1
|
Wang H, Ding K, Huang X, Wang W, Ding A. Insight into ozone profile climatology over northeast China from aircraft measurement and numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147308. [PMID: 33932671 DOI: 10.1016/j.scitotenv.2021.147308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone is a major pollutant that can harm human health, animals and plants. With a rapid development in Northeast China, ozone pollution has become an increasingly serious environmental challenge. To study the ozone distribution and the potential sources of ozone precursors in Northeast China, we analyzed vertical ozone profiles from the In-service Aircraft for a Global Observing System (IAGOS) in 2012-2014 and provided the climatological vertical structure of tropospheric ozone over Shenyang. The tropospheric ozone generally presents high in hot months, mainly due to the combined effects of the strong solar radiation and high volatile organic compounds emission in summer. While in cold months, the ozone is low because of weak solar radiation and high nitrogen oxides emission. Besides, a low-ozone center exists within lower troposphere in August, which is mainly caused by the East Asian summer monsoon prevailing in summer. To analyze the sources of ozone, typical ozone pollution episodes were studied and the results revealed the different pathways for the enhancement of ozone pollution in Shenyang: regional transport of anthropogenic emissions from North China Plain (NCP), long-range transport from Siberian biomass burning and local photochemical production. Modeling results show that the largest contribution to the surface ozone in Northeast China is local anthropogenic emissions (exceed 90%); the regional transport of NCP anthropogenic emissions contribute more to the pollutants around 2 km, and account for more than 50% pollutants during highly ozone polluted days; through long-range transport, Siberian biomass burning in the spring also have a nonnegligible effect on the near-ground ozone in Northeast China. Overall, this study provides tropospheric ozone climatology and its source attribution in Northeast China, and highlight the great importance of regional transport of anthropogenic and biomass burning emissions in ozone pollution.
Collapse
Affiliation(s)
- Hongyue Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ke Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China.
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Wuke Wang
- Department of atmospheric science, China University of Geosciences, Wuhan, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China.
| |
Collapse
|
2
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
3
|
MacKenzie AR, Langford B, Pugh TAM, Robinson N, Misztal PK, Heard DE, Lee JD, Lewis AC, Jones CE, Hopkins JR, Phillips G, Monks PS, Karunaharan A, Hornsby KE, Nicolas-Perea V, Coe H, Gabey AM, Gallagher MW, Whalley LK, Edwards PM, Evans MJ, Stone D, Ingham T, Commane R, Furneaux KL, McQuaid JB, Nemitz E, Seng YK, Fowler D, Pyle JA, Hewitt CN. The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philos Trans R Soc Lond B Biol Sci 2012; 366:3177-95. [PMID: 22006961 DOI: 10.1098/rstb.2011.0053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
Collapse
Affiliation(s)
- A R MacKenzie
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alves CA, Vicente A, Monteiro C, Gonçalves C, Evtyugina M, Pio C. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1466-75. [PMID: 21277615 DOI: 10.1016/j.scitotenv.2010.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/12/2010] [Accepted: 12/20/2010] [Indexed: 04/14/2023]
Abstract
On May 2009, both the gas and particulate fractions of smoke from a wildfire in Sever do Vouga, central Portugal, were sampled. Total hydrocarbons and carbon oxides (CO(2) and CO) were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Fine (PM(2.5)) and coarse (PM(2.5-10)) particles from the smoke plume were analysed by a thermal-optical transmission technique to determine the elemental and organic carbon (EC and OC) content. Subsequently, the particle samples were solvent extracted and fractionated by vacuum flash chromatography into different classes of organic compounds. The detailed organic speciation was performed by gas chromatography-mass spectrometry. The CO, CO(2) and total hydrocarbon emission factors (g kg(-1) dry fuel) were 170 ± 83, 1485 ± 147, and 9.8 ± 0.90, respectively. It was observed that the particulate matter and OC emissions are significantly enhanced under smouldering fire conditions. The aerosol emissions were dominated by fine particles whose mass was mainly composed of organic constituents, such as degradation products from biopolymers (e.g. levoglucosan from cellulose, methoxyphenols from lignin). The compound classes also included homologous series (n-alkanes, n-alkenes, n-alkanoic acids and n-alkanols), monosaccharide derivatives from cellulose, steroid and terpenoid biomarkers, and polycyclic aromatic hydrocarbons (PAHs). The most abundant PAH was retene. Even carbon number homologs of monoglycerides were identified for the first time as biomarkers in biomass burning aerosols.
