1
|
Zhang Y, Xu Z, Han G, Chu Z, Zhou Q, Chen Q, Wu G, Shi G, Wang X, Chen L. Improved Mechanistic Modeling on Reproducing Particle-Bound Mercury in the Marine Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2611-2622. [PMID: 39815724 DOI: 10.1021/acs.est.4c09481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound HgP formation in the atmosphere stems mainly from the adsorption of reactive gaseous HgII on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of HgP over HgII in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations. This study incorporated an improved mechanistic scheme in an atmospheric chemical transport model to simulate SSA-bound HgP cycling processes in the marine atmosphere. Results show that a widely used statistics-based scheme could reproduce atmospheric HgP concentrations over continents but failed to reproduce the concentrations over the ocean. The HgP concentrations particularly relative abundance of HgP over HgII in the marine atmosphere could be successfully reproduced by the process-based scheme. Accordingly, a new global atmospheric Hg cycling budget was constructed, manifesting mainly in the atmospheric burden of 4 Mg, dry deposition of 160 Mg yr-1, and wet deposition of 1410 Mg yr-1 for SSA-bound HgP. The new insight on the global atmospheric Hg budget sheds light on the re-examination of Hg deposition risks in the ocean owing to a transition from previously recognized gaseous HgII deposition to unrecognized particulate HgP deposition over the ocean.
Collapse
Affiliation(s)
- Yanping Zhang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guoling Han
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhaohan Chu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qinzheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guangmei Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guitao Shi
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| |
Collapse
|
2
|
Dang R, Jacob DJ, Zhai S, Yang LH, Pendergrass DC, Coheur P, Clarisse L, Van Damme M, Choi JS, Park JS, Liu Z, Xie P, Liao H. A Satellite-Based Indicator for Diagnosing Particulate Nitrate Sensitivity to Precursor Emissions: Application to East Asia, Europe, and North America. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20101-20113. [PMID: 39467548 PMCID: PMC11562732 DOI: 10.1021/acs.est.4c08082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Particulate nitrate is a major component of fine particulate matter (PM2.5) and a key target for improving air quality. Its formation is varyingly sensitive to emissions of nitrogen oxides (NOx ≡ NO + NO2), ammonia (NH3), and volatile organic compounds (VOCs). Diagnosing the dominant sensitivity is critical for effective pollution control. Here, we show that satellite observations of the NO2 column and the NH3/NO2 column ratio can effectively diagnose the dominant sensitivity regimes in polluted regions of East Asia, Europe, and North America, in different seasons, though with reduced performance in the summer. We demarcate the different sensitivity regimes using the GEOS-Chem chemical transport model and apply the method to satellite observations from the OMI (NO2) and IASI (NH3) in 2017. We find that the dominant sensitivity regimes vary across regions and remain largely consistent across seasons. Sensitivity to NH3 emissions dominates in the northern North China Plain (NCP), the Yangtze River Delta, South Korea, most of Europe, Los Angeles, and the eastern United States. Sensitivity to NOx emissions dominates in central China, the Po Valley in Italy, the central United States, and the Central Valley in California. Sensitivity to VOCs emissions dominates only in the southern NCP in the winter. These results agree well with those of previous local studies. Our satellite-based indicator provides a simple tool for air quality managers to choose emission control strategies for decreasing PM2.5 nitrate pollution.
Collapse
Affiliation(s)
- Ruijun Dang
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J. Jacob
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shixian Zhai
- Department
of Earth and Environmental Sciences, Faculty of Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Laura Hyesung Yang
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Drew C. Pendergrass
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pierre Coheur
- Université
Libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric
Remote Sensing (SQUARES), Brussels 1050, Belgium
| | - Lieven Clarisse
- Université
Libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric
Remote Sensing (SQUARES), Brussels 1050, Belgium
| | - Martin Van Damme
- Université
Libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric
Remote Sensing (SQUARES), Brussels 1050, Belgium
- Royal
Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels 1180, Belgium
| | - Jin-soo Choi
- Air
Quality Research Division, National Institute
of Environmental Research, Incheon 22689, South Korea
| | - Jin-soo Park
- Air
Quality Research Division, National Institute
of Environmental Research, Incheon 22689, South Korea
| | - Zirui Liu
- State Key
Laboratory of Atmospheric Environment and Extreme Meteorology, Institute
of Atmospheric Physics, Chinese Academy
of Sciences, Beijing 100029, China
| | - Peifu Xie
- Jiangsu
Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, Collaborative Innovation Center of Atmospheric Environment
and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong Liao
- Jiangsu
Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, Collaborative Innovation Center of Atmospheric Environment
and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Zheng G, Su H, Wan R, Duan X, Cheng Y. Rising Alkali-to-Acid Ratios in the Atmosphere May Correspond to Increased Aerosol Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16517-16524. [PMID: 39231580 DOI: 10.1021/acs.est.4c06860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Aerosol acidity (or pH) is one central parameter in determining the health, climate, and ecological effects of aerosols. While it is traditionally assumed that the long-term aerosol pH levels are determined by the relative abundances of atmospheric alkaline to acidic substances (referred to as RC/A hereinafter), we observed contrasting pH─RC/A trends at different sites globally, i.e., rising alkali-to-acid ratios in the atmosphere may unexpectedly lead to increased aerosol acidity. Here, we examined this apparently counterintuitive phenomenon using the multiphase buffer theory. We show that the aerosol water content (AWC) set a pH "baseline" as the peak buffer pH, while the RC/A and particle-phase chemical compositions determine the deviation of pH from this baseline within the buffer ranges. Therefore, contrasting long-term pH trends may emerge when RC/A increases while the AWC or nitrate fraction decreases, or vice versa. Our results provided a theoretical framework for a quantitative understanding of the response of aerosol pH to variations in SO2, NOx versus NH3, and dust emissions, offering broad applications in studies on aerosol pH and the associated environmental and health effects.
Collapse
Affiliation(s)
- Guangjie Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ruilin Wan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaolin Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yafang Cheng
- Aerosol Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
4
|
Gaston CJ, Prospero JM, Foley K, Pye HOT, Custals L, Blades E, Sealy P, Christie JA. Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2024; 24:8049-8066. [PMID: 39502557 PMCID: PMC11534066 DOI: 10.5194/acp-24-8049-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Sulfate and nitrate aerosols degrade air quality, modulate radiative forcing and the hydrological cycle, and affect biogeochemical cycles, yet their global cycles are poorly understood. Here, we examined trends in 21 years of aerosol measurements made at Ragged Point, Barbados, the easternmost promontory on the island located in the eastern Caribbean Basin. Though the site has historically been used to characterize African dust transport, here we focused on changes in nitrate and non-sea-salt (nss) sulfate aerosols from 1990-2011. Nitrate aerosol concentrations averaged over the entire period were stable at 0.59 μg m-3 ± 0.04 μg m-3, except for elevated nitrate concentrations in the spring of 2010 and during the summer and fall of 2008 due to the transport of biomass burning emissions from both northern and southern Africa to our site. In contrast, from 1990 to 2000, nss-sulfate decreased 30% at a rate of 0.023 μg m-3 yr-1, a trend which we attribute to air quality policies enacted in the United States (US) and Europe. From 2000-2011, sulfate gradually increased at a rate of 0.021 μg m-3 yr-1 to pre-1990s levels of 0.90 μg m-3. We used the Community Multiscale Air Quality (CMAQ) model simulations from the EPA's Air QUAlity TimE Series (EQUATES) to better understand the changes in nss-sulfate after 2000. The model simulations estimate that increases in anthropogenic emissions from Africa explain the increase in nss-sulfate observed in Barbados. Our results highlight the need to better constrain emissions from developing countries and to assess their impact on aerosol burdens in remote source regions.
