1
|
Mandanici E, Lo Grasso G, Tini MA, Zanutta A. Estimation of apparent thermal inertia of roofing materials from aerial thermal imagery. Sci Rep 2024; 14:15926. [PMID: 38987321 PMCID: PMC11637176 DOI: 10.1038/s41598-024-64371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
The rapid expansion of urban areas and soil sealing is enhancing the Urban Heat Island (UHI) phenomenon, especially during heat waves. The different thermal inertia of the building materials compared to natural surfaces is one of the major driving factors of UHI. The present contribution aims to test a methodology for mapping the Apparent Thermal Inertia (ATI)-a proxy that can be derived from remote sensing data-of roofing surfaces at the scale of an entire city and with a high spatial resolution. Day and night aerial thermal images with the resolution of 0.5 m were acquired over two test areas in Bologna (Italy), together with satellite multispectral data. Statistics on the buildings in the test areas are computed considering different classes of roofing materials (e.g. bituminous sheath, clay tiles, metal sheet, gravel tiles). Observed median ATI values for each class range from 0.03 to 0.09 K- 1 with interquartile ranges between 0.02 and 0.14 K- 1 , so the intra-class variability in some cases appears higher than the variability among different material classes, proving the importance of ATI mapping for UHI investigations.
Collapse
Affiliation(s)
- Emanuele Mandanici
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, viale del Risorgimento 2, 40136, Bologna, Italy.
| | - Gabriele Lo Grasso
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, viale del Risorgimento 2, 40136, Bologna, Italy
| | - Maria A Tini
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, viale del Risorgimento 2, 40136, Bologna, Italy
| | - Antonio Zanutta
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, viale del Risorgimento 2, 40136, Bologna, Italy
| |
Collapse
|
2
|
McKeeby BE, Ramsey MS, Tai Udovicic CJ, Haberle C, Edwards CS. Quantifying Sub-Meter Surface Heterogeneity on Mars Using Off-Axis Thermal Emission Imaging System (THEMIS) Data. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2022; 9:e2022EA002430. [PMID: 36588669 PMCID: PMC9788145 DOI: 10.1029/2022ea002430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Abstract
Surface heterogeneities below the spatial resolution of thermal infrared (TIR) instruments result in anisothermality and can produce emissivity spectra with negative slopes toward longer wavelengths. Sloped spectra arise from an incorrect assumption of either a uniform surface temperature or a maximum emissivity during the temperature-emissivity separation of radiance data. Surface roughness and lateral mixing of different sub-pixel surface units result in distinct spectral slopes with magnitudes proportional to the degree of temperature mixing. Routine Off-nadir Targeted Observations (ROTO) of the Thermal Emission Imaging Spectrometer (THEMIS) are used here for the first time to investigate anisothermality below the spatial resolution of THEMIS. The southern flank of Apollinaris Mons and regions within the Medusae Fossae Formation are studied using THEMIS ROTO data acquired just after local sunset. We observe a range of sloped TIR emission spectra dependent on the magnitude of temperature differences within a THEMIS pixel. Spectral slopes and wavelength-dependent brightness temperature differences are forward-modeled for a series of two-component surfaces of varying thermal inertia values. Our results imply that differing relative proportions of rocky and unconsolidated surface units are observed at each ROTO viewing geometry and suggest a local rock abundance six times greater than published results that rely on nadir data. High-resolution visible images of these regions indicate a mixture of surface units from boulders to dunes, providing credence to the model.
