1
|
Leiphrakpam PD, Weber HR, Ogun T, Buesing KL. Rat model of smoke inhalation-induced acute lung injury. BMJ Open Respir Res 2021; 8:8/1/e000879. [PMID: 34301712 PMCID: PMC8311342 DOI: 10.1136/bmjresp-2021-000879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/05/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a lethal disease with limited therapeutic options and an unacceptably high mortality rate. Understanding the complex pathophysiological processes involved in the development of ALI/ARDS is critical for developing novel therapeutic strategies. Smoke inhalation (SI) injury is the leading cause of morbidity and mortality in patients with burn-associated ALI/ARDS; however, to our knowledge few reliable, reproducible models are available for pure SI animal model to investigate therapeutic options for ALI/ARDS without the confounding variables introduced by cutaneous burn or other pathology. OBJECTIVE To develop a small animal model of pure SI-induced ALI and to use this model for eventual testing of novel therapeutics for ALI. METHODS Rats were exposed to smoke using a custom-made smoke generator. Peripheral oxygen saturation (SpO2), heart rate, arterial blood gas, and chest X-ray (CXR) were measured before and after SI. Wet/dry weight (W/D) ratio, lung injury score and immunohistochemical staining of cleaved caspase 3 were performed on harvested lung tissues of healthy and SI animals. RESULTS The current study demonstrates the induction of ALI in rats after SI as reflected by a significant, sustained decrease in SpO2 and the development of diffuse bilateral pulmonary infiltrates on CXR. Lung tissue of animals exposed to SI showed increased inflammation, oedema and apoptosis as reflected by the increase in W/D ratio, injury score and cleaved caspase 3 level of the harvested tissues compared with healthy animals. CONCLUSION We have successfully developed a small animal model of pure SI-induced ALI. This model is offered to the scientific community as a reliable model of isolated pulmonary SI-induced injury without the confounding variables of cutaneous injury or other systemic pathology to be used for study of novel therapeutics or other investigation.
Collapse
Affiliation(s)
| | - Hannah R Weber
- Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tobi Ogun
- Family Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Keely L Buesing
- Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 2016; 28:95-139. [PMID: 26915822 DOI: 10.3109/08958378.2016.1145771] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as incidences of disease-caused mortality, hospital admissions, emergency room visits and symptoms in asthma and chronic obstructive pulmonary disease patients are the health effects that are most commonly associated with community level exposure to wildland fire smoke. A few recent studies have also determined associations between acute wildland fire smoke exposure and cardiovascular health end-points. These cardiopulmonary effects were mostly observed in association with ambient air concentrations of fine particulate matter (PM2.5). However, research on the health effects of this mixture is currently limited. The health effects of acute exposures beyond susceptible populations and the effects of chronic exposures experienced by the wildland firefighter are largely unknown. Longitudinal studies of wildland firefighters during and/or after the firefighting career could help elucidate some of the unknown health impacts of cumulative exposure to wildland fire smoke, establish occupational exposure limits and help determine the types of exposure controls that may be applicable to the occupation.
Collapse
Affiliation(s)
- Olorunfemi Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA .,b Division of Environmental Health Sciences , College of Public Health, the Ohio State University , Columbus , OH , USA
| | - Timothy E Reinhardt
- c AMEC Foster Wheeler Environment & Infrastructure, Inc , Seattle , WA , USA
| | - Joe Domitrovich
- d USDA Forest Service, Missoula Technology and Development Center , Missoula , MT , USA
| | - George Broyles
- e SDA Forest Service, San Dimas Technology and Development Center , San Dimas , CA , USA
| | - Anna M Adetona
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| | - Michael T Kleinman
- f Center for Occupational and Environmental Health, University of California , Irvine , CA , USA , and
| | - Roger D Ottmar
- g USDA Forest Service, Pacific Northwest Research Station , Seattle , WA , USA
| | - Luke P Naeher
- a Department of Environmental Health Science , College of Public Health, University of Georgia , Athens , GA , USA
| |
Collapse
|
3
|
Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KBH, Mortimer K, Asante KP, Balakrishnan K, Balmes J, Bar-Zeev N, Bates MN, Breysse PN, Buist S, Chen Z, Havens D, Jack D, Jindal S, Kan H, Mehta S, Moschovis P, Naeher L, Patel A, Perez-Padilla R, Pope D, Rylance J, Semple S, Martin WJ. Respiratory risks from household air pollution in low and middle income countries. THE LANCET RESPIRATORY MEDICINE 2014; 2:823-60. [PMID: 25193349 DOI: 10.1016/s2213-2600(14)70168-7] [Citation(s) in RCA: 551] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A third of the world's population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy available to all people is the long-term goal, with an intermediate solution being to make available energy that is clean enough to have a health impact.