Collapse
Affiliation(s)
- Cassandra J. Gaston
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| | - Joseph M. Prospero
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| | - Kristen Foley
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lillian Custals
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| | - Edmund Blades
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| | - Peter Sealy
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| | - James A. Christie
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
5
|
Dai H, Liao H, Wang Y, Qian J. Co-occurrence of ozone and PM 2.5 pollution in urban/non-urban areas in eastern China from 2013 to 2020: Roles of meteorology and anthropogenic emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171687. [PMID: 38485008 DOI: 10.1016/j.scitotenv.2024.171687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
We applied a three-dimensional (3-D) global chemical transport model (GEOS-Chem) to evaluate the influences of meteorology and anthropogenic emissions on the co-occurrence of ozone (O3) and fine particulate matter (PM2.5) pollution day (O3-PM2.5PD) in urban and non-urban areas of the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions during the warm season (April-October) from 2013 to 2020. The model captured the observed O3-PM2.5PD trends and spatial distributions well. From 2013 to 2020, with changes in both anthropogenic emissions and meteorology, the simulated values of O3-PM2.5PD in the urban (non-urban) areas of the BTH and YRD regions were 424.8 (330.1) and 309.3 (286.9) days, respectively, suggesting that pollution in non-urban areas also warrants attention. The trends in the simulated values of O3-PM2.5PD were -0.14 and -0.15 (+1.18 and +0.81) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Sensitivity simulations revealed that changes in anthropogenic emissions decreased the occurrence of O3-PM2.5PD, with trends of -0.99 and -1.23 (-1.47 and -1.92) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Conversely, meteorological conditions could exacerbate the frequency of O3-PM2.5PD, especially in the urban YRD areas, but less notably in the urban BTH areas, with trends of +2.11 and +0.30 days yr-1, respectively, owing to changes in meteorology only. The increases in T2m_max and T2m were the main meteorological factors affecting O3-PM2.5PD in most BTH and YRD areas. Furthermore, by conducting sensitivity experiments with different levels of pollutant precursor reductions in 2020, we found that volatile organic compound (VOC) reductions primarily benefited O3-PM2.5PD decreases in urban areas and that NOx reductions more notably influenced those in non-urban areas, especially in the YRD region. Simultaneously, reducing VOC and NOx emissions by 50 % resulted in considerable O3-PM2.5PD decreases (58.8-72.6 %) in the urban and non-urban areas of the BTH and YRD regions. The results of this study have important implications for the control of O3-PM2.5PD in the urban and non-urban areas of the BTH and YRD regions.
Collapse
Affiliation(s)
- Huibin Dai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ye Wang
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jing Qian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Jeong JI, Park RJ, Song CK, Yeh SW, Woo JH. Quantitative analysis of winter PM 2.5 reduction in South Korea, 2019/20 to 2021/22: Contributions of meteorology and emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168179. [PMID: 39491193 DOI: 10.1016/j.scitotenv.2023.168179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
To quantitatively analyze the factors contributing to the change in winter PM2.5 concentrations in South Korea over the past three years (2019/20 to 2021/22), we used updated anthropogenic emissions, a nested version of the GEOS-Chem model, and ground-based observational data. Our study identified meteorological variability and changes in anthropogenic emissions from China and South Korea as the main factors influencing changes in PM2.5 concentrations. The model results showed low normalized mean biases (NMBs) (13 % to 25 % for China, -5 % to -1 % for South Korea) compared with the seasonal mean ground observations in winter, indicating the model's reliability. Over the past three years (2019/20 to 2021/22), the observed winter PM2.5 concentration in South Korea has decreased by an average of 21.2 % (15.9 % to 24.2 %) compared to the reference year (2018/19). Among the three factors considered, meteorological changes contributed the most to the PM2.5 reduction, with an average of 12.9 % (6.8 % to 17.3 %), followed by a decrease in anthropogenic emissions from China of 5.1 % (2.7 % to 7.9 %) and South Korea of 1.7 % (1.3 % to 1.9 %). In addition, the high monthly variability of meteorological fields drove the monthly variability of surface PM2.5 in South Korea, ranging from 12.8 % to 20.6 %. These results highlight the complex interplay of various factors affecting winter PM2.5 concentrations in South Korea.
Collapse
Affiliation(s)
- Jaein I Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Rokjin J Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
| | - Chang-Keun Song
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sang-Wook Yeh
- Department of Marine Sciences and Convergent Technology, Hanyang University, ERICA, Ansan, South Korea
| | - Jung-Hun Woo
- Department of Civil and Environmental Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
7
|
Yu C, Liu T, Ge D, Nie W, Chi X, Ding A. Ionic Strength Enhances the Multiphase Oxidation Rate of Sulfur Dioxide by Ozone in Aqueous Aerosols: Implications for Sulfate Production in the Marine Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6609-6615. [PMID: 37040454 DOI: 10.1021/acs.est.3c00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Multiphase oxidation of sulfur dioxide (SO2) by ozone (O3) in alkaline sea salt aerosols is an important source of sulfate aerosols in the marine atmosphere. However, a recently reported low pH of fresh supermicron sea spray aerosols (mainly sea salt) would argue against the importance of this mechanism. Here, we investigated the impact of ionic strength on the kinetics of multiphase oxidation of SO2 by O3 in proxies of aqueous acidified sea salt aerosols with buffered pH of ∼4.0 via well-controlled flow tube experiments. We find that the sulfate formation rate for the O3 oxidation pathway proceeds 7.9 to 233 times faster under high ionic strength conditions of 2-14 mol kg-1 compared to the dilute bulk solutions. The ionic strength effect is likely to sustain the importance of multiphase oxidation of SO2 by O3 in sea salt aerosols in the marine atmosphere. Our results indicate that atmospheric models should consider the ionic strength effects on the multiphase oxidation of SO2 by O3 in sea salt aerosols to improve the predictions of the sulfate formation rate and the sulfate aerosol budget in the marine atmosphere.
Collapse
Affiliation(s)
- Chen Yu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Dafeng Ge
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
| | - Xuguang Chi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Ali U, Faisal M, Ganguly D, Kumar M, Singh V. Analysis of aerosol liquid water content and its role in visibility reduction in Delhi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161484. [PMID: 36639001 DOI: 10.1016/j.scitotenv.2023.161484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Aerosols undergo significant changes due to water uptake under high RH conditions, leading to changes in physical, optical, and chemical properties. Detailed assessment and investigation are needed to understand better aerosol liquid water content (ALWC) characteristics in highly polluted regions like Delhi. Therefore, in this study, we examined the mass concentration and the factors governing the ALWC associated with PM2.5 in Delhi for two winters (Dec 2019 to Jan 2020 and Dec 2020 to Feb 2021) using the real-time measurements of NR-PM2.5 from Aerodyne aerosol chemical speciation monitor (ACSM) and the application of thermodynamic modeling (ISORROPIA II). The average NR-PM2.5 mass concentration in the 2020-2021 winter was 152 μg/m3, about 50 % higher than the average mass concentration of 102 μg/m3 in 2019-2020. Consequently, the ALWC was also 60 % higher during 2020-2021, with an average mass concentration of 150 μg/m3. ALWC increased exponentially with RH and is significant when RH > 80 %. Further, all the inorganic components of NR-PM2.5 were found to contribute significantly to ALWC uptake; however, the relative contribution varied in different RH conditions. Ammonium sulphate dominated the ALWC uptake among the inorganic components at low RH, but ammonium nitrate was the dominant contributor at high RH. The decreased chloride mass fraction in inorganics in the recent winters reduced its relative contribution to ALWC. High ALWC mass concentration during high PM2.5 and high RH leads to a significant reduction in visibility. We further validated this visibility reduction by estimating the enhanced light scattering coefficient (f(RH)) and found that the hygroscopic growth is responsible for the enhanced visibility reduction during high RH conditions (> 85 %) when light scattering efficiency increased by a factor of >3.5. Sensitivity tests of f(RH) on mass concentration of inorganic salts showed that all the salts contributed almost equally. As revealed in our study, variations in PM2.5 mass concentration and composition despite similar meteorological conditions between different winters indicate changing regional aerosol emissions. Therefore, long-term observations of ALWC and PM2.5 chemical composition are required to arrive at actionable measures and mitigation strategies. Further, the focus should be on reducing the overall inorganic mass concentrations of PM2.5 in general, decreasing the absolute ALWC, and improving visibility.