Collapse
Affiliation(s)
- Célia A Alves
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
5
|
Hopkins JR, Jones CE, Lewis AC. A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds. ACTA ACUST UNITED AC 2011; 13:2268-76. [DOI: 10.1039/c1em10050e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Read KA, Lee JD, Lewis AC, Moller SJ, Mendes L, Carpenter LJ. Intra-annual cycles of NMVOC in the tropical marine boundary layer and their use for interpreting seasonal variability in CO. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011879] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Spracklen DV, Mickley LJ, Logan JA, Hudman RC, Yevich R, Flannigan MD, Westerling AL. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010966] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Balzani Lööv JM, Henne S, Legreid G, Staehelin J, Reimann S, Prévôt ASH, Steinbacher M, Vollmer MK. Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl). ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009751] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
McMillan WW, Warner JX, Comer MM, Maddy E, Chu A, Sparling L, Eloranta E, Hoff R, Sachse G, Barnet C, Razenkov I, Wolf W. AIRS views transport from 12 to 22 July 2004 Alaskan/Canadian fires: Correlation of AIRS CO and MODIS AOD with forward trajectories and comparison of AIRS CO retrievals with DC-8 in situ measurements during INTEX-A/ICARTT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009711] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Bechara J, Borbon A, Jambert C, Perros PE. New off-line aircraft instrumentation for non-methane hydrocarbon measurements. Anal Bioanal Chem 2008; 392:865-76. [PMID: 18751685 DOI: 10.1007/s00216-008-2330-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/18/2008] [Accepted: 07/31/2008] [Indexed: 12/01/2022]
Abstract
New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.
Collapse
Affiliation(s)
- Joelle Bechara
- Laboratoire Interuniversitaire des Systèmes Atmosphériques, Universités Paris 12 et Paris 7, CNRS, 94000, Créteil, France.
| | | | | | | |
Collapse
|
11
|
Brock CA, Sullivan AP, Peltier RE, Weber RJ, Wollny A, de Gouw JA, Middlebrook AM, Atlas EL, Stohl A, Trainer MK, Cooper OR, Fehsenfeld FC, Frost GJ, Holloway JS, Hübler G, Neuman JA, Ryerson TB, Warneke C, Wilson JC. Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
White ML, Russo RS, Zhou Y, Mao H, Varner RK, Ambrose J, Veres P, Wingenter OW, Haase K, Stutz J, Talbot R, Sive BC. Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009161] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Arnold SR, Methven J, Evans MJ, Chipperfield MP, Lewis AC, Hopkins JR, McQuaid JB, Watson N, Purvis RM, Lee JD, Atlas EL, Blake DR, Rappenglück B. Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007594] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. R. Arnold
- Institute for Atmospheric Science, School of Earth and Environment; University of Leeds; Leeds UK
| | - J. Methven
- Department of Meteorology; University of Reading; Reading UK
| | - M. J. Evans
- Institute for Atmospheric Science, School of Earth and Environment; University of Leeds; Leeds UK
| | - M. P. Chipperfield
- Institute for Atmospheric Science, School of Earth and Environment; University of Leeds; Leeds UK
| | - A. C. Lewis
- Department of Chemistry; University of York; York UK
| | - J. R. Hopkins
- Department of Chemistry; University of York; York UK
| | - J. B. McQuaid
- Institute for Atmospheric Science, School of Earth and Environment; University of Leeds; Leeds UK
| | - N. Watson
- Department of Chemistry; University of York; York UK
| | - R. M. Purvis
- Department of Chemistry; University of York; York UK
| | - J. D. Lee
- Department of Chemistry; University of York; York UK
| | - E. L. Atlas
- Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - B. Rappenglück
- Institute of Meteorology and Climate Research; Forschungszentrum Karlsruhe; Garmisch-Partenkirchen Germany
| |
Collapse
|
14
|
