1
|
Effects of Two Fractions of Swietenia macrophylla and Catechin on Muscle Damage Induced by BothropsVenom and PLA₂. Toxins (Basel) 2019; 11:toxins11010040. [PMID: 30646591 PMCID: PMC6356255 DOI: 10.3390/toxins11010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023] Open
Abstract
Plant natural products can attenuate the myonecrosis caused by Bothrops snake venom and their phospholipases A₂ (PLA₂). In this study, we evaluated the effects of two fractions (F4 and F6) from Swietenia macrophylla and purified catechin on the muscle damage caused by a myotoxic PLA₂ from Colombian Bothrops asper venom (BaColPLA₂) in mice and by Bothrops marmoratus venom from Brazil in mouse phrenic nerve-diaphragm muscle (PND) preparations in vitro. Male mice were injected with PLA₂ (50 µg) in the absence or presence of F4, F6, and catechin, in the gastrocnemius muscle and then killed 3, 7, 14, and 28 h later for histopathological analysis of myonecrosis, leukocyte infiltration, and the presence of collagen. Fractions F4 and F6 (500 µg) and catechin (90 µg) significantly reduced the extent of necrosis at all-time intervals. These two fractions and catechin also attenuated the leukocyte infiltration on day 3, as did catechin on day 14. There was medium-to-moderate collagen deposition in all groups up to day 7, but greater deposition on days 14 and 28 in the presence of F6 and catechin. Bothrops marmoratus venom (100 µg/mL) caused slight (~25%) muscle facilitation after 10 minutes and weak neuromuscular blockade (~64% decrease in contractile activity after a 120-minute incubation). Pre-incubation of venom with F4 or F6 abolished the facilitation, whereas catechin, which was itself facilitatory, did not. All three fractions attenuated the venom-induced decrease in muscle contractions. These findings indicate that fractions and catechin from S. macrophylla can reduce the muscle damage caused by Bothrops venom and PLA₂. These fractions or their components could be useful for treating venom-induced local damage.
Collapse
|
2
|
Cui W, Bennett AW, Zhang P, Barrow KR, Kearney SR, Hankey KG, Taylor-Howell C, Gibbs AM, Smith CP, MacVittie TJ. A non-human primate model of radiation-induced cachexia. Sci Rep 2016; 6:23612. [PMID: 27029502 PMCID: PMC4814846 DOI: 10.1038/srep23612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
Cachexia, or muscle wasting, is a serious health threat to victims of radiological accidents or patients receiving radiotherapy. Here, we propose a non-human primate (NHP) radiation-induced cachexia model based on clinical and molecular pathology findings. NHP exposed to potentially lethal partial-body irradiation developed symptoms of cachexia such as body weight loss in a time- and dose-dependent manner. Severe body weight loss as high as 20–25% was observed which was refractory to nutritional intervention. Radiographic imaging indicated that cachectic NHP lost as much as 50% of skeletal muscle. Histological analysis of muscle tissues showed abnormalities such as presence of central nuclei, inflammation, fatty replacement of skeletal muscle, and muscle fiber degeneration. Biochemical parameters such as hemoglobin and albumin levels decreased after radiation exposure. Levels of FBXO32 (Atrogin-1), ActRIIB and myostatin were significantly changed in the irradiated cachectic NHP compared to the non-irradiated NHP. Our data suggest NHP that have been exposed to high dose radiation manifest cachexia-like symptoms in a time- and dose-dependent manner. This model provides a unique opportunity to study the mechanism of radiation-induced cachexia and will aid in efficacy studies of mitigators of this disease.
Collapse
Affiliation(s)
- Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Alexander W Bennett
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Pei Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Kory R Barrow
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Sean R Kearney
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Kim G Hankey
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Cheryl Taylor-Howell
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Allison M Gibbs
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Cassandra P Smith
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| | - Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 USA 10 South Pine Street, MSTF Room 604, Baltimore, MD 21201 USA
| |
Collapse
|
3
|
Baán JA, Varga ZV, Leszek P, Kuśmierczyk M, Baranyai T, Dux L, Ferdinandy P, Braun T, Mendler L. Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study. J Transl Med 2015; 13:1. [PMID: 25591711 PMCID: PMC4301667 DOI: 10.1186/s12967-014-0365-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Myostatin (Mstn) is a key regulator of heart metabolism and cardiomyocyte growth interacting tightly with insulin-like growth factor I (IGF-I) under physiological conditions. The pathological role of Mstn has also been suggested since Mstn protein was shown to be upregulated in the myocardium of end-stage heart failure. However, no data are available about the regulation of gene expression of Mstn and IGF-I in different regions of healthy or pathologic human hearts, although they both might play a crucial role in the pathomechanism of heart failure. Methods In the present study, heart samples were collected from left ventricles, septum and right ventricles of control healthy individuals as well as from failing hearts of dilated (DCM) or ischemic cardiomyopathic (ICM) patients. A comprehensive qRT-PCR analysis of Mstn and IGF-I signaling was carried out by measuring expression of Mstn, its receptor Activin receptor IIB (ActRIIB), IGF-I, IGF-I receptor (IGF-IR), and the negative regulator of Mstn miR-208, respectively. Moreover, we combined the measured transcript levels and created complex parameters characterizing either Mstn- or IGF-I signaling in the different regions of healthy or failing hearts. Results We have found that in healthy control hearts, the ratio of Mstn/IGF-I signaling was significantly higher in the left ventricle/septum than in the right ventricle. Moreover, Mstn transcript levels were significantly upregulated in all heart regions of DCM but not ICM patients. However, the ratio of Mstn/IGF-I signaling remained increased in the left ventricle/septum compared to the right ventricle of DCM patients (similarly to the healthy hearts). In contrast, in ICM hearts significant transcript changes were detected mainly in IGF-I signaling. In paralell with these results miR-208 showed mild upregulation in the left ventricle of both DCM and ICM hearts. Conclusions This is the first demonstration of a spatial asymmetry in the expression pattern of Mstn/IGF-I in healthy hearts, which is likely to play a role in the different growth regulation of left vs. right ventricle. Moreover, we identified Mstn as a massively regulated gene in DCM but not in ICM as part of possible compensatory mechanisms in the failing heart.