Collapse
Affiliation(s)
- Umer Ali
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mohd Faisal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dilip Ganguly
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mayank Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Vikram Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Gu Y, Henze DK, Nawaz MO, Cao H, Wagner UJ. Sources of PM 2.5-Associated Health Risks in Europe and Corresponding Emission-Induced Changes During 2005-2015. GEOHEALTH 2023; 7:e2022GH000767. [PMID: 36949891 PMCID: PMC10027220 DOI: 10.1029/2022gh000767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
We present a newly developed approach to characterize the sources of fine particulate matter (PM2.5)-related premature deaths in Europe using the chemical transport model GEOS-Chem and its adjoint. The contributions of emissions from each individual country, species, and sector are quantified and mapped out at km scale. In 2015, total PM2.5-related premature death is estimated to be 449,813 (257,846-722,138) in Europe, 59.0% of which were contributed by domestic anthropogenic emissions. The anthropogenic emissions of nitrogen oxides, ammonia, and organic carbon contributed most to the PM2.5-related health damages, making up 29.6%, 23.2%, and 16.8%, respectively of all domestic anthropogenic contributions. Residential, agricultural, and ground transport emissions are calculated to be the largest three sectoral sources of PM2.5-related health risks, accounting for 23.5%, 23.0%, and 19.4%, respectively, of total anthropogenic contributions within Europe. After excluding the influence of extra-regional sources, we find eastern European countries suffered from more premature deaths than their emissions caused; in contrast, the emissions from some central and western European regions contributed premature deaths exceeding three times the number of deaths that occurred locally. During 2005-2015, the first decade of PM2.5 regulation in Europe, emission controls reduced PM2.5-related health damages in nearly all European countries, resulting in 63,538 (46,092-91,082) fewer PM2.5-related premature deaths. However, our calculation suggests that efforts to reduce air pollution from key sectors in some countries can be offset by the lag in control of emissions in others. International cooperation is therefore vitally important for tackling air pollution and reducing corresponding detrimental effects on public health.
Collapse
Affiliation(s)
- Yixuan Gu
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
- Department of EconomicsUniversity of MannheimMannheimGermany
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - M. Omar Nawaz
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Hansen Cao
- Department of ChemistryUniversity of YorkYorkUK
| | | |
Collapse
|
10
|
Göhring A, Hölzl S, Mayr C, Strauss H. Identification and quantification of the sea spray effect on isotopic systems in α-cellulose (δ 13C, δ 18O), total sulfur (δ 34S), and 87Sr/ 86Sr of European beach grass (Ammophila arenaria, L.) in a greenhouse experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158840. [PMID: 36122729 DOI: 10.1016/j.scitotenv.2022.158840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The sea spray effect can severely influence the isotopic signature of terrestrial individuals in coastal regions. To further specify this effect, beach grass was grown in a greenhouse under controlled environmental conditions and sprayed with mineral salt solution containing different mineral salts but only traces of NaCl (group 1). Another group of plants was sprayed with salty water from the Schlei inlet and the Baltic Sea, respectively (group 2). Control plants were only sprayed with tap water. Isotope analyses were conducted on the unwashed and washed plants (δ13Ccellulose, δ18Ocellulose, δ34Stotal S, 87Sr/86Sr), soil (δ18Osulfate, δ34Ssulfate, 87Sr/86Sr), and spray as well as irrigation water (δ18Osulfate, δ34Ssulfate, 87Sr/86Sr). Moreover, elemental analyses were performed on the water samples. The sea spray effect was visible in all isotopic systems under study. The uptake of SO42-, HCO3-, and Sr2+ directly affected plants of group 1, while plants of group 2, sprayed with salty water, additionally showed salinity stress in the case of α-cellulose and total sulfur due to biochemical reactions of the plants. Very high concentrations in HCO3- or SO42- also affected the plants' isotopic signatures. The impact of the sea spray and additional stress reactions were quantified. Our study is the first experiment creating an artificial sea spray effect in a greenhouse. This experiment for the first time enables the identification and quantification of the sea spray effect in environmental samples. The marine signature taken up by the plants and recorded by the investigated isotopic systems is apparently high and should have an impact on the isotopic fingerprints of animal consumers at the coast, as evidenced for archaeological animals from the Viking Haithabu and the early medieval Schleswig sites located close to the Baltic Sea. This result demonstrates the potential of greenhouse experiments as an isotopic predictor of the past local sea spray effect.
Collapse
Affiliation(s)
- Andrea Göhring
- Ludwig-Maximilians-Universität München, Faculty of Biology, Department of Biology I, Anthropology and Human Genomics, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Stefan Hölzl
- RiesKraterMuseum Nördlingen, Eugene-Shoemaker-Platz 1, 86720 Nördlingen, Germany
| | - Christoph Mayr
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Geography, Wetterkreuz 15, 91058 Erlangen, Germany; Ludwig-Maximilians-Universität München, Faculty of Geosciences, Department of Earth and Environmental Studies and GeoBio-Center, Richard-Wagner-Straße 10, 80333 Munich, Germany
| | - Harald Strauss
- Westfälische Wilhelms-Universität Münster, Institute of Geology and Palaeontology, Corrensstr. 24, 48149 Münster, Germany
| |
Collapse
|
11
|
Itahashi S, Hattori S, Ito A, Sadanaga Y, Yoshida N, Matsuki A. Role of Dust and Iron Solubility in Sulfate Formation during the Long-Range Transport in East Asia Evidenced by 17O-Excess Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13634-13643. [PMID: 36107476 PMCID: PMC9535864 DOI: 10.1021/acs.est.2c03574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Numerical models have been developed to elucidate air pollution caused by sulfate aerosols (SO42-). However, typical models generally underestimate SO42-, and oxidation processes have not been validated. This study improves the modeling of SO42- formation processes using the mass-independent oxygen isotopic composition [17O-excess; Δ17O(SO42-)], which reflects pathways from sulfur dioxide (SO2) to SO42-, at the background site in Japan throughout 2015. The standard setting in the Community Multiscale Air Quality (CMAQ) model captured SO42- concentration, whereas Δ17O(SO42-) was underestimated, suggesting that oxidation processes were not correctly represented. The dust inline calculation improved Δ17O(SO42-) because dust-derived increases in cloud-water pH promoted acidity-driven SO42- production, but Δ17O(SO42-) was still overestimated during winter as a result. Increasing solubilities of the transition-metal ions, such as iron, which are a highly uncertain modeling parameter, decreased the overestimated Δ17O(SO42-) in winter. Thus, dust and high metal solubility are essential factors for SO42- formation in the region downstream of China. It was estimated that the remaining mismatch of Δ17O(SO42-) between the observation and model can be explained by the proposed SO42- formation mechanisms in Chinese pollution. These accurately modeled SO42- formation mechanisms validated by Δ17O(SO42-) will contribute to emission regulation strategies required for better air quality and precise climate change predictions over East Asia.
Collapse
Affiliation(s)
- Syuichi Itahashi
- Sustainable
System Research Laboratory (SSRL), Central
Research Institute of Electric Power Industry (CRIEPI), Abiko, Chiba 270-1194, Japan
| | - Shohei Hattori
- International
Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing 210023, Jiangsu, China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210023, Jiangsu, China
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Kanagawa, Japan
- Institute
of Nature and Environment Technology, Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | - Akinori Ito
- Yokohama
Institute for Earth Sciences, Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama 236-0001, Kanagawa, Japan
| | - Yasuhiro Sadanaga
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Naohiro Yoshida
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Kanagawa, Japan
- Earth-Life
Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- National
Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
| | - Atsushi Matsuki
- Institute
of Nature and Environment Technology, Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| |
Collapse
|
12
|
Moch JM, Mickley LJ, Keller CA, Bian H, Lundgren EW, Zhai S, Jacob DJ. Aerosol-Radiation Interactions in China in Winter: Competing Effects of Reduced Shortwave Radiation and Cloud-Snowfall-Albedo Feedbacks Under Rapidly Changing Emissions. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD035442. [PMID: 35859567 PMCID: PMC9285729 DOI: 10.1029/2021jd035442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/08/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
Since 2013, Chinese policies have dramatically reduced emissions of particulates and their gas-phase precursors, but the implications of these reductions for aerosol-radiation interactions are unknown. Using a global, coupled chemistry-climate model, we examine how the radiative impacts of Chinese air pollution in the winter months of 2012 and 2013 affect local meteorology and how these changes may, in turn, influence surface concentrations of PM2.5, particulate matter with diameter <2.5 μm. We then investigate how decreasing emissions through 2016 and 2017 alter this impact. We find that absorbing aerosols aloft in winter 2012 and 2013 heat the middle- and lower troposphere by ∼0.5-1 K, reducing cloud liquid water, snowfall, and snow cover. The subsequent decline in surface albedo appears to counteract the ∼15-20 W m-2 decrease in shortwave radiation reaching the surface due to attenuation by aerosols overhead. The net result of this novel cloud-snowfall-albedo feedback in winters 2012-2013 is a slight increase in surface temperature of ∼0.5-1 K in some regions and little change elsewhere. The aerosol heating aloft, however, stabilizes the atmosphere and decreases the seasonal mean planetary boundary layer (PBL) height by ∼50 m. In winter 2016 and 2017, the ∼20% decrease in mean PM2.5 weakens the cloud-snowfall-albedo feedback, though it is still evident in western China, where the feedback again warms the surface by ∼0.5-1 K. Regardless of emissions, we find that aerosol-radiation interactions enhance mean surface PM2.5 pollution by 10%-20% across much of China during all four winters examined, mainly though suppression of PBL heights.