Collapse
Affiliation(s)
- B. E. McKeeby
- Department of Geology and Environmental ScienceUniversity of PittsburghPittsburghPAUSA
| | - M. S. Ramsey
- Department of Geology and Environmental ScienceUniversity of PittsburghPittsburghPAUSA
| | - C. J. Tai Udovicic
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - C. Haberle
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - C. S. Edwards
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| |
Collapse
|
3
|
Abstract
On 15 May 2021, the Zhurong rover of China’s first Mars mission, Tianwen-1 (TW-1), successfully landed in southern Utopia Planitia on Mars. Various landforms were present in the landing area, and this area recorded a complex geological history. Cones are one of the typical landforms in the landing area and Utopia Planitia, and they have a great significance to the local geological processes due to the diversity of their origins. Using High-Resolution Imaging Camera (HiRIC) images collected by the TW-1 orbiter, we identified a total of 272 well-preserved circular cones in the landing area. Detailed surveys of their spatial distribution, morphological characteristics, and morphometric parameters were conducted. A preliminary analysis of the surface characteristics of these cones also provides additional information to strengthen our understanding of them. The results of the high-resolution topographic analysis show that the cone heights are in the range of 10.5–90.8 m and their basal diameters range from 178.9–1206.6 m. We compared the morphometric parameters of the cones in the landing area with terrestrial and Martian analogous features and found that our measured cones are consistent with the ranges of mud volcanoes and also a small subset of igneous origin cones. However, the result of spatial analysis is more favorable to mud volcanoes, and the lower thermal inertia of the cones in the landing area compared to their surrounding materials is also a typical characteristic of mud volcanoes. Based on current evidence and analysis, we favor interpreting the cones in the TW-1 landing area as mud volcanoes.
Collapse
|
4
|
Emran A, Marzen LJ, King Jr. DT, Chevrier VF. Thermophysical and Compositional Analyses of Dunes at Hargraves Crater, Mars. THE PLANETARY SCIENCE JOURNAL 2021; 2:218. [DOI: 10.3847/psj/ac25ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Tarnas JD, Stack KM, Parente M, Koeppel AHD, Mustard JF, Moore KR, Horgan BHN, Seelos FP, Cloutis EA, Kelemen PB, Flannery D, Brown AJ, Frizzell KR, Pinet P. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate-Bearing Rocks Within and Outside of Jezero Crater. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006898. [PMID: 34824965 PMCID: PMC8597593 DOI: 10.1029/2021je006898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 05/20/2023]
Abstract
Carbonate minerals have been detected in Jezero crater, an ancient lake basin that is the landing site of the Mars 2020 Perseverance rover, and within the regional olivine-bearing (ROB) unit in the Nili Fossae region surrounding this crater. It has been suggested that some carbonates in the margin fractured unit, a rock unit within Jezero crater, formed in a fluviolacustrine environment, which would be conducive to preservation of biosignatures from paleolake-inhabiting lifeforms. Here, we show that carbonate-bearing rocks within and outside of Jezero crater have the same range of visible-to-near-infrared carbonate absorption strengths, carbonate absorption band positions, thermal inertias, and morphologies. Thicknesses of exposed carbonate-bearing rock cross-sections in Jezero crater are ∼75-90 m thicker than typical ROB unit cross-sections in the Nili Fossae region, but have similar thicknesses to ROB unit exposures in Libya Montes. These similarities in carbonate properties within and outside of Jezero crater is consistent with a shared origin for all of the carbonates in the Nili Fossae region. Carbonate absorption minima positions indicate that both Mg- and more Fe-rich carbonates are present in the Nili Fossae region, consistent with the expected products of olivine carbonation. These estimated carbonate chemistries are similar to those in martian meteorites and the Comanche carbonates investigated by the Spirit rover in Columbia Hills. Our results indicate that hydrothermal alteration is the most likely formation mechanism for non-deltaic carbonates within and outside of Jezero crater.
