1
|
Mironova GY, Haghbin N, Welsh DG. Functional tuning of Vascular L-type Ca2+ channels. Front Physiol 2022; 13:1058744. [DOI: 10.3389/fphys.2022.1058744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular smooth muscle contraction is intimately tied to membrane potential and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+ channels. While voltage is often viewed as the single critical factor gating these channels, research is starting to reveal a more intricate scenario whereby their function is markedly tuned. This emerging concept will be the focus of this three-part review, the first part articulating the mechanistic foundation of contractile development in vascular smooth muscle. Part two will extend this foundational knowledge, introducing readers to functional coupling and how neighboring L-type Ca2+ channels work cooperatively through signaling protein complexes, to facilitate their open probability. The final aspect of this review will discuss the impact of L-type Ca2+ channel trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief manuscript provides new insight into how voltage, along with channel cooperativity and number, work in concert to tune Ca2+ responses and smooth muscle contraction.
Collapse
|
2
|
Mark MD, Schwitalla JC, Groemmke M, Herlitze S. Keeping Our Calcium in Balance to Maintain Our Balance. Biochem Biophys Res Commun 2016; 483:1040-1050. [PMID: 27392710 DOI: 10.1016/j.bbrc.2016.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023]
Abstract
Calcium is a key signaling molecule and ion involved in a variety of diverse processes in our central nervous system (CNS) which include gene expression, synaptic transmission and plasticity, neuronal excitability and cell maintenance. Proper control of calcium signaling is not only vital for neuronal physiology but also cell survival. Mutations in fundamental channels, transporters and second messenger proteins involved in orchestrating the balance of our calcium homeostasis can lead to severe neurodegenerative disorders, such as Spinocerebellar (SCA) and Episodic (EA) ataxias. Hereditary ataxias make up a remarkably diverse group of neurological disorders clinically characterized by gait ataxia, nystagmus, dysarthria, trunk and limb ataxia and often atrophy of the cerebellum. The largest family of hereditary ataxias is SCAs which consists of a growing family of 42 members. A relatively smaller family of 8 members compose the EAs. The gene mutations responsible for half of the EA members and over 35 of the SCA subtypes have been identified, and several have been found to be responsible for cerebellar atrophy, abnormal intracellular calcium levels, dysregulation of Purkinje cell pacemaking, altered cerebellar synaptic transmission and/or ataxia in mouse models. Although the genetic diversity and affected cellular pathways of hereditary ataxias are broad, one common theme amongst these genes is their effects on maintaining calcium balance in primarily the cerebellum. There is emerging evidence that the pathogenesis of hereditary ataxias may be caused by imbalances in intracellular calcium due to genetic mutations in calcium-mediating proteins. In this review we will discuss the current evidence supporting the role of deranged calcium as the culprit to neurodegenerative diseases with a primary focus on SCAs and EAs.
Collapse
Affiliation(s)
- Melanie D Mark
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Jan Claudius Schwitalla
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Michelle Groemmke
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
3
|
Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci 2015; 35:8882-95. [PMID: 26063920 DOI: 10.1523/jneurosci.0891-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.1 channel, which is detected specifically in cytosolic and nuclear fractions in SCA6 patients, is associated with the SCA6 pathogenesis. To test this hypothesis, we expressed P/Q-type channel protein fragments from two different human CT splice variants, as predicted from SCA6 patients, in PCs of mice using viral and transgenic approaches. These splice variants represent a short (CT-short without polyQs) and a long (CT-long with 27 polyQs) CT fragment. Our results show that the different splice variants of the CTs differentially distribute within PCs, i.e., the short CTs reveal predominantly nuclear inclusions, whereas the long CTs prominently reveal both nuclear and cytoplasmic aggregates. Postnatal expression of CTs in PCs in mice reveals that only CT-long causes SCA6-like symptoms, i.e., deficits in eyeblink conditioning (EBC), ataxia, and PC degeneration. The physiological phenotypes associated specifically with the long CT fragment can be explained by an impairment of LTD and LTP at the parallel fiber-to-PC synapse and alteration in spontaneous PC activity. Thus, our results suggest that the polyQ carrying the CT fragment of the P/Q-type channel is sufficient to cause SCA6 pathogenesis in mice and identifies EBC as a new diagnostic strategy to evaluate Ca(2+) channel-mediated human diseases.
