1
|
Loh A, Kim D, An JG, Choi N, Yim UH. Characteristics of sub-micron aerosols in the Yellow Sea and its environmental implications. MARINE POLLUTION BULLETIN 2024; 204:116556. [PMID: 38850756 DOI: 10.1016/j.marpolbul.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The Yellow Sea, characterized by an influx of both natural marine and anthropogenic pollutants, coupled with favorable photochemical conditions, serve as key sites for potential interactions between atmospheric gases and aerosols. A recent air monitoring campaign in the Yellow Sea revealed aerosol contributions from four sources, with the highest mass concentrations and dominance of NO3- (38.1 ± 0.37 %) during winds from China. Indications of potential secondary aerosol formation were observed through the presence of hydrolysis and oxidation products of nitrate and volatile organic compounds. Correlations between time series distributions of biomass burning organic aerosols and particle number counts (Dp 100-500 nm, R2 = 0.94) further suggest potential size growth through adsorption and scavenging processes. The results from this study provide observational evidence of a shift in atmospheric compositions from sulfate to nitrate, leading to an increased atmospheric nitrogen deposition in the Yellow Sea.
Collapse
Affiliation(s)
- Andrew Loh
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Narin Choi
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Loh A, Kim D, Hwang K, An JG, Choi N, Hyun S, Yim UH. Emissions from ships' activities in the anchorage zone: A potential source of sub-micron aerosols in port areas. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131775. [PMID: 37295332 DOI: 10.1016/j.jhazmat.2023.131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Busan Port is among the world's top ten most air-polluted ports, but the role of the anchorage zone as a significant contributor to pollution has not been studied. To assess the emission characteristics of sub-micron aerosols, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in Busan, South Korea from September 10 to October 6, 2020. The concentration of all AMS-identified species and black carbon were highest when the winds came from the anchorage zone (11.9 µg·m-3) and lowest with winds from the open ocean (6.64 µg·m-3). The positive matrix factorization model identified one hydrocarbon-like organic aerosol (HOA) and two oxygenated organic aerosol (OOA) sources. HOAs were highest with winds from Busan Port, while oxidized OOAs were predominant with winds from the anchorage zone (less oxidized) and the open ocean (more oxidized). We calculated the emissions from the anchorage zone using ship activity data and compared them to the total emissions from Busan Port. Our results suggest that emissions from ship activities in the anchorage zone should be considered a significant source of pollution in the Busan Port area, especially given the substantial contributions of gaseous emissions (NOx: 8.78%; volatile organic compounds: 7.52%) and their oxidized moieties as secondary aerosols.
Collapse
Affiliation(s)
- Andrew Loh
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Kyucheol Hwang
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Narin Choi
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sangmin Hyun
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Loh A, Kim D, An JG, Choi N, Yim UH. Chemical characterization of sub-micron aerosols over the East Sea (Sea of Japan). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159173. [PMID: 36191721 DOI: 10.1016/j.scitotenv.2022.159173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Studies of the land-sea-air interactions of aerosol are scarce considering their significant role in global environmental changes. Here, we investigated potential sources of sub-micron aerosols over the East Sea (Sea of Japan), which is strongly influenced by continental and marine aerosols. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the size-resolved chemical compositions of sub-micron aerosols during the period March 10-15, 2020. Concentrations of all AMS species, black carbon (BC), PM10 (particulate matter <10 μm) and PM2.5 (particulate matter <2.5 μm) were higher when cruising in industrialized coastal areas compared to the offshore region. A positive matrix factorization (PMF) model identified five distinct sources, i.e., hydrocarbon-like organic aerosol, semi-volatile and low-volatile oxygenated aerosols, methanesulfonic acid (MSA), and dimethyl sulfide (DMS; C2H6S) oxidation, which accounted for 5.98 %, 21.6 %, 28.3 %, 34.5 %, and 9.64 % of the total organic mass, respectively. The spatiotemporal variation of MSA, as well as the MSA to sulfate ratio (MSA:SO42-) over the East Sea, was determined for the first time. The mass concentrations of MSA displayed a similar time series distribution pattern to those of DMS. The time series distributions of the MSA:SO42- ratio displayed distinct differences, with higher ratios downwind of the ocean (0.216 ± 0.083 μg·m-3) than land (0.089 ± 0.030 μg·m-3). The growth of ultrafine particles (10-35 nm) was observed during two of the elevated MSA:SO42- ratio events, suggesting a potential role of MSA in new particle formation.