Collapse
Affiliation(s)
- Jonathan M. Moch
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Christoph A. Keller
- Global Modeling and Assimilation OfficeNASA Goddard Space Flight CenterGreenbeltMDUSA
- Universities Space Research AssociationColumbiaMDUSA
| | - Huisheng Bian
- Global Modeling and Assimilation OfficeNASA Goddard Space Flight CenterGreenbeltMDUSA
- Universities Space Research AssociationColumbiaMDUSA
| | - Elizabeth W. Lundgren
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Shixian Zhai
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Daniel J. Jacob
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| |
Collapse
|
13
|
Wang Y, Liao H. 2015–2050年南亚与东南亚输送对中国大气臭氧浓度的影响 . CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Tian R, Ma X, Sha T, Pan X, Wang Z. Exploring dust heterogeneous chemistry over China: Insights from field observation and GEOS-Chem simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149307. [PMID: 34375256 DOI: 10.1016/j.scitotenv.2021.149307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Dust heterogeneous chemistry plays an important role in tropospheric chemistry, but its parameterization in numerical models is often quite simplified, which hampers accurate prediction of particulate matter and its chemical component. In this study, we investigate the evolution of dust heterogeneous chemical process and its potential impacts on gaseous and aerosol components during a dust pollution episode from March 27 to April 2, 2015 over North China. Based on field measurements, the significant role of relative humidity (RH) in dust heterogeneous chemistry is found and a RH-dependent parameterization for uptake coefficients of HNO3 and SO2 is incorporated in GEOS-Chem to reproduce the dust heterogeneous chemical process. During the study period, observed dust sulfate (DSO4) and dust nitrate (DNIT) exhibit maximum concentrations of 9.1 and 22.8 μg m-3 respectively, accompanied by high RH and gaseous precursor concentrations. DSO4 concentrations are positively related to RH. The observed dust sulfate oxidation ratio (DSOR) is elevated evidently with increased RH, especially when RH is higher than ~40%, implying that enhanced RH could promote heterogeneous oxidation of SO2 to DSO4. Model simulation shows that when incorporating the RH-dependent parameterization, DNIT and DSO4 are generally well captured and the model performance of total sulfate oxidation ratio (TSOR) and total nitrate oxidation ratio (TNOR) are improved. High contribution of DNIT and DSO4 are found to be located over the regions close to source areas (>60%) and downwind regions (>40%), respectively. Sensitivity results show that SO2 and HNO3 reduce by 2-24 μg m-3 and 1-18 μg m-3 when considering dust heterogeneous impacts, thus leading to reduction in non-dust sulfate and non-dust nitrate concentrations. As a result, simulated NH3 increases and ammonium reduces by more than 20%. Our study indicates that the contribution of heterogeneous reactions to sulfate formation is 20-30% over North China.
Collapse
Affiliation(s)
- Rong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoyan Ma
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Tong Sha
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| | - Zhe Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China
| |
Collapse
|
15
|
Abstract
Sea spray aerosol, produced through breaking waves, is one of the largest sources of environmental particles. Once in the atmosphere, sea spray aerosol influences cloud formation, serves as microenvironments for multiphase atmospheric chemical reactions, and impacts human health. All of these impacts are affected by aerosol acidity. Here we show that freshly emitted sea spray aerosol particles become highly acidic within minutes as they are transferred across the ocean−air interface. These results have important implications for atmospheric chemistry and climate, including aerosol/gas partitioning, heterogeneous reactions, and chemical speciation at the surface and within sea spray aerosol. Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 μm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean−atmosphere facility, provide convincing data to show that acidification occurs “across the interface” within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.
Collapse
|
16
|
Hattori S, Iizuka Y, Alexander B, Ishino S, Fujita K, Zhai S, Sherwen T, Oshima N, Uemura R, Yamada A, Suzuki N, Matoba S, Tsuruta A, Savarino J, Yoshida N. Isotopic evidence for acidity-driven enhancement of sulfate formation after SO 2 emission control. SCIENCE ADVANCES 2021; 7:7/19/eabd4610. [PMID: 33952511 PMCID: PMC8099192 DOI: 10.1126/sciadv.abd4610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 05/14/2023]
Abstract
After the 1980s, atmospheric sulfate reduction is slower than the dramatic reductions in sulfur dioxide (SO2) emissions. However, a lack of observational evidence has hindered the identification of causal feedback mechanisms. Here, we report an increase in the oxygen isotopic composition of sulfate ([Formula: see text]) in a Greenland ice core, implying an enhanced role of acidity-dependent in-cloud oxidation by ozone (up to 17 to 27%) in sulfate production since the 1960s. A global chemical transport model reproduces the magnitude of the increase in observed [Formula: see text] with a 10 to 15% enhancement in the conversion efficiency from SO2 to sulfate in Eastern North America and Western Europe. With an expected continued decrease in atmospheric acidity, this feedback will continue in the future and partially hinder air quality improvements.
Collapse
Affiliation(s)
- Shohei Hattori
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan.
| | - Yoshinori Iizuka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Becky Alexander
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640, USA
| | - Sakiko Ishino
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tokyo 190-8518, Japan
| | - Koji Fujita
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Shuting Zhai
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640, USA
| | - Tomás Sherwen
- National Centre for Atmospheric Science, University of York, York YO10 5DD, UK
- Wolfson Atmospheric Chemistry Laboratories, University of York, York YO10 5DD, UK
| | - Naga Oshima
- Meteorological Research Institute, Tsukuba 305-0052, Japan
| | - Ryu Uemura
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | | | - Nozomi Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Sumito Matoba
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Asuka Tsuruta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Joel Savarino
- University of Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000, Grenoble, France
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
| |
Collapse
|
17
|
Aroskay A, Martin E, Bekki S, Montana G, Randazzo L, Cartigny P, Chabas A, Verney-Carron A. Multi O- and S-isotopes as tracers of black crusts formation under volcanic and non-volcanic atmospheric conditions in Sicily (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142283. [PMID: 33182218 DOI: 10.1016/j.scitotenv.2020.142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The deterioration of monument or building stone materials is mostly due to the growth of black crusts that cause blackening and disaggregation of the exposed surface. This study reports on new oxygen (δ17O, δ18O and Δ17O) and sulphur (δ33S, δ34S, δ36S, Δ33S and Δ36S) isotopic analyses of black crust sulphates formed on building stones in Sicily (Southern Italy). The measurements are used to identify the possible influence of volcanic emissions on black crust formation. Black crusts were mostly sampled on carbonate stone substrate in different locations subject to various sulphur emission sources (marine, anthropogenic and volcanic). Unlike atmospheric sulphate aerosols that mostly exhibit Δ33S > 0‰, here most of the analysed black crust sulphates show negative Δ33S. This confirms that black crust sulphates do not result from deposition of sulphate aerosols or of rainwater but mostly from the oxidation of dry deposited SO2 onto the stone substrate. The δ34S and δ18O values indicate that most of black crust sulphate originates from anthropogenic activities. Δ17O values are found to be related to the sampling location. The largest 17O-anomalies (up to ~4‰) are measured in black crust from areas highly influenced by volcanic emissions, which demonstrates the strong involvement of ozone in the formation of black crusts in volcanically influenced environments.
