosenthal
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Freie Universität and Humboldt-Universität Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Narayan S, Prasanna G, Tchedre K, Krishnamoorthy R, Yorio T. Thrombin-induced endothelin-1 synthesis and secretion in retinal pigment epithelial cells is rho kinase dependent. J Ocul Pharmacol Ther 2011; 26:389-97. [PMID: 20874501 DOI: 10.1089/jop.2010.0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) is a major source for endothelin-1 (ET-1), a potent vasoactive peptide, at the outer blood–retinal barrier. Factors that regulate ET-1 synthesis at this site may help identify its normal function and its role in pathologic states accompanying retinal injury. Thrombin is one such factor that might act on the RPE after injury and breakdown of the blood–retinal barrier. The present study was conducted to identify signaling intermediates in thrombin-induced ET-1 synthesis and secretion in primary human RPE (hRPE) and transformed RPE cells (ARPE-19) and a possible pharmacological strategy to block excess release of ET-1. METHODS Cultured hRPE cells were treated with different concentrations of thrombin and thrombin receptor agonists, and a time course to measure levels of preproET-1 (ppET-1) mRNA and secreted mature ET-1 was performed. Levels of secondary messengers [Ca²+]i and RhoA were measured and pharmacologically inhibited to determine how receptor-mediated thrombin activity lead to changes in ET-1 levels. RESULTS Thrombin primarily acts via the protease-activated receptor-1 (PAR-1) subtype in RPE to induce ET-1 synthesis. Thrombin and other receptor agonists increased both [Ca²+]<]i and active RhoA. PAR-1-dependent rho/Rho kinase activation led to increase in ppET-1 mRNA and mature ET-1 secretion. CONCLUSIONS Transient intracellular calcium mobilization and protein kinase C activation by thrombin play a minor role, if any, in ET-1 synthesis in RPE. Instead, rho/Rho kinase activation after PAR-1 stimulation strongly increased ppET-1 mRNA and ET-1 secretion in hRPE cells.
Collapse
Affiliation(s)
- Santosh Narayan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center , Fort Worth, Texas, USA.
| | | | | | | | | |
Collapse
|
17
|
Wang RF, Podos SM, Serle JB, Baltatu OC. Effect of SPP 301, an endothelin antagonist, on intraocular pressure in glaucomatous monkey eyes. Curr Eye Res 2011; 36:41-6. [PMID: 21174596 DOI: 10.3109/02713683.2010.512695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the effect of topical application of avosentan (SPP 301), endothelin receptor type A antagonist, on intraocular pressure (IOP) in monkey eyes with laser-induced unilateral glaucoma. MATERIALS AND METHODS A multiple-dose study was performed in eight glaucomatous monkey eyes that were topically treated with SPP 301 by applying a 50 µl drop (25 µl × 2) at 9:30 a.m. and 3:30 p.m. for 5 consecutive days at three concentrations (0.003%, 0.03%, or 0.3%). IOP was measured hourly for 6 hrs on each day of the study beginning at 9:30 a.m. for one baseline day, one vehicle-treated day, and treatment days 1, 3, and 5. RESULTS Twice daily administration of each of the three concentrations of SPP 301 for 5 days significantly (p < 0.05) reduced IOP. The maximum reduction in IOP occurred 2 or 3 hrs after morning dosing and was 1.8 ± 0.8 (mean ± SEM) mmHg (6%) for 0.003% SPP 301, 4.1 ± 0.7 mmHg (13%) for 0.03% SPP 301, and 7.1 ± 1.3 mmHg (21%) for 0.3% SPP 301. The longest duration of IOP reduction was for 2 hrs with 0.003% SPP 301, and was for at least 6 hrs with 0.03% and 0.3% concentrations. Compared to 0.03% or 0.003% concentrations, 0.3% SPP 301 produced a greater (p < 0.05) IOP reduction. IOP was reduced in fellow untreated normal eyes 2 hr after morning dosing with 0.3% SPP 301, maximum reduction in IOP (11%) occurred on day 1. Of the eyes treated with 0.3% SPP 301, one eye demonstrated mild conjunctival discharge and one eye was closed for 5 min after dosing. CONCLUSION Topically applied SPP 301, an endothelin antagonist, reduced IOP in glaucomatous monkey eyes in a dose-dependent manner. Endothelin antagonists, a novel class of compound, may have potential for the treatment of glaucoma.