Collapse
|
4
|
Baán JA, Kocsis T, Keller-Pintér A, Müller G, Zádor E, Dux L, Mendler L. The compact mutation of myostatin causes a glycolytic shift in the phenotype of fast skeletal muscles. J Histochem Cytochem 2013; 61:889-900. [PMID: 23979839 DOI: 10.1369/0022155413503661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In addition, transcript levels of MHC isoforms were quantified by qPCR. Based on our results, all investigated muscles of Cmpt mice were significantly larger compared with that of wild-type mice, as characterized by fiber hyperplasia of different grades. Fiber hypertrophy was not present in TA; however, EDL muscles showed specific IIB fiber hypertrophy while the (I and IIA) fibers of SOL muscles were generally hypertrophied. Both the fast TA and EDL muscles of Cmpt mice contained significantly more glycolytic IIB fibers accompanied by a decreased number of IIX and IIA fibers; however, this was not the case for SOL muscles. In summary, despite the variances found in muscle cellularity between the different myostatin mutant mice, similar glycolytic shifts were observed in Cmpt fast muscles as in muscles from myostatin knockout mice.
Collapse
Affiliation(s)
- Júlia Aliz Baán
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary (JAB, TK, AKP, EZ, LD, LM)
| | | | | | | | | | | | | |
Collapse
|
5
|
Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 2012; 205:324-40. [PMID: 22340904 DOI: 10.1111/j.1748-1716.2012.02423.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/04/2011] [Accepted: 01/31/2012] [Indexed: 12/11/2022]
Abstract
Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required.
Collapse
Affiliation(s)
- B. Elliott
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - D. Renshaw
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - S. Getting
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| | - R. Mackenzie
- Infection & Immunity Group; Department of Human & Health Science, School of Life Sciences; University of Westminster; London; UK
| |
Collapse
|
6
|
Garikipati DK, Rodgers BD. Myostatin stimulates myosatellite cell differentiation in a novel model system: evidence for gene subfunctionalization. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1059-66. [PMID: 22262307 DOI: 10.1152/ajpregu.00523.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosatellite cells play an important role in mammalian muscle regeneration as they differentiate and fuse with mature fibers. In fish, they also contribute to postnatal growth and the formation of new fibers. The relative conservation of fish systems, however, is not well known nor are the underlying mechanisms that control myosatellite cell differentiation. We therefore characterized this process in primary cells from rainbow trout and determined the effects of two known regulators in mammalian systems: IGF-I and myostatin. Unlike mammalian cell lines, subconfluent and proliferating trout myosatellite cells differentiated spontaneously and at a rate proportional to serum concentration. The expression of key myogenic markers (Myf5, MyoD1, myogenin, and MLC) and of the different myostatin paralogs (MSTN-1a/1b/2a) increased with serum-stimulated differentiation, although MSTN-1a expression was consistently higher than that of the other paralogs. In addition, MSTN-2a was only expressed as an unprocessed transcript. In low serum, where differentiation is normally suppressed, recombinant myostatin stimulated myogenic marker expression over time. The opposite was true for IGF-I as it stimulated proliferation, not differentiation, and additionally antagonized myostatin. This includes myostatin's effects on marker expression and on the autoregulation of MSTN-1a and -1b expression. These results conflict with studies using mammalian cell lines and suggest, alternatively, that myostatin is a positive, not negative, regulator of myosatellite cell differentiation. Mammalian myoblasts differentiate when confluent and with serum withdrawal, which differs considerably from how myosatellite cells differentiate in vivo. Thus the primary rainbow trout myosatellite cell culture system appears to be more physiologically relevant.