Collapse
Affiliation(s)
- J. D. Tarnas
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. M. Stack
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - M. Parente
- Department of Electrical and Computer EngineeringUniversity of Massachusetts at AmherstAmherstMAUSA
| | - A. H. D. Koeppel
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - J. F. Mustard
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - K. R. Moore
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - F. P. Seelos
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - E. A. Cloutis
- Department of GeographyUniversity of WinnipegWinnipegMBCanada
| | - P. B. Kelemen
- Lahmont‐Doherty Earth Observatory, Columbia UniversityPalisadesNYUSA
| | - D. Flannery
- School of Earth and Atmospheric SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | | | - K. R. Frizzell
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| |
Collapse
|
6
|
Quantin-Nataf C, Carter J, Mandon L, Thollot P, Balme M, Volat M, Pan L, Loizeau D, Millot C, Breton S, Dehouck E, Fawdon P, Gupta S, Davis J, Grindrod PM, Pacifici A, Bultel B, Allemand P, Ody A, Lozach L, Broyer J. Oxia Planum: The Landing Site for the ExoMars "Rosalind Franklin" Rover Mission: Geological Context and Prelanding Interpretation. ASTROBIOLOGY 2021; 21:345-366. [PMID: 33400892 PMCID: PMC7987365 DOI: 10.1089/ast.2019.2191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/20/2020] [Indexed: 05/19/2023]
Abstract
The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the "Rosalind Franklin" rover in 2022 for a landing on Mars in 2023.The goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of ∼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.
Collapse
Affiliation(s)
- Cathy Quantin-Nataf
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Address correspondence to: Cathy Quantin-Nataf, Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne F-69622, France
| | - John Carter
- Institut d'Astrophysique Spatiale, Univ Paris Sud, CNRS, UMR 8617, Univ Paris-Saclay, Bat 120-121, F-91405 Orsay, France
| | - Lucia Mandon
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Patrick Thollot
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Matthew Balme
- Open Univ, Dept Earth & Environm Sci, Milton Keynes MK7 6AA, Bucks, England
| | - Matthieu Volat
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Lu Pan
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Damien Loizeau
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Institut d'Astrophysique Spatiale, Univ Paris Sud, CNRS, UMR 8617, Univ Paris-Saclay, Bat 120-121, F-91405 Orsay, France
| | - Cédric Millot
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Sylvain Breton
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Erwin Dehouck
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Peter Fawdon
- Open Univ, Dept Earth & Environm Sci, Milton Keynes MK7 6AA, Bucks, England
| | - Sanjeev Gupta
- Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
| | - Joel Davis
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Peter M. Grindrod
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | | | - Benjamin Bultel
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Department for Geosciences, Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| | - Pascal Allemand
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Anouck Ody
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Loic Lozach
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Jordan Broyer
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| |
Collapse
|
7
|
Brown AJ, Viviano CE, Goudge TA. Olivine-Carbonate Mineralogy of the Jezero Crater Region. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2019JE006011. [PMID: 33123452 PMCID: PMC7592698 DOI: 10.1029/2019je006011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/18/2019] [Indexed: 05/28/2023]
Abstract
A well-preserved, ancient delta deposit, in combination with ample exposures of carbonate outcrops, makes Jezero Crater in Nili Fossae a compelling astrobiological site. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) observations to characterize the surface mineralogy of the crater and surrounding watershed. Previous studies have documented the occurrence of olivine and carbonates in the Nili Fossae region. We focus on correlations between these two well-studied lithologies in the Jezero crater watershed. We map the position and shape of the olivine 1 μm absorption band and find that carbonates are found in association with olivine which displays a 1 μm band shifted to long wavelengths. We then use Thermal Emission Imaging Spectrometer (THEMIS) coverage of Nili Fossae and perform tests to investigate whether the long wavelength shifted (redshifted) olivine signature is correlated with high thermal inertia outcrops. We find that there is no consistent correlation between thermal inertia and the unique olivine signature. We discuss a range of formation scenarios for the olivine and carbonate associations, including the possibility that these lithologies are products of serpentinization reactions on early Mars. These lithologies provide an opportunity for deepening our understanding of early Mars and, given their antiquity, may provide a framework to study the timing of valley networks and the thermal history of the Martian crust and interior from the early Noachian to today.