Collapse
Affiliation(s)
- Rong-Fang Wang
- Department of Ophthalmology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
18
|
Alpha-Blockers and Intraoperative Floppy Iris Syndrome: Ophthalmic Adverse Events Following Cataract Surgery. Curr Urol Rep 2010; 11:242-8. [DOI: 10.1007/s11934-010-0119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Oku H, Fukuhara M, Kurimoto T, Okuno T, Sugiyama T, Ikeda T. Endothelin-1 (ET-1) is Increased in Rat Retina After Crushing Optic Nerve. Curr Eye Res 2009; 33:611-20. [DOI: 10.1080/02713680802213614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Tezel G. TNF-alpha signaling in glaucomatous neurodegeneration. PROGRESS IN BRAIN RESEARCH 2009; 173:409-21. [PMID: 18929124 DOI: 10.1016/s0079-6123(08)01128-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing evidence supports the role of tumor necrosis factor-alpha (TNF-alpha) as a mediator of neurodegeneration in glaucoma. Glial production of TNF-alpha is increased, and its death receptor is upregulated on retinal ganglion cells (RGCs) and optic nerve axons in glaucomatous eyes. This multifunctional cytokine can induce RGC death through receptor-mediated caspase activation, mitochondrial dysfunction, and oxidative stress. In addition to direct neurotoxicity, potential interplay of TNF-alpha signaling with other cellular events associated with glaucomatous neurodegeneration may also contribute to spreading neuronal damage by secondary degeneration. Opposing these cell death-promoting signals, binding of TNF receptors can also trigger the activation of survival signals. A critical balance between a variety of intracellular signaling pathways determines the predominant in vivo bioactivity of TNF-alpha as best exemplified by differential responses of RGCs and glia. This review focuses on the present evidence supporting the involvement of TNF-alpha signaling in glaucomatous neurodegeneration and possible treatment targets to provide neuroprotection.
Collapse
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology & Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Wang X, LeVatte TL, Archibald ML, Chauhan BC. Increase in endothelin B receptor expression in optic nerve astrocytes in endothelin-1 induced chronic experimental optic neuropathy. Exp Eye Res 2009; 88:378-85. [DOI: 10.1016/j.exer.2008.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 09/13/2008] [Accepted: 09/15/2008] [Indexed: 11/27/2022]
|
22
|
Krishnamoorthy RR, Rao VR, Dauphin R, Prasanna G, Johnson C, Yorio T. Role of the ETB receptor in retinal ganglion cell death in glaucoma. Can J Physiol Pharmacol 2008; 86:380-93. [PMID: 18516102 DOI: 10.1139/y08-040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent observations suggest that the vasoactive peptide endothelin-1 (ET-1) may be an important contributor to the etiology of glaucoma. ET-1 administration has been shown to produce optic nerve axonal loss and apoptosis of retinal ganglion cells. Ocular ET-1 levels are elevated in aqueous humor in response to elevated intraocular pressure both in glaucoma patients and in animal models of glaucoma; however, the precise mechanisms by which ET-1 mediates glaucomatous optic neuropathy are not clear. Presently we report that ET-1-mediated apoptosis was markedly attenuated in ETB receptor-deficient rats, suggesting a key role for ETB receptors in apoptosis of retinal ganglion cells by ET-1 treatment. Using virally transformed rat retinal ganglion cells (RGC-5 cells), we found that ET-1 (100 nmol/L) treatment produced apoptotic changes in these cells that was determined by flow cytometric analyses, release of mitochondrial cytochrome c to the cytosol, and increased phosphorylation of c-Jun N-terminal kinase. Pretreatment with the ETB-receptor antagonist BQ788 (1 micromol/L) was able to significantly attenuate ET-1-mediated apoptosis in RGC-5 cells. ET-1-mediated apoptotic changes in RGC-5 cells were associated with ETB-receptor activation and were accompanied by a significant upregulation of ETB-receptor expression. These studies suggest that ocular ET-1 acts through ETB receptors to mediate apoptosis of retinal ganglion cells, a key event in glaucoma and related optic neuropathies.