Collapse
Affiliation(s)
- Dilip K Garikipati
- Dept. Of Animal Sciences, Washington State Univ., Pullman, WA 99164, USA
| | | |
Collapse
|
7
|
Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Goret L, Obert P, Candau R, Bonnieu A. Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol 2011; 332:38-47. [PMID: 20884321 DOI: 10.1016/j.mce.2010.09.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Myostatin and hypoxia signalling pathways are able to induce skeletal muscle atrophy, but whether a relationship between these two pathways exists is currently unknown. Here, we tested the hypothesis that a potential mechanism for hypoxia effect on skeletal muscle may be through regulation of myostatin. We reported an induction of myostatin expression in muscles of rats exposed to chronic hypoxia. Interestingly, we also demonstrated increased skeletal muscle myostatin protein expression in skeletal muscle of hypoxemic patients with severe chronic obstructive pulmonary disease (COPD). Parallel studies in human skeletal muscle cell cultures showed that induction of myostatin expression in myotubes treated with hypoxia-mimicking agent such as cobalt chloride (CoCl(2)) is associated with myotube atrophy. Furthermore, we demonstrated that inhibition of myostatin by means of genetic deletion of myostatin or treatment with blocking antimyostatin antibodies inhibits the CoCl(2)-induced atrophy in muscle cells. Finally, addition of recombinant myostatin restored the CoCl(2)-induced atrophy in myostatin deficient myotubes. These results strongly suggest that myostatin can play an essential role in the adaptation of skeletal muscle to hypoxic environment.
Collapse
Affiliation(s)
- Maurice Hayot
- INSERM, ERI 25-Muscle et Pathologies, Hôpital Arnaud de Villeneuve, Bât. A Craste de Paulet, F-34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fakhfakh R, Michaud A, Tremblay JP. Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in dystrophic mice. Mol Ther 2011; 19:204-210. [PMID: 20700111 PMCID: PMC3017433 DOI: 10.1038/mt.2010.171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
9
|
Allen DL, Greybeck BJ, Greyback BJ, Hanson AM, Cleary AS, Lindsay SF. Skeletal muscle expression of bone morphogenetic protein-1 and tolloid-like-1 extracellular proteases in different fiber types and in response to unloading, food deprivation and differentiation. J Physiol Sci 2010; 60:343-52. [PMID: 20658214 PMCID: PMC10717363 DOI: 10.1007/s12576-010-0104-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/05/2010] [Indexed: 12/14/2022]
Abstract
Members of the bone morphogenetic protein-1/mammalian tolloid (BMP-1/mTLD) family of proteases cleave diverse extracellular proteins, including the growth inhibitor myostatin. The purpose of this work was to examine the expression of BMP-1/mTLD, tolloid-like-1 and -2 (TLL1 and TLL2) in hindlimb muscles of the mouse in vivo and in C(2)C(12) muscle cells in vitro. Quantitative real-time polymerase chain reaction revealed that neither BMP-1/mTLD nor TLL1 mRNA levels differed between the predominantly fast-twitch tibialis anterior (TA) and gastrocnemius (GAST) muscles and the more slow-twitch soleus (SOL) muscle; TLL2 mRNA levels were not detectable in any of the muscles examined. Interestingly, however, immunohistochemical analysis revealed that BMP-1 protein was expressed in type I and IIa but not in IIb fibers. TLL1 mRNA levels significantly increased in the TA but not the SOL with 3 days of hindlimb suspension and significantly decreased in both TA and SOL in response to 2 days of food deprivation. In contrast, BMP-1/mTLD mRNA levels were unaffected in either muscle by either condition. In addition, BMP-1/mTLD and TLL1 mRNA levels significantly decreased during C(2)C(12) myoblast differentiation in vitro, and activity of a 1,200-bp mouse TLL1 promoter construct was significantly decreased in C(2)C(12) myotubes by differentiation, by mutation of an nuclear factor kappa-beta (NF-kappaB) site, or deletion of a sma/mothers against decapentaplegic (SMAD) site. Together, these data demonstrate that TLL1 mRNA levels are altered by loading, energy status, and differentiation, and thus its expression may be regulated so as to modulate activity of myostatin or other extracellular substrates during these adaptive states.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Campus Box 354, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Manickam R, Pena RN, Whitelaw CBA. Mammary gland differentiation inversely correlates with GDF-8 expression. Mol Reprod Dev 2008; 75:1783-8. [PMID: 18389502 DOI: 10.1002/mrd.20918] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GDF-8 is recognised as an inhibitor of muscle cell growth and differentiation. Although initially thought to be restricted to muscle cells it is now accepted that GDF-8 expression has a broader tissue distribution. We demonstrate GDF-8 expression in the mouse mammary gland, which is predominantly associated with epithelial cells and displays an inverse correlation to the differentiated state of the gland. Specifically, the highest GDF-8 mRNA levels correlate with periods of maximal ductal growth, diminish as pregnancy progressed and are down-regulated to minimal levels by the onset of lactation as the epithelium differentiates. A similar profile is observed for both GDF-8 protein processing and reflects Smad2/3 phosphorylation profile. However, in contrast to muscle cells, GDF-8 neither reduces proliferation nor induces p21 expression levels in mammary epithelial cells. These data implicate a role for GDF-8 in mammary epithelial cell differentiation and demonstrate that GDF-8 has cell-type specific activities.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Division of Gene Function and Development, Roslin Institute, Roslin, Edinburgh, United Kingdom
| | | | | |
Collapse
|
11
|
