1
|
Emran A, Marzen LJ, King Jr. DT, Chevrier VF. Thermophysical and Compositional Analyses of Dunes at Hargraves Crater, Mars. THE PLANETARY SCIENCE JOURNAL 2021; 2:218. [DOI: 10.3847/psj/ac25ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Zastrow AM, Glotch TD. Distinct Carbonate Lithologies in Jezero Crater, Mars. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL092365. [PMID: 34219844 PMCID: PMC8243932 DOI: 10.1029/2020gl092365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Jezero crater is the landing site for the Mars 2020 Perseverance rover. The Noachian-aged crater has undergone several periods of fluvial and lacustrine activity and phyllosilicate- and carbonate-bearing rocks were formed and emplaced as a result. It also contains a portion of the regional Nili Fossae olivine-carbonate unit. In this work, we performed spectral mixture analysis of visible/near-infrared hyperspectral imagery over Jezero. We modeled carbonate abundances up to ∼35% and identified three distinct units containing different carbonate phases. Our work also shows that the olivine in Jezero is predominantly restricted to aeolian deposits overlying the carbonate rocks. The diversity of carbonate phases in Jezero points to multiple periods of carbonate formation under varying conditions.
Collapse
|
3
|
Hamilton VE, Goodrich CA, Treiman AH, Connolly HC, Zolensky ME, Shaddad MH. Meteoritic Evidence for a Ceres-sized Water-rich Carbonaceous Chondrite Parent Asteroid. NATURE ASTRONOMY 2020; 2020:350-355. [PMID: 33681472 PMCID: PMC7932045 DOI: 10.1038/s41550-020-01274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Carbonaceous chondrite meteorites record the earliest stages of Solar System geo-logical activities and provide insight into their parent bodies' histories. Some carbonaceous chondrites are volumetrically dominated by hydrated minerals, providing evidence for low temperature and pressure aqueous alteration1. Others are dominated by anhydrous minerals and textures that indicate high temperature metamorphism in the absence of aqueous fluids1. Evidence of hydrous metamorphism at intermediate pressures and temperatures in carbonaceous chondrite parent bodies has been virtually absent. Here we show that an ungrouped, aqueously altered carbonaceous chondrite fragment (numbered 202) from the Almahata Sitta (AhS) meteorite contains an assemblage of minerals, including amphibole, that reflect fluid-assisted metamorphism at intermediate temperatures and pressures on the parent asteroid. Amphiboles are rare in carbonaceous chondrites, having only been identified previously as a trace component in Allende (CV3oxA) chondrules2. Formation of these minerals requires prolonged metamorphism in a large (~640-1800 km diameter), unknown asteroid. Because Allende and AhS 202 represent different asteroidal parent bodies, intermediate conditions may have been more widespread in the early Solar System than recognized from known carbonaceous chondrite meteorites, which are likely a biased sampling.
Collapse
Affiliation(s)
- V E Hamilton
- Department of Space Studies, Southwest Research Institute, 1050 Walnut St., #300, Boulder, CO 80302 USA
| | - C A Goodrich
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058 USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058 USA
| | - H C Connolly
- Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ 08028 USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
- Department of Earth and Planetary Science, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024
| | - M E Zolensky
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, Texas 77058, USA
| | - M H Shaddad
- Physics Department, University of Khartoum, Khartoum 11115, Sudan
| |
Collapse
|
4
|
Kaplan HH, Lauretta DS, Simon AA, Hamilton VE, DellaGiustina DN, Golish DR, Reuter DC, Bennett CA, Burke KN, Campins H, Connolly HC, Dworkin JP, Emery JP, Glavin DP, Glotch TD, Hanna R, Ishimaru K, Jawin ER, McCoy TJ, Porter N, Sandford SA, Ferrone S, Clark BE, Li JY, Zou XD, Daly MG, Barnouin OS, Seabrook JA, Enos HL. Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history. Science 2020; 370:science.abc3557. [PMID: 33033155 DOI: 10.1126/science.abc3557] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/24/2020] [Indexed: 11/02/2022]
Abstract
The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu's parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.