Collapse
Affiliation(s)
- A Aroskay
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris, France.
| | - E Martin
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris, France
| | - S Bekki
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université, Paris, France
| | - G Montana
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Palermo, Italy
| | - L Randazzo
- Department of Biology, Ecology and Earth Sciences (DiBEST), Università della Calabria, Italy
| | - P Cartigny
- Institut de Physique du Globe de Paris (IPGP), Université de Paris, Paris, France
| | - A Chabas
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - A Verney-Carron
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| |
Collapse
|
18
|
June N, Wang X, Chen LWA, Chow JC, Watson JG, Wang X, Henderson BH, Zheng Y, Mao J. Spatial and temporal variability of brown carbon in United States: implications for direct radiative effects. GEOPHYSICAL RESEARCH LETTERS 2020; 47:10.1029/2020gl090332. [PMID: 34381286 PMCID: PMC8353956 DOI: 10.1029/2020gl090332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
A newly developed dataset from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) observation network, combined with a 3-D chemical transport model, is used to evaluate the spatial and temporal variability of brown carbon (BrC) in the United States. The model with BrC emitted from biomass burning and biofuel emissions agrees with the seasonal and spatial variability of BrC planetary boundary layer (PBL) absorption aerosol optical depth (AAOD) observations within a factor of 2. The model without whitening, the tendency for absorption to decrease with aerosol aging, overestimates the observed BrC PBL AAOD, and does not reflect the measured BrC PBL AAOD spatial variability. The model shows higher absorption direct radiative effects (DRE) from BrC at northern high latitudes than at mid-latitudes in spring and summer, due to boreal fire emissions, long whitening lifetimes and high surface albedos. These findings highlight the need to study BrC over the Arctic region.
Collapse
Affiliation(s)
- Nicole June
- Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - L.-W. Antony Chen
- Department of Environmental and Operational Health, University of Nevada, Las Vegas, NV, USA
| | - Judith C. Chow
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - John G. Watson
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - Xiaoliang Wang
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - Barron H. Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yiqi Zheng
- Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jingqiu Mao
- Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
19
|
Wang Y, Liao H. Effect of emission control measures on ozone concentrations in Hangzhou during G20 meeting in 2016. CHEMOSPHERE 2020; 261:127729. [PMID: 32763646 DOI: 10.1016/j.chemosphere.2020.127729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The effect of emission control measures on ozone (O3) concentrations in Hangzhou during G20 (The Group of Twenty Finance Ministers and Central Bank Governors) meeting during 24 August to 6 September of 2016 was evaluated using the nested version of a global chemical transport model. During G20, observed concentrations of PM10, PM2.5, SO2, NO2, and CO were all below national air quality standards, whereas those of MDA8 O3 were above national standard (with an averaged value of 160.2 μg m-3) but had a decreasing trend. Model sensitivity studies show that, MDA8 O3 concentrations in Hangzhou during G20 were reduced by 11.3 μg m-3 (6.8%), 14.8 μg m-3 (8.9%), and 19.5 μg m-3 (11.7%) with emission control measures in the core area, Zhejiang province, and the Yangtze River Delta (YRD) region, respectively, indicating that control measures were the most effective when carried out jointly in YRD. Considering the ratios of NOx to VOCs during G20, Hangzhou and most areas of Zhejiang province were in transitional regime; reductions in either NOx or VOCs could reduce O3 concentrations. We also quantified how sensitive O3 concentrations respond to emission reductions in sectors of industry, power, residential and transportation in the whole of YRD during G20. The removal of emissions in industry and transportation sectors would lead to the largest reductions of 17.6 μg m-3 (10.5%) and 12.3 μg m-3 (7.4%) in MDA8 O3 concentrations in Hangzhou during G20, respectively. This study has important implications for the control of high O3 levels in eastern China.
Collapse
Affiliation(s)
- Ye Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
20
|
Impact of Meteorological Changes on Particulate Matter and Aerosol Optical Depth in Seoul during the Months of June over Recent Decades. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of meteorological changes on particulate matter with a diameter of 10 microns or less (PM10, referred to as PM in this study) and aerosol optical depth (AOD) in Seoul were investigated using observational and modeling analysis. AOD satellite data were used, obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM concentration data were used from in-situ observations. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) and MERRA Version 2 (MERRA-2) were used for meteorological field analysis in modeling and observation data. The results from this investigation show that meteorological effects on PM and AOD were strong in the month of June, revealing a clear decreasing trend in recent decades. The investigation focused on the underlying mechanisms influencing the reduction in PM resulting from meteorological changes during the months of June. The results of this study reveal that decreases in atmospheric stability and humidity induced the aerosol change observed in recent decades. The changes in atmospheric stability and humidity are highly correlated with changes in the intensity of the East Asian summer monsoon (EASM). This suggests that the unstable and drying atmosphere by weakening of the EASM in recent decades has improved PM air quality in Seoul during the summer. The effects of atmospheric stability and humidity were also observed to vary depending on the aerosol species. Humidity only affects hydrophilic aerosols such as sulfate, nitrate, and ammonium, whereas atmospheric stability affects all species of aerosols, including carbonaceous aerosols.
Collapse
|
21
|
Zheng G, Su H, Wang S, Andreae MO, Pöschl U, Cheng Y. Multiphase buffer theory explains contrasts in atmospheric aerosol acidity. Science 2020; 369:1374-1377. [DOI: 10.1126/science.aba3719] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/21/2020] [Indexed: 01/01/2023]
Abstract
Aerosol acidity largely regulates the chemistry of atmospheric particles, and resolving the drivers of aerosol pH is key to understanding their environmental effects. We find that an individual buffering agent can adopt different buffer pH values in aerosols and that aerosol pH levels in populated continental regions are widely buffered by the conjugate acid-base pair NH4+/NH3 (ammonium/ammonia). We propose a multiphase buffer theory to explain these large shifts of buffer pH, and we show that aerosol water content and mass concentration play a more important role in determining aerosol pH in ammonia-buffered regions than variations in particle chemical composition. Our results imply that aerosol pH and atmospheric multiphase chemistry are strongly affected by the pervasive human influence on ammonia emissions and the nitrogen cycle in the Anthropocene.
Collapse
Affiliation(s)
- Guangjie Zheng
- Minerva Research Group, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Siwen Wang
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Meinrat O. Andreae
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Geology and Geophysics, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Minerva Research Group, Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
22
|
Atmospheric Aerosol Distribution in 2016–2017 over the Eastern European Region Based on the GEOS-Chem Model. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spatial and temporal distributions of atmospheric aerosols have been simulated using the GEOS-Chem model over the sparsely investigated Eastern European region. The spatial distribution of the particulate matter (PM2.5) concentration, mineral dust, black carbon, organic aerosols, sea salt, as well as nitrate, sulfate, and ammonium aerosols during 2016–2017 were considered. The aerosols’ concentration, seasonality and spatial features were determined for the region. Particulate matter (PM2.5) contamination prevails in Poland in late autumn and winter. The monthly mean PM2.5 concentration reached 55 µg m−3 over the Moscow region in the early spring of both years. The mineral dust concentration varied significantly, reaching 40 µg m−3 over the southwestern part of Eastern Europe in March 2016. The areas most polluted by black carbon aerosols were the central and southern parts of Poland in the winter. The organic aerosols’ concentration was the largest in March and April, reaching 10 µg m−3 over East Belarus. The sea salt aerosol concentration increased in the coastal regions in winter due to the wind strength. Mineral dust aerosols in Eastern Europe are mainly composed of dust, partially transported from the Ukrainian steppe and partially from the Saharan Desert.
Collapse
|
23
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
24
|
Horowitz HM, Holmes C, Wright A, Sherwen T, Wang X, Evans M, Huang J, Jaeglé L, Chen Q, Zhai S, Alexander B. Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2019GL085838. [PMID: 32713977 PMCID: PMC7375039 DOI: 10.1029/2019gl085838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
Marine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cl y ) and bromine (Br y ). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212-569 Tg/a) in the GEOS-Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Cl y and Br y increase (20-40%), leading to decreased ozone (-3 to -6%). Consequently, OH decreases (-3 to -5%), which increases the methane lifetime (3-6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions.