Collapse
Affiliation(s)
- Andrew Loh
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Narin Choi
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
5
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
6
|
Early onset of industrial-era warming across the oceans and continents. Nature 2016; 536:411-8. [PMID: 27558063 DOI: 10.1038/nature19082] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/28/2016] [Indexed: 11/09/2022]
Abstract
The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.
Collapse
|
7
|
Cho SY, Park SS. Resolving sources of water-soluble organic carbon in fine particulate matter measured at an urban site during winter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:524-534. [PMID: 25208718 DOI: 10.1039/c2em30730h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Measurements of daily PM2.5 were carried out during winter between January 11 and February 27, 2010 in an urban area of Korea, in order to better understand the influence of sources and atmospheric processing of organic aerosols. The aerosol samples were analyzed for organic carbon and elemental carbon (OC and EC), water-soluble OC (WSOC), eight ionic species, and oxalate. The water-soluble fraction of OC was between 33 and 58% with an average of 45%. Strong correlations among WSOC, sulfate (SO 4(2-)) (R(2) = 0.69), and oxalate (R(2) = 0.82) concentrations, and between potassium (K (+)) and WSOC concentrations (R(2) = 0.81) suggest that the observed WSOC could originate from similar oxidation processes to those for SO 4(2-) and oxalate, as well as biomass burning. Also moderate correlations of the WSOC with EC and carbon monoxide (CO) indicate that there was some contribution to WSOC from primary fossil fuel combustion. Results from a principle component analysis (PCA) indicate that in addition to the biomass burning and primary non-biomass burning emissions, the observed WSOC could be formed through production pathways similar to secondary organic carbon (SOC), SO 4(2-), and oxalate. Sources of WSOC inferred, based on the correlations, were confirmed by source categories identified by the PCA. Over the study period, three haze episodes exceeding a 24 h PM 2.5 concentration of 50 μg m(-3) were identified. Of the major components in PM 2.5, EC concentrations were elevated during episode I (18-19 January), while the secondary SO 4(2-) concentrations were enhanced during episodes II (30-31 January) and III (22-23 February). However, little difference in OC concentrations among the episodes was observed. It is suggested that the aerosol particles collected during episodes II and III were more aged than those during episode I. Estimates of fossil fuel combustion, biomass burning, and SOC contributions to WSOC indicate that the fossil fuel combustion provided the highest contribution (62.3%) to WSOC in episode I, while the greatest contribution (60.6%) to WSOC from SOC was observed in episode II. The results demonstrate that the sampled aerosol particles were more aged or further processed during episodes II and III than during episode I.
Collapse
Affiliation(s)
- Sung Yong Cho
- Department of Environmental Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-ku, Gwangju 500-757, Republic of Korea.