Stoikos CJ, Harrison CA, Salamonsen LA, Dimitriadis E. A distinct cohort of the TGFbeta superfamily members expressed in human endometrium regulate decidualization. Hum Reprod 2008; 23:1447-56. [PMID: 18434375 PMCID: PMC2387221 DOI: 10.1093/humrep/den110] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful blastocyst implantation requires the differentiation of human endometrial stromal cells (HESC), a process known as decidualization. Activin A, a transforming growth factor beta (TGFbeta) superfamily member, enhances HESC decidualization and localizes to decidual cells in human endometrium. Other TGFbeta superfamily members, including BMP2, BMP4, BMP7, GDF5, GDF8, GDF11, TGFbetas and Nodal, may also play a role during decidualization. This study aimed to identify these TGFbeta family members in human endometrium, and to determine whether they are involved in human decidualization. METHODS Protein localization of TGFbeta family members was examined in secretory phase human endometrium and first trimester decidua by immunohistochemistry. mRNA expression was examined in HESC. Activin inhibitors (Activin-M108A/SB431542) with differing specificities for the other TGFbeta members under consideration were applied during HESC decidualization in vitro. The secretion levels of potential TGFbeta superfamily members were measured during decidualization, and recombinant proteins added to examine their effect. RESULTS This study has identified BMP2, BMP4, BMP7, GDF5, GDF8 and GDF11 but not Nodal in secretory phase human endometrium, but only BMP2, GDF5 and TGFbeta1 protein were detected in decidual cells. All ligands except Nodal were expressed by cultured HESC. Both inhibitors significantly reduced decidualization validating the role of activin, but potentially also other TGFbeta members, during decidualization. BMP2 and TGFbeta1 secretion increased during HESC decidualisation and exogenous administration of these proteins significantly enhanced decidualization in vitro. CONCLUSIONS Like activin, BMP2 and TGFbeta1 are likely to be involved in HESC decidualization. This is the first study to identify and localize BMP4, BMP7, GDF5, GDF8 and GDF11 in secretory phase human endometrium. Understanding the factors critical for the implantation process is needed for improving fertility and pregnancy outcomes.
Collapse
Affiliation(s)
- Chelsea J Stoikos
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
12
|
Mendler L, Pintér S, Kiricsi M, Baka Z, Dux L. Regeneration of reinnervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype. J Histochem Cytochem 2007; 56:111-23. [PMID: 17938279 DOI: 10.1369/jhc.7a7322.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.
Collapse
Affiliation(s)
- Luca Mendler
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
13
|
Mendler L, Baka Z, Kovács-Simon A, Dux L. Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Commun 2007; 361:237-42. [PMID: 17658471 DOI: 10.1016/j.bbrc.2007.07.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/08/2007] [Indexed: 11/21/2022]
Abstract
Myostatin is an important negative regulator of skeletal muscle growth, while androgens are strong positive effectors. In order to investigate the possible interaction between myostatin and androgen pathways, we followed myostatin expression in the androgen-dependent levator ani (LA) muscle of the rat as a function of androgen status. By testosterone deprivation (castration), we induced LA growth arrest in young male rats, whilst atrophy in adult ones, however, both processes could be reversed by testosterone supplementation. After castration, a significant up-regulation of active myostatin protein (and its propeptide) was found, whereas the subsequent testosterone treatment reduced myostatin protein levels to normal values in both young and adult rats. Similarly, a testosterone-induced suppression of myostatin mRNA levels was observed in castrated adult but not in young animals. Altogether, androgens seem to have strong negative impact on myostatin expression, which might be a key factor in the weight regulation of LA muscle.
Collapse
Affiliation(s)
- Luca Mendler
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
14
|
Kim YS, Bobbili NK, Lee YK, Jin HJ, Dunn MA. Production of a polyclonal anti-myostatin antibody and the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. Poult Sci 2007; 86:1196-205. [PMID: 17495092 DOI: 10.1093/ps/86.6.1196] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we produced a polyclonal antibody against unprocessed chicken myostatin and examined the effect of in ovo administration of the antibody on posthatch chicken growth and muscle mass. A PCR-amplified unprocessed chicken myostatin cDNA was cloned into an Escherichia coli expression vector, and myostatin proteins were expressed. Recombinant myostatin purified by electro-elution of the SDS-PAGE fractionated myostatin band was used as an immunogen to produce rabbit polyclonal antimyostatin antibody (pAb-AVM46). In Western blot analysis, the pAb-AVM46 showed high affinity to the myostatin propeptide, but little affinity to the mature myostatin. Two experiments examined the effect of in ovo administration of the pAb-AVM46 on posthatch chicken growth and skeletal muscle mass. In experiment 1, broilers from eggs injected once with 35 microg of the antibody into the yolk on d 3 of incubation had significantly lower combined thigh and leg weight at 4 wk posthatch than the controls that received no injection, or the broilers from eggs received the same dose of antibody into the albumen. In experiment 2, 2 different doses of the antibody (9 or 70 microg) were injected into the yolk, and the effects on body and muscle weight were examined at 5 wk posthatch. Birds from eggs injected with 70 microg of the antibody had significantly lighter (11.6%) combined thigh and leg weight than the control birds. The percentage of the combined thigh and leg weight to BW of the 70-microg group was also significantly lower than that of the control group (20.95 vs. 23.08%). The results of this study indicate that unprocessed full-length myostatin as an immunogen produced antibody populations having affinity mostly to the propeptide with little to the mature form. The decreased muscle weight observed in broilers injected with the antibody in the yolk indicates that myostatin activity was probably elevated by the binding of the antibody to the propeptide, and provides evidence that myostatin propeptide inhibits the biological activity of myostatin in broilers.