Collapse
Affiliation(s)
| | - C. E. Viviano
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - T. A. Goudge
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Huang 黄俊 J, Salvatore MR, Edwards CS, Harris RL, Christensen PR. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. ASTROBIOLOGY 2018; 18:1081-1091. [PMID: 30074400 DOI: 10.1089/ast.2017.1757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chloride-bearing deposits and phyllosilicates-bearing units are widely distributed in the southern highlands of Mars, but these phases are rarely found together in fluviolacustrine environments. The study of the coexistence of these minerals can provide important insights into geochemistry, water activity, and ultimately the climate and habitability of early Mars. Here we use high-resolution compositional and morphological orbiter data to identify and characterize the context of diverse minerals in a Noachian fluviolacustrine environment west of Knobel crater (6.7°S, 226.8°W). The chlorides in this region are likely formed through the evaporation of brines in a closed topographic basin. The formation age of chlorides is older than 3.7 Ga, based on stratigraphic relationships identified and previously obtained crater retention ages. The timing of the alteration of basaltic materials to iron-magnesium smectites in relation to the chloride formation in this location is enigmatic and is unable to be resolved with currently available remote sensing data. Importantly, we find that this close relationship between these key minerals revealed by the currently available data details a complex and intimate history of aqueous activity in the region. Of critical importance are the evaporitic deposits as analogous terrestrial deposits have been shown to preserve ancient biosignatures and possibly even sustain microbial communities for hundreds of millions of years. These salts could have protected organic matter from ultraviolet radiation, or even allow modern habitable microenvironments in the shallow subsurface through periodic deliquescence. The high astrobiology potential of this site makes it a good candidate for future landed and sample return missions (e.g., the Chinese 2020 Mars mission).
Collapse
Affiliation(s)
- Jun Huang 黄俊
- 1 Planetary Science Institute, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences , Wuhan, China
- 2 Lunar and Planetary Science Laboratory, Macau University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration , Chinese Academy of Sciences, Macau, China
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Mark R Salvatore
- 3 Department of Physics and Astronomy, Northern Arizona University , Flagstaff, Arizona
| | - Christopher S Edwards
- 3 Department of Physics and Astronomy, Northern Arizona University , Flagstaff, Arizona
| | - Rachel L Harris
- 4 Department of Geosciences, Princeton University , Princeton, New Jersey
| | - Philip R Christensen
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| |
Collapse
|
9
|
Hanna RD, Hamilton VE, Putzig NE. The complex relationship between olivine abundance and thermal inertia on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2016; 121:1293-1320. [PMID: 31007993 PMCID: PMC6469700 DOI: 10.1002/2015je004924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.
Collapse
Affiliation(s)
- Romy D Hanna
- Jackson School of Geological Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Victoria E Hamilton
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
| | - Nathaniel E Putzig
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
- Now at the Planetary Science Institute, Lakewood, Colorado, USA
| |
Collapse
|
10
|
Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars. REMOTE SENSING 2016. [DOI: 10.3390/rs8020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Martínez GM, Rennó N, Fischer E, Borlina CS, Hallet B, de la Torre Juárez M, Vasavada AR, Ramos M, Hamilton V, Gomez-Elvira J, Haberle RM. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2014; 119:1822-1838. [PMID: 26213666 PMCID: PMC4508907 DOI: 10.1002/2014je004618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/12/2014] [Indexed: 05/28/2023]
Abstract
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m-2 K-1 s-1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.