| | | |
Collapse
|
8
|
Frossard AA, Shaw PM, Russell LM, Kroll JH, Canagaratna MR, Worsnop DR, Quinn PK, Bates TS. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015178] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Schmale J, Schneider J, Jurkat T, Voigt C, Kalesse H, Rautenhaus M, Lichtenstern M, Schlager H, Ancellet G, Arnold F, Gerding M, Mattis I, Wendisch M, Borrmann S. Aerosol layers from the 2008 eruptions of Mount Okmok and Mount Kasatochi: In situ upper troposphere and lower stratosphere measurements of sulfate and organics over Europe. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013628] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Hawkins LN, Russell LM, Covert DS, Quinn PK, Bates TS. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013276] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Bahreini R, Ervens B, Middlebrook AM, Warneke C, de Gouw JA, DeCarlo PF, Jimenez JL, Brock CA, Neuman JA, Ryerson TB, Stark H, Atlas E, Brioude J, Fried A, Holloway JS, Peischl J, Richter D, Walega J, Weibring P, Wollny AG, Fehsenfeld FC. Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011493] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Russell LM, Takahama S, Liu S, Hawkins LN, Covert DS, Quinn PK, Bates TS. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/VRonald Brownduring TEXAQS/GoMACCS 2006. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011275] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Lack DA, Corbett JJ, Onasch T, Lerner B, Massoli P, Quinn PK, Bates TS, Covert DS, Coffman D, Sierau B, Herndon S, Allan J, Baynard T, Lovejoy E, Ravishankara AR, Williams E. Particulate emissions from commercial shipping: Chemical, physical, and optical properties. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011300] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Johnson KS, Laskin A, Jimenez JL, Shutthanandan V, Molina LT, Salcedo D, Dzepina K, Molina MJ. Comparative analysis of urban atmospheric aerosol by particle-induced X-ray emission (PIXE), proton elastic scattering analysis (PESA), and aerosol mass spectrometry (AMS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6619-6624. [PMID: 18800539 DOI: 10.1021/es800393e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A multifaceted approach to atmospheric aerosol analysis is often desirable in field studies where an understanding of technical comparability among different measurement techniques is essential. Herein, we report quantitative intercomparisons of particle-induced X-ray emission (PIXE) and proton elastic scattering analysis (PESA), performed of fline under a vacuum, with analysis by aerosol mass spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO4(2-)) and AMS-measured sulfate during most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions, assuming the only major contributions were (NH4)2SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under a vacuum. However approximately 25% of the organics does remain under a vacuum, which is only possible with low-vapor-pressure compounds, and which supports the presence of high-molecular-weight or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS and, to our knowledge, also the first report of PESA hydrogen measurements for urban organic aerosols.
Collapse
Affiliation(s)
- K S Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Miyakawa T, Takegawa N, Kondo Y. Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Cottrell LD, Griffin RJ, Jimenez JL, Zhang Q, Ulbrich I, Ziemba LD, Beckman PJ, Sive BC, Talbot RW. Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009192] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
de Gouw JA, Brock CA, Atlas EL, Bates TS, Fehsenfeld FC, Goldan PD, Holloway JS, Kuster WC, Lerner BM, Matthew BM, Middlebrook AM, Onasch TB, Peltier RE, Quinn PK, Senff CJ, Stohl A, Sullivan AP, Trainer M, Warneke C, Weber RJ, Williams EJ. Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009243] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Brock CA, Sullivan AP, Peltier RE, Weber RJ, Wollny A, de Gouw JA, Middlebrook AM, Atlas EL, Stohl A, Trainer MK, Cooper OR, Fehsenfeld FC, Frost GJ, Holloway JS, Hübler G, Neuman JA, Ryerson TB, Warneke C, Wilson JC. Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Thornhill KL, Chen G, Dibb J, Jordan CE, Omar A, Winstead EL, Schuster G, Clarke A, McNaughton C, Scheuer E, Blake D, Sachse G, Huey LG, Singh HB, Anderson BE. The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M, de Gouw J, Warneke C, Brock C, Holloway JS, Atlas EL, Edgerton E. A study of secondary organic aerosol formation in the anthropogenic‐influenced southeastern United States. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008408] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rodney J. Weber
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Amy P. Sullivan
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
- Department of Atmospheric Science Colorado State University Fort Collins Colorado USA
| | - Richard E. Peltier
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Armistead Russell
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta Georgia USA
| | - Bo Yan
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Mei Zheng
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Charles Brock
