1
|
Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine. Histochem Cell Biol 2015; 145:81-92. [PMID: 26496923 DOI: 10.1007/s00418-015-1374-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Abstract
The membrane protein palmitoylated (MPP) family belongs to the membrane-associated guanylate kinase (MAGUK) family. MPP1 interacts with the protein 4.1 family member, 4.1R, as a membrane skeletal protein complex in erythrocytes. We previously described the interaction of another MPP family, MPP6, with 4.1G in the mouse peripheral nervous system. In the present study, the immunolocalization of MPP6 in the mouse small intestine was examined and compared with that of E-cadherin, zonula occludens (ZO)-1, and 4.1B, which we previously investigated in intestinal epithelial cells. The immunolocalization of MPP6 was also assessed in the small intestines of 4.1B-deficient (-/-) mice. In the small intestine, Western blotting revealed that the molecular weight of MPP6 was approximately 55-kDa, and MPP6 was immunostained under the cell membranes in the basolateral portions of almost all epithelial cells from the crypts to the villi. The immunostaining pattern of MPP6 in epithelial cells was similar to that of E-cadherin, but differed from that of ZO-1. In intestinal epithelial cells, the immunostained area of MPP6 was slightly different from that of 4.1B, which was restricted to the intestinal villi. The immunolocalization of MPP6 in small intestinal epithelial cells was similar between 4.1B(-/-) mice and 4.1B(+/+) mice. In the immunoprecipitation study, another MAGUK family protein, calcium/calmodulin-dependent serine protein kinase (CASK), was shown to molecularly interact with MPP6. Thus, we herein showed the immunolocalization and interaction proteins of MPP6 in the mouse small intestine, and also that 4.1B in epithelial cells was not essential for the sorting of MPP6.
Collapse
|
2
|
The targeted inhibitory effects of human amniotic fluid stem cells carrying CXCR4 promoter and DAL-1 on non-small cell lung carcinoma growth. Gene Ther 2015; 23:214-22. [DOI: 10.1038/gt.2015.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/11/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
|
3
|
Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, Liu J, An X. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 2014; 71:4815-30. [PMID: 25183197 PMCID: PMC11113756 DOI: 10.1007/s00018-014-1707-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell-cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.
Collapse
Affiliation(s)
- Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, 421001 China
| | - Mao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082 China
| | - Min Zhu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410083 China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 E 67th Street, New York, 10065 USA
| |
Collapse
|
4
|
Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S. Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 2006; 84:568-77. [PMID: 16752423 DOI: 10.1002/jnr.20949] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane-associated cytoskeletal proteins, including protein 4.1 family, play important roles in membrane integrity, protein targeting, and signal transduction. Although protein 4.1G (4.1G) is expressed ubiquitously in mammalian tissues, it can have very discrete distributions within cells. The present study investigated the expression and distributions of 4.1G in rodent sciatic nerve. Northern and Western blot analysis detected abundant 4.1G mRNA and protein in rat sciatic nerve extracts. Immunohistochemical staining with a 4.1G-specific antibody and double immunolabeling with E-cadherin, betaIV spectrin, and connexin 32 detected 4.1G in paranodal loops, Schmidt-Lanterman incisures, and periaxonal, mesaxonal, and abaxonal membranes of rodent sciatic nerve. Immunoelectron microscopy confirmed the immunodistribution of 4.1G in Schwann cells. In developing mouse sciatic nerves, 4.1G was diffusely distributed in immature Schwann cells and gradually localized at paranodes, incisures, and periaxonal and mesaxonal membranes during their maturation. These data support the concept that 4.1G plays an important role in the membrane expansion and specialization that occurs during formation and maintenance of myelin internodes in the peripheral nervous system.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-City, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Terada N, Ohno N, Yamakawa H, Ohara O, Ohno S. Topographical significance of membrane skeletal component protein 4.1 B in mammalian organs. Anat Sci Int 2005; 80:61-70. [PMID: 15960311 DOI: 10.1111/j.1447-073x.2005.00094.