Collapse
Affiliation(s)
- G M Martínez
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - N Rennó
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - E Fischer
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - C S Borlina
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - B Hallet
- Department of Earth and Space Sciences, University of WashingtonSeattle, Washington, USA
| | | | - A R Vasavada
- Jet Propulsion LaboratoryPasadena, California, USA
| | - M Ramos
- Departamento de Física, Universidad de Alcalá de HenaresMadrid, Spain
| | - V Hamilton
- Department of Space Studies, Southwest Research InstituteBoulder, Colorado, USA
| | | | - R M Haberle
- Space Science Division, NASA Ames Research CenterMoffett Field, California, USA
| |
Collapse
|
12
|
An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques. REMOTE SENSING 2014. [DOI: 10.3390/rs6065184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Edwards CS, Nowicki KJ, Christensen PR, Hill J, Gorelick N, Murray K. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003755] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Chojnacki M, Burr DM, Moersch JE, Michaels TI. Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003675] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Arvidson RE, Ashley JW, Bell JF, Chojnacki M, Cohen J, Economou TE, Farrand WH, Fergason R, Fleischer I, Geissler P, Gellert R, Golombek MP, Grotzinger JP, Guinness EA, Haberle RM, Herkenhoff KE, Herman JA, Iagnemma KD, Jolliff BL, Johnson JR, Klingelhöfer G, Knoll AH, Knudson AT, Li R, McLennan SM, Mittlefehldt DW, Morris RV, Parker TJ, Rice MS, Schröder C, Soderblom LA, Squyres SW, Sullivan RJ, Wolff MJ. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003746] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Osterloo MM, Anderson FS, Hamilton VE, Hynek BM. Geologic context of proposed chloride-bearing materials on Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003613] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Burr DM, Williams RME, Wendell KD, Chojnacki M, Emery JP. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003496] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Karunatillake S, Wray JJ, Squyres SW, Taylor GJ, Gasnault O, McLennan SM, Boynton W, El Maarry MR, Dohm JM. Chemically striking regions on Mars and Stealth revisited. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Edwards CS, Bandfield JL, Christensen PR, Fergason RL. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003363] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Lefort A, Russell PS, Thomas N, McEwen AS, Dundas CM, Kirk RL. Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003264] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Massé M, Le Mouélic S, Bourgeois O, Combe JP, Le Deit L, Sotin C, Bibring JP, Gondet B, Langevin Y. Mineralogical composition, structure, morphology, and geological history of Aram Chaos crater fill on Mars derived from OMEGA Mars Express data. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003131] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Fergason RL, Christensen PR. Formation and erosion of layered materials: Geologic and dust cycle history of eastern Arabia Terra, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002973] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Lichtenberg KA, Arvidson RE, Poulet F, Morris RV, Knudson A, Bell JF, Bellucci G, Bibring JP, Farrand WH, Johnson JR, Ming DW, Pinet PC, Rogers AD, Squyres SW. Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
McDowell ML, Hamilton VE. Geologic characteristics of relatively high thermal inertia intracrater deposits in southwestern Margaritifer Terra, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007je002925] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002873] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Wilson SA, Howard AD, Moore JM, Grant JA. Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002830] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharon A. Wilson
- Center for Earth and Planetary Studies, National Air and Space Museum; Smithsonian Institution; Washington D. C. USA
| | - Alan D. Howard
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia USA
| | - Jeffrey M. Moore
- Space Sciences Division; NASA Ames Research Center; Moffett Field California USA
| | - John A. Grant
- Center for Earth and Planetary Studies, National Air and Space Museum; Smithsonian Institution; Washington D. C. USA
| |
Collapse
|
29
|
Arvidson RE, Poulet F, Morris RV, Bibring JP, Bell JF, Squyres SW, Christensen PR, Bellucci G, Gondet B, Ehlmann BL, Farrand WH, Fergason RL, Golombek M, Griffes JL, Grotzinger J, Guinness EA, Herkenhoff KE, Johnson JR, Klingelhöfer G, Langevin Y, Ming D, Seelos K, Sullivan RJ, Ward JG, Wiseman SM, Wolff M. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002728] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - F. Poulet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | | | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - G. Bellucci
- Istituto di Fisica dello Spazio Interplanetario; Istituto Nazionale di Astrofisica; Rome Italy
| | - B. Gondet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - B. L. Ehlmann
- School of Geography and Environment; University of Oxford; Oxford UK
| | | | - R. L. Fergason
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - M. Golombek
- Jet Propulsion Laboratory; Pasadena California USA
| | - J. L. Griffes
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. Grotzinger
- Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - E. A. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | | | - G. Klingelhöfer
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - D. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - K. Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - R. J. Sullivan
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - J. G. Ward
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - S. M. Wiseman
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - M. Wolff
- Space Science Institute; Boulder Colorado USA
| |
Collapse
|