1
|
Song W, Liu XY. Source oxygen contributions of primary nitrate emitted from biomass burning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158736. [PMID: 36122720 DOI: 10.1016/j.scitotenv.2022.158736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric nitrate (NO3-) produced by photochemical oxidation in the atmosphere has high oxygen isotope ratios (δ18O values). Recently, the primary NO3- emitted from combustion sources was found to have much lower δ18O values. However, it is unclear how and to what extents the low δ18O signatures were controlled by major O sources during the primary NO3- formation of combustion processes. Here, we first measured concentrations and δ18O values of NO3- from burning five biomass materials (bb-NO3- and δ18Obb-NO3-, respectively) in China. Distinctly higher concentration levels of the bb-NO3- emissions (42.1 ± 8.1 μmol m-3) than ambient NO3- suggest it is a potential source of atmospheric NO3- pollution. Much lower δ18Obb-NO3- signatures (27.6 ± 2.7 ‰) than ambient NO3- support it as a primary emission source with different O sources and formation mechanism from secondary NO3-. Isotope mass-balance modeling revealed that atmospheric O2 and the biomass O dominated the O of bb-NO3- (53 ± 7 % and 40 ± 4 %, respectively) over the aqueous vapor (7 ± 3 %). Besides, we found increasing δ18Obb-NO3- values with the biomass N contents and relatively lower δ18Obb-NO3- values for biomasses with higher carbon (C) and lower O contents, indicating that biomass C, N, and O contents may influence the source O contributions of the bb-NO3-. This work provides a novel isotope analysis on the O source contribution of the bb-NO3-, which is useful for understanding the formation mechanism of combustion-related NO3- sources and evaluating the primary NO3- emissions.
Collapse
Affiliation(s)
- Wei Song
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Yang X, Lu K, Ma X, Liu Y, Wang H, Hu R, Li X, Lou S, Chen S, Dong H, Wang F, Wang Y, Zhang G, Li S, Yang S, Yang Y, Kuang C, Tan Z, Chen X, Qiu P, Zeng L, Xie P, Zhang Y. Observations and modeling of OH and HO 2 radicals in Chengdu, China in summer 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144829. [PMID: 33578154 DOI: 10.1016/j.scitotenv.2020.144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study reports on the first continuous measurements of ambient OH and HO2 radicals at a suburban site in Chengdu, Southwest China, which were collected during 2019 as part of a comprehensive field campaign 'CompreHensive field experiment to explOre the photochemical Ozone formation mechaniSm in summEr - 2019 (CHOOSE-2019)'. The mean concentrations (11:00-15:00) of the observed OH and HO2 radicals were 9.5 × 106 and 9.0 × 108 cm-3, respectively. To investigate the state-of-the-art chemical mechanism of radical, closure experiments were conducted with a box model, in which the RACM2 mechanism updated with the latest isoprene chemistry (RACM2-LIM1) was used. In the base run, OH radicals were underestimated by the model for the low-NO regime, which was likely due to the missing OH recycling. However, good agreement between the observed and modeled OH concentrations was achieved when an additional species X (equivalent to 0.25 ppb of NO mixing ratio) from one new OH regeneration cycle (RO2 + X → HO2, HO2 + X → OH) was added into the model. Additionally, in the base run, the model could reproduce the observed HO2 concentrations. Discrepancies in the observed and modeled HO2 concentrations were found in the sensitivity runs with HO2 heterogeneous uptake, indicating that the impact of the uptake may be less significant in Chengdu because of the relatively low aerosol concentrations. The ROx (= OH + HO2 + RO2) primary source was dominated by photolysis reactions, in which HONO, O3, and HCHO photolysis accounted for 34%, 19%, and 23% during the daytime, respectively. The efficiency of radical cycling was quantified by the radical chain length, which was determined by the NO to NO2 ratio successfully. The parameterization of the radical chain length may be very useful for the further determinations of radical recycling.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yanhui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China.
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Fengyang Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yihui Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Shule Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Cailing Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Zhaofeng Tan
- International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Peipei Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen, China.
| |
Collapse
|
3
|
Kruza M, Lewis AC, Morrison GC, Carslaw N. Impact of surface ozone interactions on indoor air chemistry: A modeling study. INDOOR AIR 2017; 27:1001-1011. [PMID: 28303599 DOI: 10.1111/ina.12381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/12/2017] [Indexed: 05/03/2023]
Abstract
An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C6 -C10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C6 -C10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants.