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - John S. Holloway
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Elliot L. Atlas
- Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science University of Miami Miami Florida USA
| | - Eric Edgerton
- Atmospheric Research and Analysis, Inc. Cary North Carolina USA
| |
Collapse
|
21
|
Wang W, Rood MJ, Carrico CM, Covert DS, Quinn PK, Bates TS. Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering; University of Illinois; Urbana Illinois USA
| | - Mark J. Rood
- Department of Civil and Environmental Engineering; University of Illinois; Urbana Illinois USA
| | - Christian M. Carrico
- Department of Atmospheric Science; Colorado State University; Fort Collins Colorado USA
| | - David S. Covert
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Patricia K. Quinn
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - Timothy S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| |
Collapse
|
22
|
Gilardoni S, Russell LM, Sorooshian A, Flagan RC, Seinfeld JH, Bates TS, Quinn PK, Allan JD, Williams B, Goldstein AH, Onasch TB, Worsnop DR. Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007737] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Gilardoni
- Scripps Institution of Oceanography; University of California; San Diego, La Jolla California USA
| | - L. M. Russell
- Scripps Institution of Oceanography; University of California; San Diego, La Jolla California USA
| | - A. Sorooshian
- Department of Chemical Engineering; California Institute of Technology; Pasadena California USA
| | - R. C. Flagan
- Department of Chemical Engineering; California Institute of Technology; Pasadena California USA
| | - J. H. Seinfeld
- Department of Chemical Engineering; California Institute of Technology; Pasadena California USA
| | - T. S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - P. K. Quinn
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - J. D. Allan
- School of Earth, Atmospheric and Environmental Science; University of Manchester; Manchester UK
| | - B. Williams
- Department of Environmental Sciences, Policy and Management; University of California; Berkeley California USA
| | - A. H. Goldstein
- Department of Environmental Sciences, Policy and Management; University of California; Berkeley California USA
| | - T. B. Onasch
- Aerodyne Research, Inc.; Billerica Massachusetts USA
| | - D. R. Worsnop
- Aerodyne Research, Inc.; Billerica Massachusetts USA
| |
Collapse
|
23
|
Fehsenfeld FC, Ancellet G, Bates TS, Goldstein AH, Hardesty RM, Honrath R, Law KS, Lewis AC, Leaitch R, McKeen S, Meagher J, Parrish DD, Pszenny AAP, Russell PB, Schlager H, Seinfeld J, Talbot R, Zbinden R. International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe-Overview of the 2004 summer field study. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007829] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - G. Ancellet
- Service d'Aéronomie du Centre Nationale de la Recherche Scientifique; Institut Pierre Simon Laplace/Université Pierre et Marie Curie; Paris France
| | - T. S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - A. H. Goldstein
- Department of Environmental Science, Policy and Management; University of California; Berkeley California USA
| | - R. M. Hardesty
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - R. Honrath
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - K. S. Law
- Service d'Aéronomie du Centre Nationale de la Recherche Scientifique; Institut Pierre Simon Laplace/Université Pierre et Marie Curie; Paris France
| | - A. C. Lewis
- Department of Chemistry; University of York; York UK
| | - R. Leaitch
- Science and Technology Branch; Environment Canada; Toronto, Ontario Canada
| | - S. McKeen
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. Meagher
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - A. A. P. Pszenny
- Institute for the Study of Earth, Oceans and Space; University of New Hampshire; Durham New Hampshire USA
| | - P. B. Russell
- NASA Ames Research Center; Moffett Field California USA
| | - H. Schlager
- Deutsches Zentrum für Luft- und Raumfahrt; Oberpfaffenhofen, Wessling Germany
| | - J. Seinfeld
- Departments of Environmental Science and Engineering and Chemical Engineering; California Institute of Technology; Pasadena California USA
| | - R. Talbot
- Institute for the Study of Earth, Oceans and Space; University of New Hampshire; Durham New Hampshire USA
| | - R. Zbinden
- Laboratoire d'Aérologie, Observatoire Midi-Pyrénées; UMR 5560, Centre Nationale de la Recherche Scientifique/Université Paul Sabatier; Toulouse France
| |
Collapse
|
24
|
Sierau B, Covert DS, Coffman DJ, Quinn PK, Bates TS. Aerosol optical properties during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation: Gulf of Maine surface measurements-Regional and case studies. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007568] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Berko Sierau
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - David S. Covert
- Joint Institute for the Study of the Atmosphere and Ocean; University of Washington; Seattle Washington USA
| | - Derek J. Coffman
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - Patricia K. Quinn
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - Timothy S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| |
Collapse
|