Collapse
|
4
|
Frank CA. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front Cell Neurosci 2014; 8:40. [PMID: 24592212 PMCID: PMC3924756 DOI: 10.3389/fncel.2014.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/28/2014] [Indexed: 01/15/2023] Open
Abstract
Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP) is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response-homeostatic depression via removal of excitatory receptors. There exist intriguing links between HSP and calcium channelopathies-such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other disorders.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
5
|
Synaptic NMDA receptor-dependent Ca²⁺ entry drives membrane potential and Ca²⁺ oscillations in spinal ventral horn neurons. PLoS One 2013; 8:e63154. [PMID: 23646190 PMCID: PMC3640011 DOI: 10.1371/journal.pone.0063154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022] Open
Abstract
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.
Collapse
|
6
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
7
|
Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish. Stem Cells Int 2012; 2012:462161. [PMID: 23213340 PMCID: PMC3504466 DOI: 10.1155/2012/462161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/14/2012] [Indexed: 12/21/2022] Open
Abstract
Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.
Collapse
|
8
|
Kato HK, Kassai H, Watabe AM, Aiba A, Manabe T. Functional coupling of the metabotropic glutamate receptor, InsP3 receptor and L-type Ca2+ channel in mouse CA1 pyramidal cells. J Physiol 2012; 590:3019-34. [PMID: 22586220 DOI: 10.1113/jphysiol.2012.232942] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activity-dependent regulation of calcium dynamics in neuronal cells can play significant roles in the modulation of many cellular processes such as intracellular signalling, neuronal activity and synaptic plasticity. Among many calcium influx pathways into neurons, the voltage-dependent calcium channel (VDCC) is the major source of calcium influx, but its modulation by synaptic activity has still been under debate. While the metabotropic glutamate receptor (mGluR) is supposed to modulate L-type VDCCs (L-VDCCs), its reported actions include both facilitation and suppression, probably reflecting the uncertainty of both the molecular targets of the mGluR agonists and the source of the recorded calcium signal in previous reports. In this study, using subtype-specific knockout mice, we have shown that mGluR5 induces facilitation of the depolarization-evoked calcium current. This facilitation was not accompanied by the change in single-channel properties of the VDCC itself; instead, it required the activation of calcium-induced calcium release (CICR) that was triggered by VDCC opening, suggesting that the opening of CICR-coupled cation channels was essential for the facilitation. This facilitation was blocked or reduced by the inhibitors of both L-VDCCs and InsP3 receptors (InsP3Rs). Furthermore, L-VDCCs and mGluR5 were shown to form a complex by coimmunoprecipitation, suggesting that the specific functional coupling between mGluR5, InsP3Rs and L-VDCCs played a pivotal role in the calcium-current facilitation. Finally, we showed that mGluR5 enhanced VDCC-dependent long-term potentiation (LTP) of synaptic transmission. Our study has identified a novel mechanism of the interaction between the mGluR and calcium signalling, and suggested a contribution of mGluR5 to synaptic plasticity.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
9
|
Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 2011; 31:4311-26. [PMID: 21411672 DOI: 10.1523/jneurosci.5342-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inherited loss of P/Q-type calcium channel function causes human absence epilepsy, episodic dyskinesia, and ataxia, but the molecular "birthdate" of the neurological syndrome and its dependence on prenatal pathophysiology is unknown. Since these channels mediate transmitter release at synapses throughout the brain and are expressed early in embryonic development, delineating the critical circuitry and onset underlying each of the emergent phenotypes requires targeted control of gene expression. To visualize P/Q-type Ca(2+) channels and dissect their role in neuronal networks at distinct developmental stages, we created a novel conditional Cacna1a knock-in mouse by inserting the floxed green fluorescent protein derivative Citrine into the first exon of Cacna1a and then crossed it with a postnatally expressing PCP2-Cre line for delayed Purkinje cell (PC) gene deletion within the cerebellum and sparsely in forebrain (purky). PCs in purky mice lacked P/Q-type calcium channel protein and currents within the first month after birth, displayed altered spontaneous firing, and showed impaired neurotransmission. Unexpectedly, adult purky mice exhibited the full spectrum of neurological deficits seen in mice with genomic Cacna1a ablation. Our results show that the ataxia, dyskinesia, and absence epilepsy caused by inherited disorders of the P/Q-type channel arise from signaling defects beginning in late infancy, revealing an early window of opportunity for therapeutic intervention.