Reeves CE, Slemr J, Oram DE, Worton D, Penkett SA, Stewart DJ, Purvis R, Watson N, Hopkins J, Lewis A, Methven J, Blake DR, Atlas E. Alkyl nitrates in outflow from North America over the North Atlantic during Intercontinental Transport of Ozone and Precursors 2004. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire E. Reeves
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - Jana Slemr
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - David E. Oram
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - David Worton
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - Stuart A. Penkett
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - David J. Stewart
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - Ruth Purvis
- Facility for Airborne Atmospheric Measurements; Cranfield University; Cranfield UK
| | - Nicola Watson
- Department of Chemistry; University of York; York UK
| | - Jim Hopkins
- Department of Chemistry; University of York; York UK
| | - Ally Lewis
- Department of Chemistry; University of York; York UK
| | - John Methven
- Department of Meteorology; University of Reading; Reading UK
| | - Donald R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - Elliot Atlas
- Rosenstiel School of Marine and Atmospheric Science, Division of Marine and Atmospheric Chemistry; University of Miami; Miami Florida USA
| |
Collapse
|
15
|
Kleissl J, Honrath RE, Dziobak MP, Tanner D, Val Martín M, Owen RC, Helmig D. Occurrence of upslope flows at the Pico mountaintop observatory: A case study of orographic flows on a small, volcanic island. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007565] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. Kleissl
- Department of Mechanical and Aerospace Engineering; University of California, San Diego; La Jolla California USA
| | - R. E. Honrath
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - M. P. Dziobak
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - D. Tanner
- Institute of Arctic and Alpine Research; University of Colorado; Boulder Colorado USA
| | - M. Val Martín
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - R. C. Owen
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - D. Helmig
- Institute of Arctic and Alpine Research; University of Colorado; Boulder Colorado USA
| |
Collapse
|
16
|
Fehsenfeld FC, Ancellet G, Bates TS, Goldstein AH, Hardesty RM, Honrath R, Law KS, Lewis AC, Leaitch R, McKeen S, Meagher J, Parrish DD, Pszenny AAP, Russell PB, Schlager H, Seinfeld J, Talbot R, Zbinden R. International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe-Overview of the 2004 summer field study. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007829] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - G. Ancellet
- Service d'Aéronomie du Centre Nationale de la Recherche Scientifique; Institut Pierre Simon Laplace/Université Pierre et Marie Curie; Paris France
| | - T. S. Bates
- Pacific Marine Environmental Laboratory; NOAA; Seattle Washington USA
| | - A. H. Goldstein
- Department of Environmental Science, Policy and Management; University of California; Berkeley California USA
| | - R. M. Hardesty
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - R. Honrath
- Department of Civil and Environmental Engineering; Michigan Technological University; Houghton Michigan USA
| | - K. S. Law
- Service d'Aéronomie du Centre Nationale de la Recherche Scientifique; Institut Pierre Simon Laplace/Université Pierre et Marie Curie; Paris France
| | - A. C. Lewis
- Department of Chemistry; University of York; York UK
| | - R. Leaitch
- Science and Technology Branch; Environment Canada; Toronto, Ontario Canada
| | - S. McKeen
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. Meagher
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - A. A. P. Pszenny
- Institute for the Study of Earth, Oceans and Space; University of New Hampshire; Durham New Hampshire USA
| | - P. B. Russell
- NASA Ames Research Center; Moffett Field California USA
| | - H. Schlager
- Deutsches Zentrum für Luft- und Raumfahrt; Oberpfaffenhofen, Wessling Germany
| | - J. Seinfeld
- Departments of Environmental Science and Engineering and Chemical Engineering; California Institute of Technology; Pasadena California USA
| | - R. Talbot