Collapse
Affiliation(s)
- Hannah M. Horowitz
- JISAOUniversity of WashingtonSeattleWAUSA
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher Holmes
- Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeFLUSA
| | - Alicia Wright
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Tomás Sherwen
- Department of ChemistryUniversity of YorkYorkUK
- Wolfson Atmospheric Chemistry Laboratories, Department of ChemistryUniversity of YorkYorkUK
| | - Xuan Wang
- School of Energy and EnvironmentCity University of Hong KongHong Kong
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Mat Evans
- Department of ChemistryUniversity of YorkYorkUK
- Wolfson Atmospheric Chemistry Laboratories, Department of ChemistryUniversity of YorkYorkUK
| | - Jiayue Huang
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Lyatt Jaeglé
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Qianjie Chen
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Shuting Zhai
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Becky Alexander
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
25
|
Xu JW, Martin RV, Henderson BH, Meng J, Oztaner B, Hand JL, Hakami A, Strum M, Phillips SB. Simulation of airborne trace metals in fine particulate matter over North America. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 214:10.1016/j.atmosenv.2019.116883. [PMID: 32665763 PMCID: PMC7359884 DOI: 10.1016/j.atmosenv.2019.116883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Trace metal distributions are of relevance to understand sources of fine particulate matter (PM2.5), PM2.5-related health effects, and atmospheric chemistry. However, knowledge of trace metal distributions is lacking due to limited ground-based measurements and model simulations. This study develops a simulation of 12 trace metal concentrations (Si, Ca, Al, Fe, Ti, Mn, K, Mg, As, Cd, Ni and Pb) over continental North America for 2013 using the GEOS-Chem chemical transport model. Evaluation of modeled trace metal concentrations with observations indicates a spatial consistency within a factor of 2, an improvement over previous studies that were within a factor of 3-6. The spatial distribution of trace metal concentrations reflects their primary emission sources. Crustal element (Si, Ca, Al, Fe, Ti, Mn, K) concentrations are enhanced over the central US from anthropogenic fugitive dust and over the southwestern U.S. due to natural mineral dust. Heavy metal (As, Cd, Ni and Pb) concentrations are high over the eastern U.S. from industry. K is abundance in the southeast from biomass burning and high concentrations of Mg is observed along the coast from sea spray. The spatial pattern of PM2.5 mass is most strongly correlated with Pb, Ni, As and K due to their signature emission sources. Challenges remain in accurately simulating observed trace metal concentrations. Halving anthropogenic fugitive dust emissions in the 2011 National Air Toxic Assessment (NATA) inventory and doubling natural dust emissions in the default GEOS-Chem simulation was necessary to reduce biases in crustal element concentrations. A fivefold increase of anthropogenic emissions of As and Pb was necessary in the NATA inventory to reduce the national-scale bias versus observations by more than 80 %, potentially reflecting missing sources.
Collapse
Affiliation(s)
- Jun-Wei Xu
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | | | - Jun Meng
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Burak Oztaner
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada
| | - Jenny L Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Amir Hakami
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada
| | - Madeleine Strum
- Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
26
|
Abstract
Aerosol mixing state significantly affects concentrations of cloud condensation nuclei (CCN), wet removal rates, thermodynamic properties, heterogeneous chemistry, and aerosol optical properties, with implications for human health and climate. Over the last two decades, significant research effort has gone into finding computationally-efficient methods for representing the most important aspects of aerosol mixing state in air pollution, weather prediction, and climate models. In this review, we summarize the interactions between mixing-state and aerosol hygroscopicity, optical properties, equilibrium thermodynamics and heterogeneous chemistry. We focus on the effects of simplified assumptions of aerosol mixing state on CCN concentrations, wet deposition, and aerosol absorption. We also summarize previous approaches for representing aerosol mixing state in atmospheric models, and we make recommendations regarding the representation of aerosol mixing state in future modelling studies.
Collapse
|
27
|
Cai S, Ma Q, Wang S, Zhao B, Brauer M, Cohen A, Martin RV, Zhang Q, Li Q, Wang Y, Hao J, Frostad J, Forouzanfar MH, Burnett RT. Impact of air pollution control policies on future PM 2.5 concentrations and their source contributions in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:124-133. [PMID: 30172931 DOI: 10.1016/j.jenvman.2018.08.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 05/09/2023]
Abstract
To investigate the impact of air pollutant control policies on future PM2.5 concentrations and their source contributions in China, we developed four future scenarios for 2030 based on a 2013 emission inventory, and conducted air quality simulations for each scenario using the chemical transport model GEOS-Chem (version 9.1.3). Two energy scenarios i.e., current legislation (CLE) and with additional measures (WAM), were developed to project future energy consumption, reflecting, respectively, existing legislation and implementation status as of the end of 2012, and new energy-saving policies that would be released and enforced more stringently. Two end-of-pipe control strategies, i.e., current control technologies (until 2017) and more stringent control technologies (until 2030), were also developed. The combinations of energy scenarios and end-of-pipe control strategies constitute four emission scenarios (2017-CLE, 2030-CLE, 2017-WAM, and 2030-WAM) evaluated in simulations. PM2.5 concentrations at national level were estimated to be 57 μg/m3 in the base year 2013, and 58 μg/m3, 42 μg/m3, 42 μg/m3, and 30 μg/m3 under the 2017-CLE, 2030-CLE, 2017-WAM, and 2030-WAM scenarios in 2030, respectively. Large PM2.5 reductions between 2013 and 2030 were estimated for heavily polluted regions (Sichuan Basin, Middle Yangtze River, North China). The energy-saving policies show similar effects to the end-of-pipe emission control measures, but the relative importance of these two groups of policies varies in different regions. Absolute contributions to PM2.5 concentrations from most major sources declined from 2017-CLE to 2030-WAM. With respect to fractional contributions, most coal-burning sectors (including power plant, industrial and residential coal burning) increased from 2017-CLE to 2030-WAM, due to larger reductions from non-coal sources, including transportation and biomass open burning. Residential combustion and open burning had much lower fractional contribution to ambient PM2.5 concentrations in the 2017-WAM/2030-WAM compared to the 2017-CLE/2030-CLE scenarios. Fractional contributions from transportation were reduced dramatically in 2030-CLE and 2030-WAM compared to 2017-CLE/2017-WAM, due to the enforcement of stringent end-of-pipe emission controls. Across all scenarios, coal combustion remained the single largest contributor to PM2.5 concentrations in 2030. Reducing PM2.5 emissions from coal combustion remains a strategic priority for air quality management in China.
Collapse
Affiliation(s)
- Siyi Cai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; School of Energy and Power Engineering, Shandong University, Jinan, 250061, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Bin Zhao
- Joint Institute for Regional Earth System Science and Engineering, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Aaron Cohen
- Health Effects Institute, Boston, MA, 02110, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98195, USA
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Qianqian Zhang
- National Satellite Meteorological Center, Beijing, 100089, China
| | - Qinbin Li
- Joint Institute for Regional Earth System Science and Engineering, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Yuxuan Wang
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Joseph Frostad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98195, USA
| | - Mohammad H Forouzanfar
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
28
|
Zhang Y, Liao H, Ding X, Jo D, Li K. Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1187-1204. [PMID: 30021284 DOI: 10.1016/j.scitotenv.2018.05.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/06/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
This study applies the nested-grid version of Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to examine future changes (2000-2050) in SOA concentration and associated direct radiative forcing (DRF) over China under the Representative Concentration Pathways (RCPs). The projected changes in SOA concentrations over 2010-2050 generally follow future changes in emissions of toluene and xylene. On an annual mean basis, the largest increase in SOA over eastern China is simulated to be 25.1% in 2020 under RCP2.6, 20.4% in 2020 under RCP4.5, 56.3% in 2050 under RCP6.0, and 44.6% in 2030 under RCP8.5. The role of SOA in PM2.5 increases with each decade in 2010-2050 under RCP2.6, RCP4.5, and RCP8.5, with a maximum ratio of concentration of SOA to that of PM2.5 of 16.3% in 2050 under RCP4.5 as averaged over eastern China (20°-45°N, 100°-125°E). Concentrations of SOA are projected to be able to exceed those of sulfate, ammonium, and black carbon (BC) in the future. The future changes in SOA levels over eastern China are simulated to lead to domain-averaged (20°-45°N, 100°-125°E) DRFs of +0.19 W m-2, +0.12 W m-2, - 0.28 W m-2, and -0.17 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. Model results indicate that future changes in SOA owing to future changes in anthropogenic precursor emissions are important for future air quality planning and climate mitigation measures.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duseong Jo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Ke Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Abstract
Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment.