Collapse
|
10
|
Zhou W, Horstick EJ, Hirata H, Kuwada JY. Identification and expression of voltage-gated calcium channel β subunits in Zebrafish. Dev Dyn 2008; 237:3842-52. [DOI: 10.1002/dvdy.21776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Ly CV, Yao CK, Verstreken P, Ohyama T, Bellen HJ. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel alpha1 subunit. ACTA ACUST UNITED AC 2008; 181:157-70. [PMID: 18391075 PMCID: PMC2287295 DOI: 10.1083/jcb.200712152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a screen to identify genes involved in synaptic function, we isolated mutations in Drosophila melanogaster straightjacket (stj), an α2δ subunit of the voltage-gated calcium channel. stj mutant photoreceptors develop normal synaptic connections but display reduced “on–off” transients in electroretinogram recordings, indicating a failure to evoke postsynaptic responses and, thus, a defect in neurotransmission. stj is expressed in neurons but excluded from glia. Mutants exhibit endogenous seizure-like activity, indicating altered neuronal excitability. However, at the synaptic level, stj larval neuromuscular junctions exhibit approximately fourfold reduction in synaptic release compared with controls stemming from a reduced release probability at these synapses. These defects likely stem from destabilization of Cacophony (Cac), the primary presynaptic α1 subunit in D. melanogaster. Interestingly, neuronal overexpression of cac partially rescues the viability and physiological defects in stj mutants, indicating a role for the α2δ Ca2+ channel subunit in mediating the proper localization of an α1 subunit at synapses.
Collapse
Affiliation(s)
- Cindy V Ly
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Ebert AM, McAnelly CA, Srinivasan A, Mueller RL, Garrity DB, Garrity DM. The calcium channel beta2 (CACNB2) subunit repertoire in teleosts. BMC Mol Biol 2008; 9:38. [PMID: 18419826 PMCID: PMC2365960 DOI: 10.1186/1471-2199-9-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary beta subunits to chaperone the pore-forming alpha subunit to the plasma membrane, and to modulate channel electrophysiology 1. Several beta subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse beta2, but not in the other three beta family members, are embryonic lethal at E10.5 due to defects in cardiac contractility 2. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of beta subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of beta2 subunits in zebrafish and other teleosts. RESULTS Cloning of two zebrafish beta2 subunit genes (beta2.1 and beta2.2) indicated they are membrane-associated guanylate kinase (MAGUK)-family genes. Zebrafish beta2 genes show high conservation with mammals within the SH3 and guanylate kinase domains that comprise the "core" of MAGUK proteins, but beta2.2 is much more divergent in sequence than beta2.1. Alternative splicing occurs at the N-terminus and within the internal HOOK domain. In both beta2 genes, alternative short ATG-containing first exons are separated by some of the largest introns in the genome, suggesting that individual transcript variants could be subject to independent cis-regulatory control. In the Tetraodon nigrovidis and Fugu rubripes genomes, we identified single beta2 subunit gene loci. Comparative analysis of the teleost and human beta2 loci indicates that the short 5' exon sequences are highly conserved. A subset of 5' exons appear to be unique to teleost genomes, while others are shared with mammals. Alternative splicing is temporally and spatially regulated in embryo and adult. Moreover, a different subset of spliced beta2 transcript variants is detected in the embryonic heart compared to the adult. CONCLUSION These studies refine our understanding of beta2 subunit diversity arising from alternative splicing, and provide the groundwork for functional analysis of beta2 subunit diversity in the embryonic heart.