Collapse
Affiliation(s)
- Y S Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu 96822, USA.
| | | | | | | | | |
Collapse
|
15
|
Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, Nozaki M, Branca MF, Huard J. Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 2007; 282:25852-63. [PMID: 17597062 DOI: 10.1074/jbc.m704146200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.
Collapse
Affiliation(s)
- Jinhong Zhu
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Rangos Research Center, and Department of Bioengineering, University of Pittsburgh, Pennsylvania 15213-2583, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xi G, Hathaway MR, Dayton WR, White ME. Growth factor messenger ribonucleic acid expression during differentiation of porcine embryonic myogenic cells. J Anim Sci 2007; 85:143-50. [PMID: 17179550 DOI: 10.2527/jas.2006-351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth factors, IGF-I and II, their binding proteins, IGFBP, and members of the transforming growth factor (TGF) superfamily (myostatin and TGFbeta1) are known to regulate proliferation and differentiation of myogenic cells. We hypothesized that changes in the relative expression of members of the IGF and TGFbeta systems play a significant role in regulating myogenesis in porcine embryonic myogenic cell (PEMC) cultures. Therefore, determining the expression patterns of these factors during PEMC myogenesis is important. Consequently, we used real-time PCR to explore the pattern of IGF-I; IGF-II; IGFBP-2, -3, and -5; IGF-type-I receptor; myogenin; myostatin; and TGFbeta1 mRNA expression during PEMC myogenesis. The progression of differentiation was assessed using creatine kinase activity and myogenin mRNA expression. As anticipated, creatine kinase activity was low in PEMC cultures at 48 h and increased 20-fold (P < 0.0001) between 48 h and its peak at 144 h. Similarly, myogenin mRNA was low at 48 h and increased approximately 5-fold (P < 0.0001) as differentiation progressed, peaking at 120 h and decreasing at 144 h. The patterns of IGF-I and IGFBP-2 mRNA expression were similar and were relatively lower in 48-h PEMC cultures, increasing approximately 5-fold (P < 0.0001) to their greatest levels at 120 h. In contrast, IGF-II and IGFBP-5 mRNA levels were relatively high at 48 h, peaking at 72 h, and steadily decreasing by 60 and 80%, respectively (P < 0.001), at 144 h. The level of IGF-type-I receptor mRNA was relatively high until 96 h of culture, after which it decreased 40% (P < 0.01), reaching a low at 144 h. Levels of IGFBP-3 mRNA were relatively high at 48 h, dropped approximately 40% to their lowest level at 72 h (P < 0.001), and then increased approximately 60% (P < 0.001) to their greatest levels at 144 h. Levels of TGFbeta1 mRNA decreased approximately 30% (P < 0.0001) between 48 and 96 h, then quickly rebounded to a peak at 120 h, and by 144 h had dropped to the levels seen at 72 h. Myostatin mRNA was at its greatest level at 48 h and declined rapidly between 72 and 96 h, finally decreasing by approximately 80% at 144 h (P < 0.0001). Our data demonstrate that these factors are differentially regulated during PEMC myogenesis and provide new information about their pattern of mRNA expression in cultured porcine muscle cells.
Collapse
Affiliation(s)
- G Xi
- Animal Growth and Development Laboratory, Department of Animal Science, University of Minnesota, 350 ABLMS, 1354 Eckles Avenue, St. Paul 55108, USA
| | | | | | | |
Collapse
|
17
|
Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F, Patruno M. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Exp Physiol 2006; 91:983-94. [PMID: 16873457 DOI: 10.1113/expphysiol.2006.033571] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle.
Collapse
Affiliation(s)
- Antonios Matsakas
- Department of Human Anatomy and Physiology, (Instituto Interuniversitario di Miologia) University of Padova, 35020 Legnaro, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Shibata M, Matsumoto K, Aikawa K, Muramoto T, Fujimura S, Kadowaki M. Gene expression of myostatin during development and regeneration of skeletal muscle in Japanese Black Cattle1. J Anim Sci 2006; 84:2983-9. [PMID: 17032792 DOI: 10.2527/jas.2006-118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myostatin is a specific negative regulator of skeletal muscle growth and is regarded as one of the most important factors for myogenesis. The aim of the current study was to analyze the developmental change in the gene expression of myostatin and an adipogenic transcription factor (peroxisome proliferator-activated receptor lambda2) in the semitendinosus muscle of Japanese Black Cattle throughout the whole life cycle. An additional aim was to compare the temporal expression patterns of myostatin and relevant myogenic regulatory factors (MRF) mRNA during muscle regeneration after frostbite injury at 16 mo of age. The developmental pattern of myostatin gene expression exhibited 2 peaks: the greatest expression occurred in utero (P <0.05) and the second greatest occurred at 16 mo of age (P <0.05). The greatest level of peroxisome proliferator-activated receptor lambda2 expression was observed at 16 mo of age (P <0.05), which paralleled myostatin expression. During frostbite-induced muscle regeneration, gene expression for myostatin and 4 MRF; i.e., Myf5, MyoD, myogenin and MRF4, showed contrasting responses. Myostatin mRNA dramatically declined by 68.1 and 82.6% at 3 and 5 d after injury (P <0.05), respectively, which paralleled its protein expression, and was restored at 10 d. In contrast, the expressions of all 4 MRF mRNA were low initially but increased by 5 d after injury (P <0.05) and then remained constant or decreased slightly. These results suggest that myostatin may play a role in muscle marbling in the fattening period by decreasing myogenesis and increasing adipogenesis, and that the interaction between myostatin and MRF genes may take place at an early stage of skeletal muscle regeneration.