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The polarized architecture of epithelial cells is a fundamental determinant of cell structures and functions. Both formation and orientation of proper epithelial polarity are needed for cell-cell or cell-matrix adhesion, signal transduction and cytoskeletal interactions of multimolecular complexes at apical, lateral and basal cell membranes. These cell membrane domains are usually segregated by some junctional complexes. Recent molecular genetic studies on the anchor structure between myelin sheaths and axons have indicated the specific molecular organization for polarization of axolemma and the myelin sheaths at paranodes, termed 'septate-like junctions'. It was also speculated that other mammalian organs may use a similar junctional system. The protein 4.1 B was originally found to be localized in paranodes and juxtaparanodes of myelinated nerve fibers. Our recent immunohistochemical studies on protein 4.1B have indicated its significance for the cell-cell and/or cell-matrix adhesion in various rodent organs. The protein 4.1 family of proteins have been supposed to possess variable molecular domains relating to cell adhesion, ion balance, receptor responses and signal transduction. Therefore, more precise studies on the molecular structure and the functional domains of protein 4.1B, as well as on its changes under physiological and pathological conditions, may provide a clue for organogenesis in various mammalian organs.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | |
Collapse
|
6
|
Asan E, Drenckhahn D. News and views in Histochemistry and Cell Biology. Histochem Cell Biol 2004; 122:593-621. [PMID: 15614519 DOI: 10.1007/s00418-004-0735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
Advances in histochemical methodology and ingenious applications of novel and improved methods continue to confirm the standing of morphological means and approaches in research efforts, and contribute significantly to increasing our knowledge about structures and functions in all areas of the life sciences from cell biology to pathology. Reports published during recent months documenting this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| | | |
Collapse
|
7
|
Ohno N, Terada N, Murata SI, Yamakawa H, Newsham IF, Katoh R, Ohara O, Ohno S. Immunolocalization of protein 4.1B/DAL-1 during neoplastic transformation of mouse and human intestinal epithelium. Histochem Cell Biol 2004; 122:579-86. [PMID: 15517334 DOI: 10.1007/s00418-004-0716-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 01/27/2023]
Abstract
Recently, we have reported that the protein 4.1B immunolocalization occurred only in matured columnar epithelial cells of normal rat intestines. This finding suggested that protein 4.1B expression could be examined for a possible change during neoplastic transformation of the intestinal mucosa. In the present study, we first present the distribution of mouse protein 4.1B in normal intestinal epithelial cells and tumor cells using the adenomatous polyposis coli (Apc) mutant mouse model. A low level of protein 4.1B expression coincided with the phenotypic transition to carcinoma. To examine the protein 4.1B expression in human intestinal mucosa, we used another antibody against an isoform of the human protein 4.1B, DAL-1 (differentially expressed adenocarcinoma of the lung). Human DAL-1 was also expressed in matured epithelial cells in human colons, with a definite expression gradient along the crypt axis. In human colorectal cancer cells, however, DAL-1 expression was not detected. These results suggest that mouse protein 4.1B and human DAL-1 might have a striking analogy of functions, which may be integrally involved in epithelial proliferation. We propose that loss of protein 4.1B/DAL-1 expression might be a marker of intestinal tumors, indicative of a tumor suppressor function in the intestinal mucosa.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, 409-3898 Yamanashi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S. Protein 4.1B localizes on unmyelinated axonal membranes in the mouse enteric nervous system. Neurosci Lett 2004; 366:15-7. [PMID: 15265581 DOI: 10.1016/j.neulet.2004.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 04/30/2004] [Accepted: 05/01/2004] [Indexed: 11/16/2022]
Abstract
Recent molecular studies on anchoring structures between myelin sheaths by glial cells (oligodendrocytes and Schwann cells (Sc) in the central (CNS) and peripheral nervous system (PNS), respectively) and axons indicated protein-protein interaction for the polarization of paranodes in the axons. The protein 4.1 (4.1) family was originally found in erythrocytes as a component of membrane skeletons, and genetic approaches revealed the precise family members. One of them, 4.1B, has been reported to be localized in paranodes and juxtaparanodes of myelinated axons. In this study, in addition to the myelinated axons, we also present the localization of 4.1B in nerve fibers in the adult mouse enteric nervous system, a subpopulation of mature unmyelinated nerve fibers in PNS. Ultrastructurally, 4.1B localized along the membranes of unmyelinated axons. Such unmyelinated axons were surrounded only by Sc, suggesting that the 4.1B may also have a role in direct Sc-axon interactions and maturation of the axons, as well as myelinating glial cell-axon interactions.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Terada N, Ohno S. Immunohistochemical Application of Cryotechniques to Native Morphology of Cells and Tissues. Acta Histochem Cytochem 2004. [DOI: 10.1267/ahc.37.339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|