Collapse
Affiliation(s)
- Alicia M Ebert
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Xie M, Li X, Han J, Vogt DL, Wittemann S, Mark MD, Herlitze S. Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavbeta4 versus Cavbeta2 subunits to synaptic terminals. ACTA ACUST UNITED AC 2007; 178:489-502. [PMID: 17664337 PMCID: PMC2064847 DOI: 10.1083/jcb.200702072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ channel β subunits determine the transport and physiological properties of high voltage–activated Ca2+ channel complexes. Our analysis of the distribution of the Cavβ subunit family members in hippocampal neurons correlates their synaptic distribution with their involvement in transmitter release. We find that exogenously expressed Cavβ4b and Cavβ2a subunits distribute in clusters and localize to synapses, whereas Cavβ1b and Cavβ3 are homogenously distributed. According to their localization, Cavβ2a and Cavβ4b subunits modulate the synaptic plasticity of autaptic hippocampal neurons (i.e., Cavβ2a induces depression, whereas Cavβ4b induces paired-pulse facilitation [PPF] followed by synaptic depression during longer stimuli trains). The induction of PPF by Cavβ4b correlates with a reduction in the release probability and cooperativity of the transmitter release. These results suggest that Cavβ subunits determine the gating properties of the presynaptic Ca2+ channels within the presynaptic terminal in a subunit-specific manner and may be involved in organization of the Ca2+ channel relative to the release machinery.
Collapse
Affiliation(s)
- Mian Xie
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sendin G, Bulankina AV, Riedel D, Moser T. Maturation of ribbon synapses in hair cells is driven by thyroid hormone. J Neurosci 2007; 27:3163-73. [PMID: 17376978 PMCID: PMC6672472 DOI: 10.1523/jneurosci.3974-06.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) undergo developmental maturation until after the onset of hearing. Here, we studied whether IHC synaptogenesis is regulated by thyroid hormone (TH). We performed perforated patch-clamp recordings of Ca2+ currents and exocytic membrane capacitance changes in IHCs of athyroid and TH-substituted Pax8-/- mice during postnatal development. Ca2+ currents remained elevated in athyroid IHCs at the end of the second postnatal week, when it had developmentally declined in wild-type and TH-rescued mutant IHCs. The efficiency of Ca2+ influx in triggering exocytosis of the readily releasable vesicle pool was reduced in athyroid IHCs. Ribbon synapses were formed despite the TH deficiency. However, different from wild type, in which synapse elimination takes place at approximately the onset of hearing, the number of ribbon synapses remained elevated in 2-week-old athyroid IHCs. Moreover, the ultrastructure of these synapses appeared immature. Using quantitative reverse transcription-PCR, we found a TH-dependent developmental upregulation of the mRNAs for the neuronal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, SNAP25 (synaptosomal-associated protein of 25 kDa) and synaptobrevin 1, in the organ of Corti. These molecular changes probably contribute to the improvement of exocytosis efficiency in mature IHCs. IHCs of 2-week-old athyroid Pax8-/- mice maintained the normally temporary efferent innervation. Moreover, they lacked large-conductance Ca2+-activated K+ channels and KCNQ4 channels. This together with the persistently increased Ca2+ influx permitted continued action potential generation. We conclude that TH regulates IHC differentiation and is essential for morphological and functional maturation of their ribbon synapses. We suggest that presynaptic dysfunction of IHCs is a mechanism in congenital hypothyroid deafness.