Collapse
Affiliation(s)
- M Kruza
- Environment Department, University of York, York, UK
| | - A C Lewis
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
| | - G C Morrison
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - N Carslaw
- Environment Department, University of York, York, UK
| |
Collapse
|
7
|
Ren X, Olson JR, Crawford JH, Brune WH, Mao J, Long RB, Chen Z, Chen G, Avery MA, Sachse GW, Barrick JD, Diskin GS, Huey LG, Fried A, Cohen RC, Heikes B, Wennberg PO, Singh HB, Blake DR, Shetter RE. HOxchemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009166] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinrong Ren
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Jennifer R. Olson
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - James H. Crawford
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - William H. Brune
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Jingqiu Mao
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Robert B. Long
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Zhong Chen
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Gao Chen
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - Melody A. Avery
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - Glen W. Sachse
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - John D. Barrick
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - Glenn S. Diskin
- Science Directorate; NASA Langley Research Center; Hampton Virginia USA
| | - L. Greg Huey
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Alan Fried
- Earth Observing Laboratory; National Center for Atmospheric Research; Boulder Colorado USA
| | - Ronald C. Cohen
- Department of Chemistry and Department of Earth and Planetary Science; University of California; Berkeley California USA
| | - Brian Heikes
- Graduate School of Oceanography; University of Rhode Island; Narragansett Rhode Island USA
| | - Paul O. Wennberg
- Division of Engineering and Applied Sciences; California Institute of Technology; Pasadena California USA
| | | | - Donald R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - Richard E. Shetter
- National Suborbital Education and Research Center; University of North Dakota; Grand Forks North Dakota USA
| |
Collapse
|
8
|
Osthoff HD, Sommariva R, Baynard T, Pettersson A, Williams EJ, Lerner BM, Roberts JM, Stark H, Goldan PD, Kuster WC, Bates TS, Coffman D, Ravishankara AR, Brown SS. Observation of daytime N2
O5
in the marine boundary layer during New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007593] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hans D. Osthoff
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Roberto Sommariva
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Tahllee Baynard
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Anders Pettersson
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Eric J. Williams
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Brian M. Lerner
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - James M. Roberts
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Harald Stark
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Paul D. Goldan
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - William C. Kuster
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - Timothy S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - Derek Coffman
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - A. R. Ravishankara
- Cooperate Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
- Department of Chemistry and Biochemistry; University of Colorado; Boulder Colorado USA
| | - Steven S. Brown
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| |
Collapse
|
9
|
Zádor J, Zsély IG, Turányi T, Ratto M, Tarantola S, Saltelli A. Local and Global Uncertainty Analyses of a Methane Flame Model. J Phys Chem A 2005; 109:9795-807. [PMID: 16833293 DOI: 10.1021/jp053270i] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Local and global uncertainty analyses of a flat, premixed, stationary, laminar methane flame model were carried out using the Leeds methane oxidation mechanism at lean (phi = 0.70), stoichiometric (phi = 1.00), and rich (phi = 1.20) equivalence ratios. Uncertainties of laminar flame velocity, maximal flame temperature, and maximal concentrations of radicals H, O, OH, CH, and CH(2) were investigated. Global uncertainty analysis methods included the Morris method, the Monte Carlo analysis with Latin hypercube sampling, and an improved version of the Sobol' method. Assumed probability density functions (pdf's) were assigned to the rate coefficients of all the 175 reactions and to the enthalpies of formation of the 37 species. The analyses provided the following answers: approximate pdf's and standard deviations of the model results, minimum and maximum values of the results at any physically realistic parameter combination, and the contribution of the uncertainty of each parameter to the uncertainty of the model result. The uncertainty of a few rate parameters and a few enthalpies of formation causes most of the uncertainty of the model results. Most uncertainty comes from the inappropriate knowledge of kinetic data, but the uncertainty caused by thermodynamic data is also significant.
Collapse
Affiliation(s)
- Judit Zádor
- Department of Physical Chemistry, Eötvös University (ELTE), P.O. Box 32, H-1518 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Bréas O, Guillou C, Reniero F, Wada E. The global methane cycle: isotopes and mixing ratios, sources and sinks. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2001; 37:257-379. [PMID: 12723792 DOI: 10.1080/10256010108033302] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A review of the global cycle of methane is presented with emphasis on its isotopic composition. The history of methane mixing ratios, reconstructed from measurements of air trapped in ice-cores is described. The methane record now extends back to 420 kyr ago in the case of the Vostok ice cores from Antarctica. The trends in mixing ratios and in delta13C values are reported for the two Hemispheres. The increase of the atmospheric methane concentration over the past 200 years, and by 1% per year since 1978, reaching 1.7 ppmv in 1990 is underlined. The various methane sources are presented. Indeed the authors describe the methane emissions by bacterial activity under anaerobic conditions in wet environments (wetlands, bogs, tundra, rice paddies), in ruminant stomachs and termite guts, and that originating from fossil carbon sources, such as biomass burning, coal mining, industrial losses, automobile exhaust, sea floor vent, and volcanic emissions. Furthermore, the main sinks of methane in the troposphere, soils or waters via oxidation are also reported, and the corresponding kinetic isotope effects.
Collapse
Affiliation(s)
- O Bréas
- European Commission Joint Research Centre, Institute for Reference Materials and Measurements, Isotope Measurements Unit, B-2440 Geel, Belgium
| | | | | | | |
Collapse
|