Collapse
Affiliation(s)
- H H Kaplan
- NASA Goddard Space Flight Center, Greenbelt, MD, USA. .,Southwest Research Institute, Boulder, CO, USA
| | - D S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - A A Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - D N DellaGiustina
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D R Golish
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - D C Reuter
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - C A Bennett
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - K N Burke
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - H Campins
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - H C Connolly
- Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA.,Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J P Dworkin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J P Emery
- Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - D P Glavin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - T D Glotch
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - R Hanna
- Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - K Ishimaru
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - E R Jawin
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - T J McCoy
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - N Porter
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - S A Sandford
- NASA Ames Research Center, Mountain View, CA, USA
| | - S Ferrone
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - B E Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | - J-Y Li
- Planetary Science Institute, Tucson, AZ, USA
| | - X-D Zou
- Planetary Science Institute, Tucson, AZ, USA
| | - M G Daly
- Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada
| | - O S Barnouin
- John Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - J A Seabrook
- Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada
| | - H L Enos
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Hamilton VE, Simon AA, Christensen PR, Reuter DC, Clark BE, Barucci MA, Bowles NE, Boynton WV, Brucato JR, Cloutis EA, Connolly HC, Hanna KLD, Emery JP, Enos HL, Fornasier S, Haberle CW, Hanna RD, Howell ES, Kaplan HH, Keller LP, Lantz C, Li JY, Lim LF, McCoy TJ, Merlin F, Nolan MC, Praet A, Rozitis B, Sandford SA, Schrader DL, Thomas CA, Zou XD, Lauretta DS. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. NATURE ASTRONOMY 2019; 3:332-340. [PMID: 31360777 PMCID: PMC6662227 DOI: 10.1038/s41550-019-0722-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 05/18/2023]
Abstract
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 μm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 μm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.
Collapse
Affiliation(s)
- V. E. Hamilton
- Department of Space Studies, Southwest Research Institute, Boulder, CO, USA
| | - A. A. Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - P. R. Christensen
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - D. C. Reuter
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - B. E. Clark
- Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA
| | | | - N. E. Bowles
- Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
| | - W. V. Boynton
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - J. R. Brucato
- INAF-Astrophysical Observatory of Arcetri, Firenze, Italy
| | - E. A. Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, Canada
| | - H. C. Connolly
- Department of Geology, Rowan University, Glassboro, NJ, USA
| | - K. L. Donaldson Hanna
- Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
| | - J. P. Emery
- Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN, USA
| | - H. L. Enos
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - C. W. Haberle
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - R. D. Hanna
- Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - E. S. Howell
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - H. H. Kaplan
- Department of Space Studies, Southwest Research Institute, Boulder, CO, USA
| | - L. P. Keller
- ARES, NASA Johnson Space Center, Houston, TX USA
| | - C. Lantz
- Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France
| | - J.-Y. Li
- Planetary Science Institute, Tucson, AZ, USA
| | - L. F. Lim
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - T. J. McCoy
- Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA
| | - F. Merlin
- LESIA, Observatoire de Paris, France
| | - M. C. Nolan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - A. Praet
- LESIA, Observatoire de Paris, France
| | - B. Rozitis
- Planetary and Space Sciences, The Open University, Milton Keynes, UK
| | | | - D. L. Schrader
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - C. A. Thomas
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA
| | - X.-D. Zou
- Planetary Science Institute, Tucson, AZ, USA
| | - D. S. Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
6
|
Ito G, Mishchenko MI, Glotch TD. Radiative-transfer modeling of spectra of planetary regoliths using cluster-based dense packing modifications. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1203-1220. [PMID: 30319931 PMCID: PMC6178094 DOI: 10.1029/2018je005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
In remote sensing of planetary bodies, the development of analysis techniques that lead to quantitative interpretations of datasets has relatively been deficient compared to the wealth of acquired data, especially in the case of regoliths with particle sizes on the order of the probing wavelength. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths, but with difficulty; here we continue to improve theoretical modeling of spectra of densely packed particulate media. We use the superposition T-matrix method to compute the scattering properties of an elementary volume entering the radiative transfer equation by modeling it as a cluster of particles and thereby capture the near-field effects important for dense packing. Then, these scattering parameters are modified with the static structure factor correction to suppress the irrelevant far-field diffraction peak rendered by the T-matrix procedure. Using the corrected single- scattering parameters, reflectance (and emissivity) is computed via the invariant-imbedding solution to the scalar radiative transfer equation. We modeled the emissivity spectrum of the 3.3 μm particle size fraction of enstatite, representing a common regolith component, in the mid-infrared (~5 - 50 μm). The use of the static structure factor correction coupled with the superposition T-matrix method produced better agreement with the corresponding laboratory spectrum than the sole use of the T-matrix method, particularly for volume scattering wavelengths (transparency features). This work demonstrates the importance of proper treatment of the packing effects when modeling semi-infinite densely packed particulate media using finite, cluster-based light scattering models.