Collapse
Affiliation(s)
- Gaston Sendin
- InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, Göttingen University Medical School, 37075 Göttingen, Germany, and
| | - Anna V. Bulankina
- InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, Göttingen University Medical School, 37075 Göttingen, Germany, and
| | - Dietmar Riedel
- Electron Microscopy Group, Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tobias Moser
- InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, Göttingen University Medical School, 37075 Göttingen, Germany, and
| |
Collapse
|
15
|
Weiss N, Tadmouri A, Mikati M, Ronjat M, De Waard M. Importance of voltage-dependent inactivation in N-type calcium channel regulation by G-proteins. Pflugers Arch 2006; 454:115-29. [PMID: 17171365 PMCID: PMC2703660 DOI: 10.1007/s00424-006-0184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 10/29/2006] [Indexed: 10/23/2022]
Abstract
Direct regulation of N-type calcium channels by G-proteins is essential to control neuronal excitability and neurotransmitter release. Binding of the G(betagamma) dimer directly onto the channel is characterized by a marked current inhibition ("ON" effect), whereas the pore opening- and time-dependent dissociation of this complex from the channel produce a characteristic set of biophysical modifications ("OFF" effects). Although G-protein dissociation is linked to channel opening, the contribution of channel inactivation to G-protein regulation has been poorly studied. Here, the role of channel inactivation was assessed by examining time-dependent G-protein de-inhibition of Ca(v)2.2 channels in the presence of various inactivation-altering beta subunit constructs. G-protein activation was produced via mu-opioid receptor activation using the DAMGO agonist. Whereas the "ON" effect of G-protein regulation is independent of the type of beta subunit, the "OFF" effects were critically affected by channel inactivation. Channel inactivation acts as a synergistic factor to channel activation for the speed of G-protein dissociation. However, fast inactivating channels also reduce the temporal window of opportunity for G-protein dissociation, resulting in a reduced extent of current recovery, whereas slow inactivating channels undergo a far more complete recovery from inhibition. Taken together, these results provide novel insights on the role of channel inactivation in N-type channel regulation by G-proteins and contribute to the understanding of the physiological consequence of channel inactivation in the modulation of synaptic activity by G-protein coupled receptors.
Collapse
Affiliation(s)
- Norbert Weiss
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Abir Tadmouri
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Mohamad Mikati
- Department of Pediatrics
American University of Beirut Medical CenterBeyrouth,LB
| | - Michel Ronjat
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
- * Correspondence should be adressed to: Michel De Waard
| |
Collapse
|
16
|
Zhang H, Fu Y, Altier C, Platzer J, Surmeier DJ, Bezprozvanny I. Ca1.2 and CaV1.3 neuronal L-type calcium channels: differential targeting and signaling to pCREB. Eur J Neurosci 2006; 23:2297-310. [PMID: 16706838 PMCID: PMC3307544 DOI: 10.1111/j.1460-9568.2006.04734.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons express multiple types of voltage-gated calcium (Ca2+) channels. Two subtypes of neuronal L-type Ca2+ channels are encoded by CaV1.2 and CaV1.3 pore-forming subunits. To compare targeting of CaV1.2 and CaV1.3 L-type Ca2+ channels, we transfected rat hippocampal neuronal cultures with surface-epitope-tagged sHA-CaV1.2 or sHA-CaV1.3a constructs and found that: (i) both sHA-CaV1.2 and sHA-CaV1.3a form clusters on the neuronal plasma membrane surface; (ii) when compared with sHA-CaV1.2 surface clusters, the sHA-CaV1.3a surface clusters were 10% larger and 