Collapse
Affiliation(s)
- M Shibata
- National Agricultural Research Center for Western Region, Ohda-shi, Shimane-ken, 694-0013, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Kim YS, Bobbili NK, Paek KS, Jin HJ. Production of a monoclonal anti-myostatin antibody and the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. Poult Sci 2006; 85:1062-71. [PMID: 16776476 DOI: 10.1093/ps/85.6.1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-beta (TGF-beta) superfamily, is a potent negative regulator of skeletal muscle growth. The objective of this study was to produce a monoclonal anti-myostatin antibody and to examine the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass. The mature form of myostatin was expressed in Escherichia coli and used as an immunogen in producing a monoclonal antibody against myostatin. One hybridoma clone (mAb-c134) that showed the strongest affinity to the immunogen in Western blot analysis was used in producing a large quantity of monoclonal anti-myostatin antibody. In Western blot analysis, this antibody showed a strong binding affinity to commercially available mature myostatin and demonstrated a certain level of cross-reactivity with recombinant human BMP2 but not with recombinant human TGF-beta3 or porcine TGF-beta1. Competitive ELISA demonstrated binding of the antibody to the native form of mature myostatin in solution. To examine the effects of in ovo administration of the mAb-c134 antibody, eggs were injected once with 40 microg of mAb-c134 in 50 mL of PBS either into the albumen or yolk on d 3 of incubation. Controls received no injection. After hatching, chicks were raised for 35 d. Broilers from eggs that had the antibody injected into the yolk had significantly heavier body (4.2%) and muscle (5.5%) mass than the controls in both male and female birds. In contrast, no significant effects on body and muscle mass were observed when the mAb-c134 antibody was injected into the albumen. The results of this study suggest that immunoneutralization of myostatin during embryonic development is a potential means to improve growth potential of broilers.
Collapse
Affiliation(s)
- Y S Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu 96822, USA.
| | | | | | | |
Collapse
|
20
|
Mendias CL, Marcin JE, Calerdon DR, Faulkner JA. Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol (1985) 2006; 101:898-905. [PMID: 16709649 PMCID: PMC4088255 DOI: 10.1152/japplphysiol.00126.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (P(o)), but decrease the specific P(o) (sP(o)) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type (MSTN(+/+)), heterozygous-null (MSTN(+/-)), and homozygous-null (MSTN(-/-)) adult male mice were determined. For EDL muscles, the P(o) of both MSTN(+/-) and MSTN(-/-) mice were greater than the P(o) of MSTN(+/+) mice. For soleus muscles, the P(o) of MSTN(-/-) mice was greater than that of MSTN(+/+) mice. The sP(o) of EDL muscles of MSTN(-/-) mice was less than that of MSTN(+/+) mice. For soleus muscles, however, no difference in sP(o) was observed. Following two lengthening contractions, EDL muscles from MSTN(-/-) mice had a greater force deficit than that of MSTN(+/+) or MSTN(+/-) mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - James E Marcin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Daniel R Calerdon
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor
| | - John A Faulkner
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|
21
|
Zhao B, Wall RJ, Yang J. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005; 337:248-55. [PMID: 16182246 DOI: 10.1016/j.bbrc.2005.09.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 09/07/2005] [Indexed: 12/19/2022]
Abstract
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.