Collapse
Affiliation(s)
- Raghu R Krishnamoorthy
- Department of Pharmacology and Neuroscience, UNT Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Renieri G, Choritz L, Rosenthal R, Meissner S, Pfeiffer N, Thieme H. Effects of endothelin-1 on calcium-independent contraction of bovine trabecular meshwork. Graefes Arch Clin Exp Ophthalmol 2008; 246:1107-15. [PMID: 18401592 DOI: 10.1007/s00417-008-0817-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Endothelin-1 (ET-1) is known to induce contraction of trabecular meshwork (TM) and is probably involved in the pathogenesis of glaucoma. Calcium (Ca(2+))-independent contraction has been shown in TM, and its inhibition may represent an interesting way of influencing outflow facility, and thus intraocular pressure (IOP). This study investigates the role of ET-1 and its receptors ET-A and ET-B (ET-AR and ET-BR) in TM Ca(2+)-independent contractility. METHODS Isometric tension measurements of bovine TM (BTM) strips were performed using a force-length transducer system. Intra- and extracellular Ca(2+) buffering was achieved by means of EGTA and BAPTA-AM. Under Ca(2+)-free conditions, ET-1-induced contractility of TM was assessed also in the presence of the specific inhibitors for ET-AR and ET-BR, BQ123 and BQ788 respectively. In order to clarify the intracellular mediators of Ca(2+)-independent contractility induced by ET-1, TM contraction was further measured in the presence of Y-27632, a selective inhibitor of Rho-associated kinases (ROCKs). The expression of ROCK1 and of its activating protein RhoA in BTM cells was investigated using western blot analysis. RESULTS ET-1 induced a significant contraction of native BTM after intra- and extracellular Ca(2+)-depletion (45% +/- 8% of the maximally inducible contraction). Both endothelin receptor inhibitors BQ123 and BQ788 significantly reduced TM Ca(2+)-independent contraction in response to ET-1 (8.4 +/- 3.3% and 20.3 +/- 4.8% respectively). In the presence of the ROCK inhibitor Y-27632, ET-1-induced contraction of TM under Ca(2+)-free conditions was almost completely abolished (4.3% +/- 1.7%, p < 0.001). A clear signal for RhoA at 24 kDa and ROCK1 at 160 kDa could be detected in lysates of native tissue and cultured BTM cells with western blot. CONCLUSIONS This study shows evidence that a significant portion of ET-1-induced contraction of TM is Ca(2+)-independent. In this contraction pathway, both ET-AR and ET-BR are involved with RhoA and its kinases as intracellular mediators. Ca(2+)-independent contraction of TM in response to ET-1 may represent a specific target to modulate IOP.
Collapse
Affiliation(s)
- Giulia Renieri
- Department of Ophthalmology, Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55101, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Borrás T. Chapter 11 What is Functional Genomics Teaching us about Intraocular Pressure Regulation and Glaucoma? CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Oku H, Fukuhara M, Komori A, Okuno T, Sugiyama T, Ikeda T. Endothelin-1 (ET-1) causes death of retinal neurons through activation of nitric oxide synthase (NOS) and production of superoxide anion. Exp Eye Res 2007; 86:118-30. [PMID: 17996868 DOI: 10.1016/j.exer.2007.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 08/28/2007] [Accepted: 10/03/2007] [Indexed: 12/13/2022]
Abstract
Endothelin-1 (ET-1) is the most potent and long-acting vasoconstricting peptide presently known. In addition to its vascular effects, endothelin signaling pathway exists in the central nervous system (CNS), which is deeply related to neuronal degeneration. In the present study, we evaluated the effect of ET-1 on death of retinal neurons consisting mainly of amacrine cells, and its interaction with nitric oxide synthase (NOS) and superoxide production. Cultured retinal neurons from fetal rats were exposed to various doses of ET-1 (0.1, 1.0, 10 and 100nM). Neuronal toxicity of ET-1 was assessed by trypan blue exclusion, Hoechst 33,258 staining and TUNEL assay at different times. Intracellular levels of nitric oxide (NO), superoxide and peroxynitrite were determined semiquantitatively by DAF2-DA, hydroethidine and dihydrorhodamine-123, respectively. The effects of adding SOD (100U/ml) and L-NAME with ET-1 on these changes were evaluated. In addition, the receptor mechanisms involved in these reactions were determined by BQ-123 and BQ-788, receptor antagonists for ET A and ET B receptors, respectively. Exposure of cultured retinal neurons to ET-1 reduced the percentage of living cells in a dose- and time-dependent way, and the percentage of living cells was significantly increased by addition of SOD and L-NAME. Fluorometric analyses revealed that ET-1 increased the intracellular NO level in a dose- and time-dependent manner. The intracellular superoxide and peroxynitrite levels were also significantly increased 24h after incubation with 100nM of ET-1, and this elevation was suppressed by SOD and L-NAME. These ET-1-induced alterations were significantly suppressed when both BQ-123 and BQ-788 were added simultaneously with ET-1 to the medium. These results indicate that the neuronal death caused by ET-1 is most likely mediated by the activation of NOS in association with the formation of superoxides and peroxynitrite.