Collapse
|
30
|
Venkataraman C, Brauer M, Tibrewal K, Sadavarte P, Ma Q, Cohen A, Chaliyakunnel S, Frostad J, Klimont Z, Martin RV, Millet DB, Philip S, Walker K, Wang S. Source influence on emission pathways and ambient PM 2.5 pollution over India (2015-2050). ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:8017-8039. [PMID: 33679902 PMCID: PMC7935015 DOI: 10.5194/acp-18-8017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 μg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from "other" sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.
Collapse
Affiliation(s)
- Chandra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Interdisciplinary program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Kushal Tibrewal
- Interdisciplinary program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Pankaj Sadavarte
- Interdisciplinary program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Institute for Advanced Sustainability Studies (IASS), Berliner Str. 130, 14467 Potsdam, Germany
| | - Qiao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Aaron Cohen
- Health Effects Institute, Boston, MA 02110, USA
| | - Sreelekha Chaliyakunnel
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis–Saint Paul, MN 55108, USA
| | - Joseph Frostad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
| | - Zbigniew Klimont
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Randall V. Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis–Saint Paul, MN 55108, USA
| | - Sajeev Philip
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
31
|
Jeong JI, Park RJ. Efficacy of dust aerosol forecasts for East Asia using the adjoint of GEOS-Chem with ground-based observations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:885-893. [PMID: 29248856 DOI: 10.1016/j.envpol.2017.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Asian dust storms occur often and have a great impact on East Asia and the western Pacific in spring. Early warnings based on reliable forecasts of dust storms thus are crucial for protecting human health and industry. Here we explore the efficacy of 4-D variational method-based data assimilation in a chemical transport model for dust storm forecasts in East Asia. We use a 3-D global chemical transport model (GEOS-Chem) and its adjoint model with surface PM10 mass concentration observations. We evaluate the model for several severe dust storm events, which occurred in May 2007 and March 2011 in East Asia. First of all, simulated the PM10 mass concentrations with the forward model showed large discrepancies compared with PM10 mass concentrations observed in China, Korea, and Japan, implying large uncertainties of simulated dust emission fluxes in the source regions. Based on our adjoint model constrained by observations for the whole period of each event, the reproduction of the spatial and temporal distributions of observations over East Asia was substantially improved (regression slopes from 0.15 to 2.81 to 0.85-1.02 and normalized mean biases from -74%-151% to -34%-1%). We then examine the efficacy of the data assimilation system for daily dust storm forecasts based on the adjoint model including previous day observations to update the initial condition of the forward model simulation for the next day. The forecast results successfully captured the spatial and temporal variations of ground-based observations in downwind regions, indicating that the data assimilation system with ground-based observations effectively forecasts dust storms, especially in downwind regions. However, the efficacy is limited in nearby the dust source regions, including Mongolia and North China, due to the lack of observations for constraining the model.
Collapse
Affiliation(s)
- Jaein I Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Rokjin J Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
32
|
Ridley DA, Heald CL, Ridley KJ, Kroll JH. Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proc Natl Acad Sci U S A 2018; 115:290-295. [PMID: 29279369 PMCID: PMC5777023 DOI: 10.1073/pnas.1700387115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure to atmospheric particulate matter (PM) exacerbates respiratory and cardiovascular conditions and is a leading source of premature mortality globally. Organic aerosol contributes a significant fraction of PM in the United States. Here, using surface observations between 1990 and 2012, we show that organic carbon has declined dramatically across the entire United States by 25-50%; accounting for more than 30% of the US-wide decline in PM. The decline is in contrast with the increasing organic aerosol due to wildfires and no clear trend in biogenic emissions. By developing a carbonaceous emissions database for the United States, we show that at least two-thirds of the decline in organic aerosol can be explained by changes in anthropogenic emissions, primarily from vehicle emissions and residential fuel burning. We estimate that the decrease in anthropogenic organic aerosol is responsible for averting 180,000 (117,000-389,000) premature deaths between 1990 and 2012. The unexpected decrease in organic aerosol, likely a consequence of the implementation of Clean Air Act Amendments, results in 84,000 (30,000-164,000) more lives saved than anticipated by the EPA between 2000 and 2010.
Collapse
Affiliation(s)
- D A Ridley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - C L Heald
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - K J Ridley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - J H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
33
|
Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G, Pöschl U, Su H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. SCIENCE ADVANCES 2016; 2:e1601530. [PMID: 28028539 PMCID: PMC5176349 DOI: 10.1126/sciadv.1601530] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/30/2016] [Indexed: 05/19/2023]
Abstract
Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution.
Collapse
Affiliation(s)
- Yafang Cheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
- Corresponding author. (Y.C.); (K.H.); (U.P.); (H.S.)
| | - Guangjie Zheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Wei
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Qing Mu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Bo Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhibin Wang
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Meng Gao
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA 52242, USA
| | - Qiang Zhang
- Center for Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Corresponding author. (Y.C.); (K.H.); (U.P.); (H.S.)
| | - Gregory Carmichael
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
- Corresponding author. (Y.C.); (K.H.); (U.P.); (H.S.)
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Corresponding author. (Y.C.); (K.H.); (U.P.); (H.S.)
| |
Collapse
|
34
|
Li Y, Henze DK, Jack D, Kinney PL. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. AIR QUALITY, ATMOSPHERE, & HEALTH 2016; 9:51-68. [PMID: 28659994 PMCID: PMC5484574 DOI: 10.1007/s11869-015-0321-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health impact assessments for fine particulate matter (PM2.5) often rely on simulated concentrations generated from air quality models. However, at the global level, these models often run at coarse resolutions, resulting in underestimates of peak concentrations in populated areas. This study aims to quantitatively examine the influence of model resolution on the estimates of mortality attributable to PM2.5 and its species in the USA. We use GEOS-Chem, a global 3-D model of atmospheric composition, to simulate the 2008 annual average concentrations of PM2.5 and its six species over North America. The model was run at a fine resolution of 0.5 × 0.66° and a coarse resolution of 2 × 2.5°, and mortality was calculated using output at the two resolutions. Using the fine-modeled concentrations, we estimate that 142,000 PM2.5-related deaths occurred in the USA in 2008, and the coarse resolution produces a national mortality estimate that is 8 % lower than the fine-model estimate. Our spatial analysis of mortality shows that coarse resolutions tend to substantially underestimate mortality in large urban centers. We also re-grid the fine-modeled concentrations to several coarser resolutions and repeat mortality calculation at these resolutions. We found that model resolution tends to have the greatest influence on mortality estimates associated with primary species and the least impact on dust-related mortality. Our findings provide evidence of possible biases in quantitative PM2.5 health impact assessments in applications of global atmospheric models at coarse spatial resolutions.
Collapse
Affiliation(s)
- Ying Li
- Department of Environmental Health, College of Public Health, East Tennessee State University, PO Box 70682, Johnson City, TN, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive UCB 427, Boulder, CO, USA
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| | - Patrick L Kinney
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| |
Collapse
|
35
|
Wang B, Chen Z. High-resolution satellite-based analysis of ground-level PM2.5 for the city of Montreal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1059-1069. [PMID: 26473708 DOI: 10.1016/j.scitotenv.2015.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/21/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Satellite remote sensing offers the opportunity to determine the spatial distribution of aerosol properties and could fill the gap of ground-level observations. Various algorithms have recently been developed in order to retrieve the aerosol optical depth (AOD) at continental scales. However, they are, to some extent, subject to coarse spatial resolutions which are not appropriate for intraurban scales as usually needed in health studies. This paper presents an improved AOD retrieval algorithm for satellite instrument MODIS at 1-km resolution for intraurban scales. The MODIS-retrieved AODs are used to derive the ground-level PM2.5 concentrations using the aerosol vertical profiles and local scale factors obtained from the GEOS-Chem model simulation. The developed method has been applied to retrieve the AODs and to evaluate the ground-level PM2.5 over the city of Montreal, Canada for 2009 on daily, monthly and annual scales. The daily and monthly results are compared with the monitoring values with correlations R(2) ranging from 0.86 to 0.93. Especially, the annual mean PM2.5 concentrations are in good agreement with the measurement values at all monitoring stations (r=0.96, slope=1.0132 ± 0.0025, intercept=0.5739 ± 0.0013). This illustrates that the developed AOD retrieval algorithm can be used to retrieve AODs at a higher spatial resolution than previous studies to further derive the regional full coverage PM2.5 results at finer spatial and temporal scales. The study results are useful in health risk assessment across this region.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada.
| |
Collapse
|
36
|
Ford B, Heald CL. Exploring the Uncertainty Associated with Satellite-Based Estimates of Premature Mortality due to Exposure to Fine Particulate Matter. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:3499-3523. [PMID: 28649266 PMCID: PMC5482289 DOI: 10.5194/acp-16-3499-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2% of total deaths compared to 14% in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14% for the U.S. and 2% for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20% due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10% due to the satellite observational uncertainty, and 30% or greater uncertainty associated with the application of concentration response functions to estimated exposure.