Collapse
Affiliation(s)
- Baoping Zhao
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
22
|
|
23
|
Suzuki N, Aoki M, Hinuma Y, Takahashi T, Onodera Y, Ishigaki A, Kato M, Warita H, Tateyama M, Itoyama Y. Expression profiling with progression of dystrophic change in dysferlin-deficient mice (SJL). Neurosci Res 2005; 52:47-60. [PMID: 15811552 DOI: 10.1016/j.neures.2005.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 12/27/2004] [Accepted: 01/17/2005] [Indexed: 12/31/2022]
Abstract
The SJL mouse is a model for human dysferlinopathy (limb-girdle muscular dystrophy type 2B and Miyoshi myopathy). We used cDNA microarrays to compare the expression profiles of 10,012 genes in control and SJL quadriceps femoris muscles in order to find genes involved in the degeneration and regeneration process and in dysferlin's functional network. Many genes involved in the process of muscle regeneration are observed to be up-regulated in SJL mice, including cardiac ankyrin repeated protein (CARP), Neuraminidase 2, interleukin-6, insulin-like growth factor-2 and osteopontin. We found the upregulation of S100 calcium binding proteins, neural precursor cell expressed, developmentally down-regulated gene 4-like (NEDD4L) with C2 domain, and intracellular protein traffic associated proteins (Rab6 and Rab2). These proteins have the potential to interact with dysferlin. We must reveal some other molecules which may work with dysferlin in order to clarify the pathological network of dysferlinopathy. This process may lead to future improvements in the therapy for human dysferlinopathy.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barazzoni R, Zanetti M, Bosutti A, Stebel M, Cattin L, Biolo G, Guarnieri G. Myostatin expression is not altered by insulin deficiency and replacement in streptozotocin-diabetic rat skeletal muscles. Clin Nutr 2005; 23:1413-7. [PMID: 15556264 DOI: 10.1016/j.clnu.2004.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Accepted: 06/12/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS Insulin is a major post-prandial muscle-anabolic hormone. A substantial loss of skeletal muscle mass occurs in insulin-deprived diabetes and is reversed by insulin treatment. Myostatin is a negative regulator of muscle mass upregulated in several chronic catabolic conditions. Whether myostatin expression is altered in insulin-deprived diabetes is unknown. In spite of opposite effects on muscle mass the potential role of basal circulating insulin in the regulation of myostatin expression is also undetermined. METHODS We measured (Northern Blot) myostatin transcript levels in muscle groups with different fiber composition in streptozotocin-diabetic male rats receiving one of the following treatments for eight weeks: (1) control (C); (2) diabetes without treatment (DM); (3) diabetes with once-daily slow-acting insulin treatment (INS). RESULTS INS normalized plasma insulin and prevented weight reduction observed in DM. In fast-twitch gastrocnemius muscle myostatin transcript levels were unchanged (P>0.4) in both DM and INS compared to C. Myostatin transcripts were not measurable in any group in slow-twitch soleus muscle. CONCLUSIONS Muscle-specific myostatin expression is not increased under catabolic conditions in insulin-deprived diabetes. Insulin treatment also does not change myostatin transcript levels. The data provide the first assessment of potential interplay between insulin and myostatin and they do not support a major role of circulating insulin in the in vivo regulation of myostatin gene expression. A role of myostatin in muscle catabolism in chronic insulin-deprived diabetes is also not indicated by the current results.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Clinica Medica-DSCMT, University of Trieste, Ospedale Cattinara, Strada di Fiume 447, Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Myostatin is a secreted protein that acts as a negative regulator of skeletal muscle mass. During embryogenesis, myostatin is expressed by cells in the myotome and in developing skeletal muscle and acts to regulate the final number of muscle fibers that are formed. During adult life, myostatin protein is produced by skeletal muscle, circulates in the blood, and acts to limit muscle fiber growth. The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled. Skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism, and myostatin appears to be the first example of the long-sought chalone.
Collapse
Affiliation(s)
- Se-Jin Lee
- Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Hosoyama T, Tachi C, Yamanouchi K, Nishihara M. Long Term Adrenal Insufficiency Induces Skeletal Muscle Atrophy and Increases the Serum Levels of Active Form Myostatin in Rat Serum. Zoolog Sci 2005; 22:229-36. [PMID: 15738643 DOI: 10.2108/zsj.22.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Skeletal muscle wasting is a common symptom in the adrenal insufficiency such as Addison's disease. Although it has been suspected that several cytokines and/or growth factors are responsible for the manifestation of the symptom, the precise mechanisms underlying the phenomenon have so far been poorly understood. Myostatin is predominantly expressed in skeletal muscles and involved in the regulation of skeletal muscle mass. Recently, several reports indicated that myostatin is secreted into the circulation and the increased levels of circulating myostatin is associated with the induction of skeletal muscle wasting in adult animals. We, therefore, hypothesized that the increased levels of circulating myostatin may account for the development of skeletal muscle wasting in adrenal insufficiency. To test the validity of this hypothesis, we compared the serum levels of myostatin in normal with those in bilaterally adrenalectomized (ADX) rats, a model of Addison's disease, by Western blot analysis. The active form of myostatin (13 kDa) was barely detectable in the sera collected either 1 month or 2 month after adrenalectomy, but present at conspicuously detectable levels in those obtained 3 month after the operation, while the total amounts of myostatin proteins (sum of the precursor and the active forms) remained constant at all the time points examined post-operatively. These results are consistent with the hypothesis that the increased serum levels of active form of myostatin protein, induced yet unknown post-translational control mechanisms may be responsible, at least in part, for the muscle wasting associated with the adrenal insufficiency syndromes.
Collapse
Affiliation(s)
- Tohru Hosoyama
- Department of Biology, Faculty of Science, Graduate School of Science and Technology, Chiba University, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Under normal circumstances, mammalian adult skeletal muscle is a stable tissue with very little turnover of nuclei. However, upon injury, skeletal muscle has the remarkable ability to initiate a rapid and extensive repair process preventing the loss of muscle mass. Skeletal muscle repair is a highly synchronized process involving the activation of various cellular responses. The initial phase of muscle repair is characterized by necrosis of the damaged tissue and activation of an inflammatory response. This phase is rapidly followed by activation of myogenic cells to proliferate, differentiate, and fuse leading to new myofiber formation and reconstitution of a functional contractile apparatus. Activation of adult muscle satellite cells is a key element in this process. Muscle satellite cell activation resembles embryonic myogenesis in several ways including the de novo induction of the myogenic regulatory factors. Signaling factors released during the regenerating process have been identified, but their functions remain to be fully defined. In addition, recent evidence supports the possible contribution of adult stem cells in the muscle regeneration process. In particular, bone marrow-derived and muscle-derived stem cells contribute to new myofiber formation and to the satellite cell pool after injury.