Collapse
Affiliation(s)
- Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi Takatsuki Osaka, 569-8686 Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Rosenthal R, Choritz L, Zorn R, Münzer G, Fromm M, Pfeiffer N, Thieme H. Endothelin receptor B in trabecular meshwork. Exp Eye Res 2007; 85:482-91. [PMID: 17669399 DOI: 10.1016/j.exer.2007.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1), the most potent vasoconstrictor known to date, seems to be involved in the pathogenesis of primary open angle glaucoma. ET-1 was found in different tissues of the eye and in high concentrations in the aqueous humour. The effects of ET-1 are mediated by two receptors, ET-A receptor (ET-AR) and ET-B receptor (ET-BR), which are both expressed in bovine trabecular meshwork (TM). ET-1 induced contraction of TM predominantly by activation of ET-AR. This study analyzes the role of ET-BR in TM function and investigates the synthesis of ET-1 by human TM (HTM) cells. The effect of IRL-1620, a specific ET-BR agonist, on contractility of bovine TM (BTM) was investigated with a force length transducer system. The effect of this agonist on intracellular free Ca(2+) [Ca(2+)](i) was examined using the Ca(2+)-sensitive dye fura-2AM. The expression of the ET-AR and ET-BR was investigated in cultured HTM cells using Western blot and PCR methods. With PCR methods the expression of prepro-endothelin-1 (ppET-1) and isoforms of endothelin-1 converting enzyme (ECE-1) in cultured HTM cells was analyzed. Activation of ET-BR by IRL-1620 (5 x 10(-7)M) results in contraction of native BTM (41% of the carbachol value) and also in a transient increase in [Ca(2+)](i) in cultured BTM and HTM cells (365 and 273% of the basal level, respectively). IRL-1620 also induced contraction in native BTM under intra- and extracellularly Ca(2+)-free conditions. A clear signal for ET-AR at 40 kDa and ET-BR at 35 kDa could be detected in membrane lysates of cultured HTM cells. PCR analysis further confirmed the existence of ET-AR and ET-BR in these cells. Furthermore, RT-PCR revealed that neither ppET-1 nor one of the ECE-1 isoforms was expressed in cultured HTM cells. This study presents evidence for the expression of a functional ET-BR in bovine and human TM. Currently, there is no evidence for ET-1 synthesis in HTM cells. Further investigations are necessary to clarify the physiological function of ET-BR in TM and the source of ET-1 at this tissue.