25% brighter, but 35% less abundant; (iii) 81% of sHA-CaV1.2 surface clusters, but only 48% of sHA-CaV1.3a surface clusters, co-localized with synapsin clusters; (iv) co-expression with GFP-Shank-1B had no significant effect on sHA-CaV1.2 surface clusters, but promoted formation and synaptic localization of sHA-CaV1.3a surface clusters. In experiments with dihydropyridine-resistant CaV1.2 and CaV1.3a mutants we demonstrated that CaV1.3a L-type Ca2+ channels preferentially mediate nuclear pCREB signaling in hippocampal neurons at low, but not at high, levels of stimulation. In experiments with primary neuronal cultures from CaV1.3 knockout mice we discovered that CaV1.3 channels play a more important role in pCREB signaling in striatal medium spiny neurons than in hippocampal neurons. Our results provide novel insights into the function of CaV1.2 and CaV1.3 L-type Ca2+ channels in the brain.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
18
|
Jekabsons MB, Nicholls DG. Bioenergetic analysis of cerebellar granule neurons undergoing apoptosis by potassium/serum deprivation. Cell Death Differ 2006; 13:1595-610. [PMID: 16410795 DOI: 10.1038/sj.cdd.4401851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptosis induced by K+/serum deprivation (low K+) in cerebellar granule neurons has been extensively investigated. The mitochondria play a key role in apoptosis by releasing proapoptotic factors into the cytoplasm, and mitochondrial dysfunction has been proposed as an early or initiating event in this model. To directly test this hypothesis, cellular and mitochondrial bioenergetics were quantified by determining the respiratory parameters of coverslip-attached neurons. While oxidative phosphorylation rate decreased 39-49% in low K+, this was due to decreased cellular ATP demand rather than impaired ATP/ADP exchange or respiratory chain inhibition. From 3 to 5 h in low K+, apoptosis progressed from 13 to 40% despite no appreciable change in respiratory parameters. Changes in steady-state O2-, assessed with dihydroethidium, were seen in granule but not hippocampal neurons. The O2- change correlated with changes in [Ca2+]c, but not mitochondrial respiration. Thus, early mitochondrial dysfunction can be excluded in this common model of neuronal apoptosis.
Collapse
Affiliation(s)
- M B Jekabsons
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | |
Collapse
|
19
|
Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A, Rusch NJ. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Vascul Pharmacol 2006; 44:131-42. [PMID: 16427812 PMCID: PMC4917380 DOI: 10.1016/j.vph.2005.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Long-lasting Ca(2+) (Ca(L)) channels of the Ca(v)1.2 gene family are heteromultimeric structures that are minimally composed of a pore-forming alpha(1C) subunit and regulatory beta and alpha(2)delta subunits in vascular smooth muscle cells. The Ca(L) channels are the primary pathways for voltage-gated Ca(2+) influx that trigger excitation-contraction coupling in small resistance vessels. Notably, vascular smooth muscle cells of hypertensive rats show an increased expression of Ca(L) channel alpha(1C) subunits, which is associated with elevated Ca(2+) influx and the development of abnormal arterial tone. Indeed, blood pressure per se appears to promote Ca(L) channel expression in small arteries, and even short-term rises in pressure may alter channel expression. Membrane depolarization has been shown to be one stimulus associated with elevated blood pressure that promotes Ca(L) channel expression at the plasma membrane. Future studies to define the molecular processes that regulate Ca(L) channel expression in vascular smooth muscle cells will provide a rational basis for designing antihypertensive therapies to normalize Ca(L) channel expression and the development of anomalous vascular tone in hypertensive pathologies.