- Institute for the Study of Earth, Oceans and Space; University of New Hampshire; Durham New Hampshire USA
| | - R. Zbinden
- Laboratoire d'Aérologie, Observatoire Midi-Pyrénées; UMR 5560, Centre Nationale de la Recherche Scientifique/Université Paul Sabatier; Toulouse France
| |
Collapse
|
17
|
Heald CL, Jacob DJ, Turquety S, Hudman RC, Weber RJ, Sullivan AP, Peltier RE, Atlas EL, de Gouw JA, Warneke C, Holloway JS, Neuman JA, Flocke FM, Seinfeld JH. Concentrations and sources of organic carbon aerosols in the free troposphere over North America. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007705] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Colette L. Heald
- Center for Atmospheric Sciences; University of California; Berkeley California USA
| | - Daniel J. Jacob
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Solène Turquety
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Rynda C. Hudman
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Rodney J. Weber
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Amy P. Sullivan
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Richard E. Peltier
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Eliot L. Atlas
- Rosentiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - Joost A. de Gouw
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - Carsten Warneke
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - John S. Holloway
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - J. Andrew Neuman
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - Frank M. Flocke
- National Center for Atmospheric Research; Boulder Colorado USA
| | - John H. Seinfeld
- Department of Chemical Engineering; California Institute of Technology; Pasadena California USA
| |
Collapse
|
18
|
Methven J, Arnold SR, Stohl A, Evans MJ, Avery M, Law K, Lewis AC, Monks PS, Parrish DD, Reeves CE, Schlager H, Atlas E, Blake DR, Coe H, Crosier J, Flocke FM, Holloway JS, Hopkins JR, McQuaid J, Purvis R, Rappenglück B, Singh HB, Watson NM, Whalley LK, Williams PI. Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007540] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J. Methven
- Department of Meteorology; University of Reading; Reading UK
| | - S. R. Arnold
- School of Earth and Environment; University of Leeds; Leeds UK
| | - A. Stohl
- Norwegian Institute for Air Research; Kjeller Norway
| | - M. J. Evans
- School of Earth and Environment; University of Leeds; Leeds UK
| | - M. Avery
- NASA Langley Research Center; Hampton Virginia USA
| | - K. Law
- Service d'Aéronomie, Centre National de la Recherche Scientifique; Université Pierre et Marie Curie; Paris France
| | - A. C. Lewis
- Department of Chemistry; University of York; York UK
| | - P. S. Monks
- Department of Chemistry; University of Leicester; Leicester UK
| | - D. D. Parrish
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - C. E. Reeves
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - H. Schlager
- Deutsches Zentrum für Luft- und Raumfahrt; Oberpfaffenhofen Germany
| | - E. Atlas
- Rosenstiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - H. Coe
- School of Earth, Atmospheric and Environmental Sciences; University of Manchester; Manchester UK
| | - J. Crosier
- School of Earth, Atmospheric and Environmental Sciences; University of Manchester; Manchester UK
| | - F. M. Flocke
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. S. Holloway
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - J. R. Hopkins
- Department of Chemistry; University of York; York UK
| | - J. McQuaid
- School of Earth and Environment; University of Leeds; Leeds UK
| | - R. Purvis
- Facility for Airborne Atmospheric Measurements; Cranfield UK
| | - B. Rappenglück
- Institute of Meteorology and Climate Research; Forschungszentrum Karlsruhe; Garmisch-Partenkirchen Germany
| | - H. B. Singh
- NASA Ames Research Center; Moffett Field California USA
| | - N. M. Watson
- Department of Chemistry; University of York; York UK
| | | | - P. I. Williams
- School of Earth, Atmospheric and Environmental Sciences; University of Manchester; Manchester UK
| |
Collapse
|