Collapse
Affiliation(s)
- Bonne Ford
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
- Correspondence to: B. Ford ()
| | - Colette L. Heald
- Department of Civil and Environmental Engineering and Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
37
|
Zhu B, Zeng X, Beckers H, Francisco JS, Willner H. Das Methylsulfonyloxyl-Radikal, CH3SO3. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Zhu B, Zeng X, Beckers H, Francisco JS, Willner H. The Methylsulfonyloxyl Radical, CH
3
SO
3. Angew Chem Int Ed Engl 2015; 54:11404-8. [PMID: 26248797 DOI: 10.1002/anie.201503776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Bifeng Zhu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)
| | - Xiaoqing Zeng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)
| | - Helmut Beckers
- Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin (Germany)
| | | | - Helge Willner
- FB C—Anorganische Chemie, Bergische Universität Wuppertal, 42119 Wuppertal (Germany)
| |
Collapse
|
39
|
Simultaneous measurement of δ2H, δ17O, and δ18O in H2O using a commercial cavity ringdown spectrometer. Anal Chim Acta 2013; 804:176-9. [DOI: 10.1016/j.aca.2013.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/03/2013] [Accepted: 10/05/2013] [Indexed: 11/22/2022]
|
40
|
Geng L, Schauer AJ, Kunasek SA, Sofen ED, Erbland J, Savarino J, Allman DJ, Sletten RS, Alexander B. Analysis of oxygen-17 excess of nitrate and sulfate at sub-micromole levels using the pyrolysis method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2411-2419. [PMID: 24097397 DOI: 10.1002/rcm.6703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The oxygen-17 excess (Δ(17)O) of nitrate and sulfate contains valuable information regarding their atmospheric formation pathways. However, the current pyrolysis method to measure Δ(17)O requires large sample amounts (>4 µmol for nitrate and >1 µmol for sulfate). We present a new approach employing a Gas Bench interface which cryofocuses O2 produced from sample pyrolysis, enabling the analysis of sub-micromole size samples. METHODS Silver nitrate or sulfate at sub-micromole levels in a sample container was thermally decomposed to O2 and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Byproducts (mainly NO2 for silver nitrate and SO2 for silver sulfate) were removed in a liquid nitrogen trap and the sample O2 was carried by ultra-pure helium (He) gas to a Gas Bench II interface where it was cryofocused prior to entering an isotope ratio mass spectrometer. RESULTS Analysis of the international nitrate reference material USGS35 (Δ(17)O = 21.6‰) within the size range of 300-1000 nmol O2 gave a mean Δ(17)O value of (21.6 ± 0.69) ‰ (mean ±1σ). Three inter-laboratory calibrated sulfate reference materials, Sulf-α, Sulf-β and Sulf-ε, each within the size range of 180-1000 nmol O2, were analyzed and shown to possess mean Δ(17)O values of (0.9 ± 0.10)‰, (2.1 ± 0.25)‰ and (7.0 ± 0.63)‰, respectively. CONCLUSIONS The analyses of nitrate and sulfate reference materials at sub-micromole levels gave Δ(17)O values consistent with their accepted values. This new approach of employing the Gas Bench to cryofocus O2 after the pyrolysis of AgNO3 and Ag2SO4 particularly benefits the effort of measuring Δ(17)O in sample types with a low abundance of nitrate and sulfate such as ice cores.
Collapse
Affiliation(s)
- Lei Geng
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schauer AJ, Kunasek SA, Sofen ED, Erbland J, Savarino J, Johnson BW, Amos HM, Shaheen R, Abaunza M, Jackson TL, Thiemens MH, Alexander B. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2151-2157. [PMID: 22886811 DOI: 10.1002/rcm.6332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. METHODS Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. RESULTS The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). CONCLUSIONS Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data.
Collapse
Affiliation(s)
- Andrew J Schauer
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hill-Falkenthal J, Priyadarshi A, Thiemens M. Differentiating sulfate aerosol oxidation pathways for varying source altitudes using35S and Δ17O tracers. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Priyadarshi A, Hill-Falkenthal J, Coupal E, Dominguez G, Thiemens MH. Measurements of35S in the marine boundary layer at La Jolla, California: A new technique for tracing air mass mixing during Santa Ana events. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Ford B, Heald CL. An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Alexander B, Allman DJ, Amos HM, Fairlie TD, Dachs J, Hegg DA, Sletten RS. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016773] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Ridley DA, Heald CL, Ford B. North African dust export and deposition: A satellite and model perspective. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016794] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Lin W, Xu X, Ma Z, Zhao H, Liu X, Wang Y. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in north China: effectiveness of control measures. J Environ Sci (China) 2012; 24:34-49. [PMID: 22783613 DOI: 10.1016/s1001-0742(11)60727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SO2 measurements made in recent years at sites in Beijing and its surrounding areas are performed to study the variations and trends of surface SO2 at different types of sites in Northern China. The overall average concentrations of SO2 are (16.8 +/- 13.1) ppb, (14.8 +/- 9.4) ppb, and (7.5 +/- 4.0) ppb at China Meteorological Administration (CMA, Beijing urban area), Gucheng (GCH, relatively polluted rural area, 110 km to the southwest of Beijing urban area), and Shangdianzi (SDZ, clean background area, 100 km to the northeast of Beijing urban area), respectively. The SO2 levels in winter (heating season) are 4-6 folds higher than those in summer. There are highly significant correlations among the daily means of SO2 at different sites, indicating regional characteristics of SO2 pollution. Diurnal patterns of surface SO2 at all sites have a common feature with a daytime peak, which is probably caused by the downward mixing and/or the advection transport of SO2-richer air over the North China Plain. The concentrations of SO2 at CMA and GCH show highly significant downward trends (-4.4 ppb/yr for CMA and -2.4 ppb/yr for GCH), while a less significant trend (-0.3 ppb/yr) is identified in the data from SDZ, reflecting the character of SDZ as a regional atmospheric background site in North China. The SO2 concentrations of all three sites show a significant decrease from period before to after the control measures for the 2008 Olympic Games, suggesting that the SO2 pollution control has long-term effectiveness and benefits. In the post-Olympics period, the mean concentrations of SO2 at CMA, GCH, and SDZ are (14.3 +/- 11.0) ppb, (12.1 +/- 7.7) ppb, and (7.5 +/- 4.0) ppb, respectively, with reductions of 26%, 36%, and 13%, respectively, compared to the levels before. Detailed analysis shows that the differences of temperature, relative humidity, wind speed, and wind direction were not the dominant factors for the significant differences of SO2 between the pre-Olympics and post-Olympics periods. By extracting the data being more representative of local or regional characteristics, a reduction of up to 40% for SO2 in polluted areas and a reduction of 20% for regional SO2 are obtained for the effect of control measures implemented for the Olympic Games.
Collapse
Affiliation(s)
- Weili Lin
- Key Laboratory for Atmospheric Chemistry, CMA Centre for Atmosphere Watch & Services, Chinese Acaidemy of Meteorological Sciences, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Lee C, Martin RV, van Donkelaar A, Lee H, Dickerson RR, Hains JC, Krotkov N, Richter A, Vinnikov K, Schwab JJ. SO2emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014758] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ, Amos HM. Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013846] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|