Collapse
|
28
|
Armand AS, Della Gaspera B, Launay T, Charbonnier F, Gallien CL, Chanoine C. Expression and neural control of follistatin versus myostatin genes during regeneration of mouse soleus. Dev Dyn 2003; 227:256-65. [PMID: 12761853 DOI: 10.1002/dvdy.10306] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Follistatin and myostatin are two secreted proteins involved in the control of muscle mass during development. These two proteins have opposite effects on muscle growth, as documented by genetic models. The aims of this work were to analyze in mouse, by using in situ hybridization, the spatial and temporal expression patterns of follistatin and myostatin mRNAs during soleus regeneration after cardiotoxin injury, and to investigate the influence of innervation on the accumulation of these two transcripts. Follistatin transcripts could be detected in activated satellite cells as early as the first stages of regeneration and were transiently expressed in forming myotubes. In contrast, myostatin mRNAs accumulated persistently throughout the regeneration process as well as in adult control soleus. Denervation significantly affected both follistatin and myostatin transcript accumulation, but in opposite ways. Muscle denervation persistently reduced the levels of myostatin transcripts as early as the young myotube stage, whereas the levels of follistatin mRNA were strongly increased in the small myotubes in the late stages of regeneration. These results are discussed with regard to the potential functions of both follistatin, as a positive regulator of muscle differentiation, and myostatin, as a negative regulator of skeletal muscle growth. We suggest that the belated up-regulation of the follistatin mRNA level in the small myotubes of the regenerating soleus as well as the down-regulation of the myostatin transcript level after denervation contribute to the differentiation process in denervated regenerating muscle.
Collapse
Affiliation(s)
- Anne-Sophie Armand
- Biologie du Développement et de la Différenciation Neuromusculaire, LNRS ESA 7060 CNRS, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Rodgers BD, Weber GM, Kelley KM, Levine MA. Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short-term fasting elevates. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1277-86. [PMID: 12676749 DOI: 10.1152/ajpregu.00644.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin negatively regulates muscle growth and development and has recently been characterized in several fishes. We measured fasting myostatin mRNA levels in adult tilapia skeletal muscle and in whole larvae. Although fasting reduced some growth indexes in adults, skeletal muscle myostatin mRNA levels were unaffected. By contrast, larval myostatin mRNA levels were sometimes elevated after a short-term fast and were consistently reduced with prolonged fasting. These effects were specific for myostatin, as mRNA levels of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphatase were unchanged. Cortisol levels were elevated in fasted larvae with reduced myostatin mRNA, whereas in addition immersion of larvae in 1 ppm (2.8 microM) cortisol reduced myostatin mRNA in a time-dependent fashion. These results suggest that larval myostatin mRNA levels may initially rise but ultimately fall during a prolonged fast. The reduction is likely mediated by fasting-induced hypercortisolemia, indicating divergent evolutionary mechanisms of glucocorticoid regulation of myostatin mRNA, since these steroids upregulate myostatin gene expression in mammals.
Collapse
Affiliation(s)
- Buel D Rodgers
- Department of Pediatrics, Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21208, USA.
| | | | | | | |
Collapse
|
30
|
Galvin CD, Hardiman O, Nolan CM. IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol Cell Endocrinol 2003; 200:19-29. [PMID: 12644296 DOI: 10.1016/s0303-7207(02)00420-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies involving immortalized myoblasts suggested that insulin-like growth factors (IGFs) promote differentiation of skeletal muscle, but gene targeting experiments in mice did not provide support for this hypothesis. To address this discrepancy, we examined differentiation of primary cultures of mouse myoblasts. Differentiation was normally unaffected by addition of IGFs to the differentiation medium. However, when we interrupted IGF-mediated signaling, by incubating myoblasts with suramin or with a monoclonal antibody to the IGF-I receptor, differentiation was inhibited. Inhibition was reversed by exogenous IGF-I or IGF-II, but not by insulin. Differentiation was enhanced in myoblasts that were incubated with an inhibitor of the mitogen-activated protein kinase signaling pathway (PD098059) and such cells were responsive to exogenous IGF-I. Our results demonstrate that IGF action contributes to the differentiation of non-immortalized mouse myoblasts and that these cells represent a model system that can be experimentally manipulated to study the molecular events involved in skeletal muscle differentiation.
Collapse
Affiliation(s)
- C D Galvin
- Zoology Department, University College Dublin, Belfield, Ireland
| | | | | |
Collapse
|
31
|
Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O'Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003; 300:965-71. [PMID: 12559968 DOI: 10.1016/s0006-291x(02)02953-4] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Body Weight
- CHO Cells
- Cricetinae
- Culture Media, Conditioned
- Female
- Hand Strength
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/cytology
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Myostatin
- Protein Binding
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Lisa-Anne Whittemore
- Musculoskeletal Sciences Department, Wyeth Research, 200 CambridgePark Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|