Collapse
Affiliation(s)
- Rita Rosenthal
- Institut für Klinische Physiologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Xue W, Comes N, Borrás T. Presence of an established calcification marker in trabecular meshwork tissue of glaucoma donors. Invest Ophthalmol Vis Sci 2007; 48:3184-94. [PMID: 17591888 PMCID: PMC1994153 DOI: 10.1167/iovs.06-1403] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the presence of calcification markers in the trabecular meshwork tissue from glaucoma donors and in trabecular meshwork cells insulted by dexamethasone (DEX) and transforming growth factor beta2 (TGFbeta2), factors associated with glaucoma. To investigate as well the effect of silencing the inhibitor of calcification matrix Gla (MGP) in the trabecular meshwork cells. METHODS Trabecular meshwork tissue was obtained from perfused postmortem anterior segments of glaucomatous and normal eyes. Primary trabecular meshwork cells were obtained from residual corneal rims after surgical corneal transplantation. Calcification marker alkaline phosphatase (ALP) enzyme activity was assayed by fluorescence produced after substrate cleavage. DNA quantification was evaluated by fluorescence produced after binding to the Hoechst dye. Transfection of siRNA to primary cells was accomplished by nucleofector electroporation with trabecular meshwork-optimized conditions. cDNA quantification was performed with the use of TaqMan real-time PCR. RESULTS Human trabecular meshworks from glaucoma donors exhibited significantly higher levels of ALP activity than their matched counterparts with normal eyes. The normalized ALP of the control specimens was 7.3 +/- 1.6 ng ALP/microg DNA (n = 4), whereas that of the glaucomatous tissue was 37.0 +/- 10.7 ng ALP/microg genomic DNA (n = 5; P = 0.04). DEX and TGFbeta2 significantly induced the upregulation of ALP activity in two trabecular meshwork primary cell lines. Expression of the gene encoding MGP was reduced in the glaucomatous tissue by -4.4 +/- 1.7-fold (n = 9; P = 0.006). Silencing MGP by siRNA resulted in ALP activity that was increased by 197% +/- 8.4% (P = 0.0003). CONCLUSIONS The increased activity of the calcification marker, ALP, in glaucomatous trabecular meshworks might be indicative of an undergoing mineralization process during development of the disease. Inhibition of the calcification mechanism represented by the presence of active MGP appears to be compromised in glaucomatous tissue.
Collapse
Affiliation(s)
- Wei Xue
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7041, USA
| | | | | |
Collapse
|
28
|
Rao VR, Krishnamoorthy RR, Yorio T. Endothelin-1, endothelin A and B receptor expression and their pharmacological properties in GFAP negative human lamina cribrosa cells. Exp Eye Res 2007; 84:1115-24. [PMID: 17433294 DOI: 10.1016/j.exer.2007.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 02/02/2007] [Accepted: 02/12/2007] [Indexed: 11/18/2022]
Abstract
Primary open angle glaucoma (POAG) is a progressive optic neuropathy, characterized, in part by extensive extra cellular matrix remodeling and collapse of the lamina cribrosa (LC). Endothelin-1 (ET-1), a potent vasoactive peptide and its receptors, endothelin receptor A (ET(A)) and endothelin receptor B (ET(B)), have been implicated in glaucomatous optic neuropathy. In this study we examined the expression of ET-1 and its receptors in GFAP negative LC cells. RT-PCR analysis revealed that LC cells express both ET(A), ET(B) receptors and prepro- ET-1, the primary gene transcript of ET-1. A dose-dependent increase in intra-cellular calcium concentrations was observed in the presence of 1, 10 and 100nM ET-1. Increased intracellular calcium concentrations were blocked by the ET(A) selective antagonist BQ610 but not by the ET(B) specific antagonist BQ788. Desensitization to ET(A)-mediated increase in intracellular calcium was observed in LC cells following pre-treatment with ET-1 for 24h. Western blot analysis of LC cells treated with ET-1 for 24h revealed a decreased expression of ET(A) receptor protein at 1, 10 and 100nM concentrations, while a dose dependent increase in the ET(B) receptor was observed with a significant increase at 100nM. Quantitative PCR showed a dose-dependent decrease in ET(A) receptor mRNA levels and an increase in the mRNA levels of ET(B) receptors. A Griess colorimetric assay was used to measure the NO released from LC cells and ET-1 induced a dose-dependent increase in NO release which was significant at 100nM concentration. ET-1 induced NO release was significantly blocked by BQ788, an ET(B) selective antagonist, and as well as BQ610, an ET(A) selective antagonist. These results suggested that human lamina cribrosa cells expressed functional ET(A) and ET(B) receptors and their expression and function was altered in response to prolong exposure to ET-1. This may have an implication in the normal physiology of LC cells and in POAG subjects where elevated levels of ET-1 could impact LC function.