Collapse
Affiliation(s)
- Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nigel G Bruce
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jonathan Grigg
- Centre for Paediatrics, Blizard Institute, Queen Mary, University of London, London, UK
| | - Patricia L Hibberd
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Om P Kurmi
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kin-bong Hubert Lam
- Institute of Occupational and Environmental Medicine, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Kevin Mortimer
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kwaku Poku Asante
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael N Bates
- Divisions of Epidemiology and Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Patrick N Breysse
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sonia Buist
- Oregon Health and Science University, Portland, OR, USA
| | - Zhengming Chen
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah Havens
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Sumi Mehta
- Health Effects Institute, Boston, MA, USA
| | - Peter Moschovis
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Luke Naeher
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | | | | | - Daniel Pope
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jamie Rylance
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Sean Semple
- University of Aberdeen, Scottish Centre for Indoor Air, Division of Applied Health Sciences, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - William J Martin
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Migliaccio CT, Mauderly JL. Biomass smoke exposures: toxicology and animal study design. Inhal Toxicol 2010; 22:104-7. [PMID: 20041808 DOI: 10.3109/08958370903008870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The International Biomass Smoke Health Effects (IBSHE) conference was convened in Missoula, MT, to define our current knowledge of smoke exposure and the potential health effects. In an effort to ascertain the relative health effects of an exposure to biomass smoke, numerous studies have utilized either animal or in vitro systems. A wide variety of systems that have been employed ranged from more mainstream animal models (i.e., rodents) and transformed cell lines to less common animal (piglets and dogs) and explant models. The Toxicology and Animal Study Design Workgroup at IBSHE was tasked with an analysis of the use of animal models in the assessment of the health effects of biomass smoke exposure. The present article contains a mini-review of models utilized historically, in addition to the adverse health effects assessed, and an overview of the discussion within the breakout session. The most common question that arose in discussions at the IBSHE conference was from local and federal health departments: What level of smoke is unhealthy? The present workgroup determined categories of exposure, common health concerns, and the availability of animal models to answer key health questions.
Collapse
Affiliation(s)
- Christopher T Migliaccio
- Center for Environmental Health Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, Montana, USA.
| | | |
Collapse
|
6
|
Carraway KL, Theodoropoulos G, Kozloski GA, Carothers Carraway CA. Muc4/MUC4 functions and regulation in cancer. Future Oncol 2010; 5:1631-40. [PMID: 20001800 DOI: 10.2217/fon.09.125] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The membrane mucin MUC4 (human) is abundantly expressed in many epithelia, where it is proposed to play a protective role, and is overexpressed in some epithelial tumors. Studies on the rat homologue, Muc4, indicate that it acts through anti-adhesive or signaling mechanisms. In particular, Muc4/MUC4 can serve as a ligand/modulator of the receptor tyrosine kinase ErbB2, regulating its phosphorylation and the phosphorylation of its partner ErbB3, with or without the involvement of the ErbB3 ligand neuregulin. Muc4/MUC4 can also modulate cell apoptosis via multiple mechanisms, both ErbB2 dependent and independent. Muc4/MUC4 expression is regulated by multiple mechanisms, ranging from transcriptional to post-translational. The roles of MUC4 in tumors suggest that it may be valuable as a tumor marker or target for therapy.
Collapse
Affiliation(s)
- Kermit L Carraway
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
7
|
Chaturvedi P, Singh AP, Batra SK. Structure, evolution, and biology of the MUC4 mucin. FASEB J 2007; 22:966-81. [PMID: 18024835 DOI: 10.1096/fj.07-9673rev] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mucins are high-molecular-weight glycoproteins and are implicated in diverse biological functions. MUC4, a member of transmembrane mucin family, is expressed in airway epithelial cells and body fluids like saliva, tear film, ear fluid, and breast milk. In addition to its normal expression, an aberrant expression of MUC4 has been reported in a variety of carcinomas. Among various potential domains of MUC4, epidermal growth factor (EGF) -like domains are hypothesized to interact with and activate the ErbB2 receptors, suggesting an intramembrane-growth factor function for MUC4. The heavily glycosylated tandem repeat domain provides the structural rigidity to the extended extracellular region. MUC4, by virtue of its extended structure, serves as a barrier for some cell-cell and cell-extracellular matrix interactions and as a potential reservoir for certain growth factors. An intricate relationship between MUC4 and growth factor signaling is also reflected in the transcriptional regulation of MUC4. The MUC4 promoter has binding sites for different transcription factors, which are responsible for the regulation of its expression in different tissues. The interferon-gamma, retinoic acid, and transforming growth factor-beta signaling pathways regulate MUC4 expression in a partially interdependent manner. Taken together, all of these features of MUC4 strongly support its role as a potential candidate for diagnostic and therapeutic applications in cancer and other diseases.
Collapse
Affiliation(s)
- Pallavi Chaturvedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | |
Collapse
|