Collapse
Affiliation(s)
- Gen Ito
- Stony Brook University, Department of Geosciences, Stony Brook, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | | | - Timothy D. Glotch
- Stony Brook University, Department of Geosciences, Stony Brook, NY, USA
| |
Collapse
|
7
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
8
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin P, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell‐Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 PMCID: PMC5815393 DOI: 10.1002/2017je005267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
9
|
Amador ES, Bandfield JL, Brazelton WJ, Kelley D. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars. ASTROBIOLOGY 2017; 17:1138-1160. [PMID: 28910143 DOI: 10.1089/ast.2016.1606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Low-temperature serpentinization is a critical process with respect to Earth's habitability and the Solar System. Exothermic serpentinization reactions commonly produce hydrogen as a direct by-product and typically produce short-chained organic compounds indirectly. Here, we present the spectral and mineralogical variability in rocks from the serpentine-driven Lost City Hydrothermal Field on Earth and the olivine-rich region of Nili Fossae on Mars. Near- and thermal-infrared spectral measurements were made from a suite of Lost City rocks at wavelengths similar to those for instruments collecting measurements of the martian surface. Results from Lost City show a spectrally distinguishable suite of Mg-rich serpentine, Ca carbonates, talc, and amphibole minerals. Aggregated detections of low-grade metamorphic minerals in rocks from Nili Fossae were mapped and yielded a previously undetected serpentine exposure in the region. Direct comparison of the two spectral suites indicates similar mineralogy at both Lost City and in the Noachian (4-3.7 Ga) bedrock of Nili Fossae, Mars. Based on mapping of these spectral phases, the implied mineralogical suite appears to be extensive across the region. These results suggest that serpentinization was once an active process, indicating that water and energy sources were available, as well as a means for prebiotic chemistry during a time period when life was first emerging on Earth. Although the mineralogical assemblages identified on Mars are unlikely to be directly analogous to rocks that underlie the Lost City Hydrothermal Field, related geochemical processes (and associated sources of biologically accessible energy) were once present in the subsurface, making Nili Fossae a compelling candidate for a once-habitable environment on Mars. Key Words: Mars-Habitability-Serpentinization-Analogue. Astrobiology 17, 1138-1160.
Collapse
Affiliation(s)
- Elena S Amador
- 1 Department of Earth and Space Sciences, University of Washington , Seattle, Washington
| | | | | | - Deborah Kelley
- 4 School of Oceanography, University of Washington , Seattle, Washington
| |
Collapse
|
10
|
Hanna RD, Hamilton VE, Putzig NE. The complex relationship between olivine abundance and thermal inertia on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2016; 121:1293-1320. [PMID: 31007993 PMCID: PMC6469700 DOI: 10.1002/2015je004924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.
Collapse
Affiliation(s)
- Romy D Hanna
- Jackson School of Geological Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Victoria E Hamilton
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
| | - Nathaniel E Putzig
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
- Now at the Planetary Science Institute, Lakewood, Colorado, USA
| |
Collapse
|
11
|
Meslin PY, Gasnault O, Forni O, Schröder S, Cousin A, Berger G, Clegg SM, Lasue J, Maurice S, Sautter V, Le Mouélic S, Wiens RC, Fabre C, Goetz W, Bish D, Mangold N, Ehlmann B, Lanza N, Harri AM, Anderson R, Rampe E, McConnochie TH, Pinet P, Blaney D, Léveillé R, Archer D, Barraclough B, Bender S, Blake D, Blank JG, Bridges N, Clark BC, DeFlores L, Delapp D, Dromart G, Dyar MD, Fisk M, Gondet B, Grotzinger J, Herkenhoff K, Johnson J, Lacour JL, Langevin Y, Leshin L, Lewin E, Madsen MB, Melikechi N, Mezzacappa A, Mischna MA, Moores JE, Newsom H, Ollila A, Perez R, Renno N, Sirven JB, Tokar R, de la Torre M, d'Uston L, Vaniman D, Yingst A. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars. Science 2013; 341:1238670. [PMID: 24072924 DOI: 10.1126/science.1238670] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.
Collapse
Affiliation(s)
- P-Y Meslin
- Université de Toulouse, UPS-OMP, IRAP, 31028 Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Edwards CS, Christensen PR. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces. APPLIED OPTICS 2013; 52:2200-2217. [PMID: 23670748 DOI: 10.1364/ao.52.002200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.
Collapse
Affiliation(s)
- C S Edwards
- California Institute of Technology, Division of Geological and Planetary Sciences,Pasadena, California 91125, USA.
| | | |
Collapse
|
13
|
Ehlmann BL, Bish DL, Ruff SW, Mustard JF. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004156] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
McGlynn IO, Fedo CM, McSween HY. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
McSween HY, McGlynn IO, Rogers AD. Determining the modal mineralogy of Martian soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003582] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Calvin WM, Shoffner JD, Johnson JR, Knoll AH, Pocock JM, Squyres SW, Weitz CM, Arvidson RE, Bell JF, Christensen PR, de Souza PA, Farrand WH, Glotch TD, Herkenhoff KE, Jolliff BL, Knudson AT, McLennan SM, Rogers AD, Thompson SD. Hematite spherules at Meridiani: Results from MI, Mini-TES, and Pancam. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|