Collapse
Affiliation(s)
- Vidhya R Rao
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
29
|
Schwinn DA, Afshari NA. α1-Adrenergic Receptor Antagonists and the Iris: New Mechanistic Insights into Floppy Iris Syndrome. Surv Ophthalmol 2006; 51:501-12. [PMID: 16950249 DOI: 10.1016/j.survophthal.2006.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the role of adrenergic receptors in iris biology has gained widespread interest due to the recently described intraoperative floppy iris syndrome sometimes encountered during cataract surgery. alpha(1)AR-mediated iris dilator smooth muscle contraction occurs via alpha(1a)ARs whereas alpha(1b)ARs mediate iris arteriolar contraction. Because alpha(1)AR antagonists are first-line therapy for benign prostatic hyperplasia and lower urinary tract symptoms, more elderly patients requiring cataract surgery now receive these drugs. After reviewing intraoperative floppy iris syndrome, strengths/weaknesses of supporting data, and reviewing iris biology, a case is made that rather than being drug specific (alpha(1)AR antagonists), intraoperative floppy iris syndrome may represent the "tip of the iceberg." Relaxed iris dilator muscle resistant to adrenergic agonists should be expected with clinical drugs shown to relax the iris dilator (e.g., antagonists at alpha(1)AR, endothelin-A, angiotensin receptors, nitric oxide donors such as nitrates), and/or diseases associated with endothelial dysregulation (e.g., congestive heart failure, diabetes, hypertension). Rather than a rare, unexpected, unpredictable syndrome due to one drug, a careful medical history should elucidate intraoperative floppy iris syndrome predisposition. Just as anticoagulants are discontinued prior to elective surgery, conservative management of elderly patients suggests discontinuation of drugs that relax iris dilator muscle, in consultation with the patient's primary physician, should be considered prior to cataract surgery.
Collapse
Affiliation(s)
- Debra A Schwinn
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Rattner A, Nathans J. The genomic response to retinal disease and injury: evidence for endothelin signaling from photoreceptors to glia. J Neurosci 2006; 25:4540-9. [PMID: 15872101 PMCID: PMC6725023 DOI: 10.1523/jneurosci.0492-05.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regardless of proximal cause, photoreceptor injury or disease almost invariably leads to the activation of Muller cells, the principal glial cells in the retina. This observation implies the existence of signaling systems that inform Muller cells of the health status of photoreceptors. It further suggests that diverse types of photoreceptor damage elicit a limited range of biochemical responses. Using the mouse retina, we show by microarray, RNA blot, and in situ hybridization that the genomic responses to both light damage and inherited photoreceptor degeneration involve a relatively small number of genes and that the genes activated by these two insults overlap substantially with one another and with the genes activated by retinal detachment. Among the induced transcripts, those coding for endothelin2 (Edn2) are unusual in that they are localized to photoreceptors and are also highly induced in all of the tested models of photoreceptor disease or injury. Acute light damage also leads to a >10-fold increase in endothelin receptor B (Ednrb) in Muller cells 24 h after injury. These observations suggest that photoreceptor-derived EDN2 functions as a general stress signal, that EDN2 signals to Muller cells by binding to EDNRB, and that Muller cells can increase their sensitivity to EDN2 as part of the injury response.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
31
|
Cheng MF, Yu HM, Ko BW, Chang Y, Chen MY, Ho TI, Tsai YM, Fang JM. Practical synthesis of potential endothelin receptor antagonists of 1,4-benzodiazepine-2,5-dione derivatives bearing substituents at the C3-, N1- and N4-positions. Org Biomol Chem 2006; 4:510-8. [PMID: 16446809 DOI: 10.1039/b514937a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expedient synthesis of various 1,4-benzodiazepine-2,5-dione compounds, particularly those having substituents at the C3-, N1- and N4-positions is achieved. The important features in these synthetic strategies include: (i) using the coupling reaction of isatoic anhydride with alpha-amino ester for direct construction of the core structure of 1,4-benzodiazepine-2,5-dione; (ii) using potassium carbonate as the base of choice for selective alkylation at the N1-site, while using lithiated 2-ethylacetanilide as the required base to furnish the N4-alkylation; and (iii) using 2-nitrobenzoyl chloride as a synthetic equivalent of anthranilic acid to facilitate the polyethylene resin-bound liquid-phase combinatorial synthesis. The prepared 1,4-benzodiazepine-2,5-dione compounds are evaluated for endothelin receptor antagonism by a functional assay that measures the inhibitory activity against the change of intramolecular calcium ion concentration induced by endothelin-1. The preliminary results indicate that 1,4-benzodiazepine-2,5-diones bearing two flanked aryl substituents at the N1- and N4-sites show better inhibitory activity than the corresponding unalkylated and N-monoalkylated compounds. A promising candidate, 1-benzyl-7-chloro-3-isopropyl-4-(3-methoxybenzyl)-1,4-benzodiazepine-2,5-dione (17b), exhibits an IC50 value in low nM range.