Collapse
Affiliation(s)
- Swapnil Sonkusare
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - James D. Marsh
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205-7199, United States
| | - Sabine Telemaque
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205-7199, United States
| | - Aleksandra Pesic
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - Nancy J. Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
- Corresponding author. Tel.: +1 501 686 8038; fax: +1 501 686 5521. (N.J. Rusch)
| |
Collapse
|
20
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
21
|
Lai M, Wang F, Rohan JG, Maeno-Hikichi Y, Chen Y, Zhou Y, Gao G, Sather WA, Zhang JF. A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons. Nat Neurosci 2005; 8:435-42. [PMID: 15768038 DOI: 10.1038/nn1418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 02/08/2005] [Indexed: 11/09/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca(2+) channels, but not L-type Ca(2+) channels. The interaction is insensitive to Ca(2+). Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels, as determined by immunostaining. Furthermore, disruption of the tctex1-Ca(2+) channel interaction significantly reduces the Ca(2+) current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca(2+) channels with different functionalities.
Collapse
Affiliation(s)
- Meizan Lai
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasaki T, Shibasaki T, Béguin P, Nagashima K, Miyazaki M, Seino S. Direct Inhibition of the Interaction between α-Interaction Domain and β-Interaction Domain of Voltage-dependent Ca2+ Channels by Gem. J Biol Chem 2005; 280:9308-12. [PMID: 15615719 DOI: 10.1074/jbc.m413773200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ras-related small G-protein Gem regulates voltage-dependent Ca2+ channels (VDCCs) through interaction with the beta-subunit of the VDCC. This action of Gem is mediated by regulated alpha1-subunit expression at the plasma membrane. In the present study, we examined the mechanism of the inhibition of VDCC activity by Gem. The beta-interaction domain (BID) of the beta-subunit, which specifically interacts with the alpha-interaction domain (AID) of the alpha1-subunit, is shown to be essential for the interaction between Gem and beta-subunits. In addition, the AID peptide inhibited interaction between Gem and beta-subunits in a dose-dependent manner. GemS88N mutant, which has low binding affinity for guanine nucleotide, did not interact with beta-subunits, allowing alpha1-subunit expression at the plasma membrane. This inhibitory effect of wild-type Gem on VDCC activity was reduced in cells expressing GemS88N. The overexpression of wild-type Gem in pancreatic beta-cell line MIN6 cells suppressed Ca2+-triggered secretion, whereas overexpression of GemS88N induced Ca2+-triggered secretion to control level. These results suggest that GTPase activity of Gem is required for the binding of Gem to BID that regulates VDCC activity through interaction with AID.
Collapse
Affiliation(s)
- Takehide Sasaki
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Brette F, Leroy J, Le Guennec JY, Sallé L. Ca2+ currents in cardiac myocytes: Old story, new insights. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:1-82. [PMID: 16503439 DOI: 10.1016/j.pbiomolbio.2005.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via specialized voltage-gated Ca2+ channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca2+ channels alpha(1D) and alpha(1E). We finally discuss the potential involvement of Ca2+ currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK.
| | | | | | | |
Collapse
|
24
|
Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Structural Analysis of the Voltage-Dependent Calcium Channel β Subunit Functional Core and Its Complex with the α1 Interaction Domain. Neuron 2004; 42:387-99. [PMID: 15134636 DOI: 10.1016/s0896-6273(04)00250-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 03/23/2004] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Voltage-dependent calcium channels (VDCC) are multiprotein assemblies that regulate the entry of extracellular calcium into electrically excitable cells and serve as signal transduction centers. The alpha1 subunit forms the membrane pore while the intracellular beta subunit is responsible for trafficking of the channel to the plasma membrane and modulation of its electrophysiological properties. Crystallographic analyses of a beta subunit functional core alone and in complex with a alpha1 interaction domain (AID) peptide, the primary binding site of beta to the alpha1 subunit, reveal that beta represents a novel member of the MAGUK protein family. The findings illustrate how the guanylate kinase fold has been fashioned into a protein-protein interaction module by alteration of one of its substrate sites. Combined results indicate that the AID peptide undergoes a helical transition in binding to beta. We outline the mechanistic implications for understanding the beta subunit's broad regulatory role of the VDCC, particularly via the AID.
Collapse
Affiliation(s)
- Yarden Opatowsky
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|