Collapse
Affiliation(s)
- Ming-Fu Cheng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Choritz L, Rosenthal R, Fromm M, Foerster MH, Thieme H. Pharmacological and functional characterization of endothelin receptors in bovine trabecular meshwork and ciliary muscle. Ophthalmic Res 2005; 37:179-87. [PMID: 15976515 DOI: 10.1159/000086471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 01/03/2005] [Indexed: 11/19/2022]
Abstract
To clarify the potential role of endothelin-1 (ET-1) in the pathogenesis of glaucoma, the endothelin receptors expressed in bovine trabecular meshwork (TM) and ciliary muscle (CM) were identified. TM and CM strips were subjected to ET-1 as well as to specific endothelin receptor antagonists. In both tissues BQ123, a specific ET-A receptor antagonist, substantially inhibited ET-1-induced contraction. BQ788, a specific ET-B receptor antagonist, showed only moderate effects. Both ET receptor types were detected in bovine TM and CM using Western blot analysis. ET-1 produced an increase in intracellular calcium in cultured TM cells. This effect was inhibited by BQ123, but not by BQ788. Thus, although both receptors are present, the ET-A receptor appears to play the predominant role in mediating contraction in both the TM and CM, while the ET-B receptor seems to contribute little to the overall ET-1 effect.
Collapse
Affiliation(s)
- Lars Choritz
- Institut für Klinische Physiologie, Charité, Universitätmedizin Berlin, Berlin, Deutschland
| | | | | | | | | |
Collapse
|
33
|
Prasanna G, Hulet C, Desai D, Krishnamoorthy RR, Narayan S, Brun AM, Suburo AM, Yorio T. Effect of elevated intraocular pressure on endothelin-1 in a rat model of glaucoma. Pharmacol Res 2005; 51:41-50. [PMID: 15519534 DOI: 10.1016/j.phrs.2004.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
The role of endothelin-1 (ET-1) a potent vasoactive peptide, in glaucoma pathogenesis is receiving increasing attention, particularly in astroglial activation in optic nerve damage. Our laboratory has also shown that ET-1 treatment causes proliferation of cultured human optic nerve head astrocytes to possibly initiate astrogliosis. ET-1 is distributed in retina, optic nerve, and ciliary epithelium, however the effects of elevated intraocular pressure (IOP) (as seen in glaucoma) on ET-1 and ET(B) receptors are not clearly understood. In the present study, the levels of immunoreactive ET-1 (ir-ET-1) in aqueous humour (AH) and optic nerve head (ONH) were determined in the Morrison elevated IOP model of glaucoma. Additionally in the ONH of these rats, immunohistochemical analyses of ET(B) receptors and glial fibrillary acidic protein (GFAP; a marker for astroglial cells and for astrogliosis) were performed. There was 2- to 2.5-fold increase in AH ir-ET-1 levels for rats subjected to elevated IOP, compared to their respective controls. In the Morrison rat model of glaucoma, elevated IOP increased optic nerve ir-ET-1 with concomitant increases in ir-ET(B) and ir-GFAP labelling (possibly indicative of astrogliosis and hypertrophy). As seen in brain astrocytes subjected to neurotrauma, the present findings are suggestive of ET-1's role in astroglial activation, particularly in response to elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Ganesh Prasanna
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|