1
|
Zhang S, Li D, Ge S, Wu C, Xu X, Liu X, Li R, Zhang F, Wang G. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic-Catalyzed Oxidation of SO 2 with Implications for Sulfate Formation in Beijing Haze. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2912-2921. [PMID: 38252977 DOI: 10.1021/acs.est.3c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Currently, atmospheric sulfate aerosols cannot be predicted reliably by numerical models because the pathways and kinetics of sulfate formation are unclear. Here, we systematically investigated the synergetic catalyzing role of transition-metal ions (TMIs, Fe3+/Mn2+) in the oxidation of SO2 by O2 on aerosols using chamber experiments. Our results showed that the synergetic effect of TMIs is critically dependent on aerosol pH due to the solubility of Fe(III) species sensitive to the aqueous phase acidity, which is effective only under pH < 3 conditions. The sulfate formation rate on aerosols is 2 orders of magnitude larger than that in bulk solution and increases significantly on smaller aerosols, suggesting that such a synergetic-catalyzed oxidation occurs on the aerosol surface. The kinetic reaction rate can be described as R = k*[H+]-2.95[Mn(II)][Fe(III)][S(IV)] (pH ≤ 3.0). We found that TMI-synergetic-catalyzed oxidation is the dominant pathway of sulfate formation in Beijing when haze particles are very acidic, while heterogeneous oxidation of SO2 by NO2 is the most important pathway when haze particles are weakly acidic. Our work for the first time clarified the role and kinetics of TMI-synergetic-catalyzed oxidation of SO2 by O2 in haze periods, which can be parameterized into models for future studies of sulfate formation.
Collapse
Affiliation(s)
- Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Dapeng Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Energy Construction Group Co., Ltd, Shanghai 200434, China
| | | | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodi Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Fan Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| |
Collapse
|
2
|
Lee JY, Peterson PK, Vear LR, Cook RD, Sullivan AP, Smith E, Hawkins LN, Olson NE, Hems R, Snyder PK, Pratt KA. Wildfire Smoke Influence on Cloud Water Chemical Composition at Whiteface Mountain, New York. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD037177. [PMID: 36590830 PMCID: PMC9787799 DOI: 10.1029/2022jd037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Wildfires significantly impact air quality and climate, including through the production of aerosols that can nucleate cloud droplets and participate in aqueous-phase reactions. Cloud water was collected during the summer months (June-September) of 2010-2017 at Whiteface Mountain, New York and examined for biomass burning influence. Cloud water samples were classified by their smoke influence based on backward air mass trajectories and satellite-detected smoke. A total of 1,338 cloud water samples collected over 485 days were classified by their probability of smoke influence, with 49% of these days categorized as having moderate to high probability of smoke influence. Carbon monoxide and ozone levels were enhanced during smoke influenced days at the summit of Whiteface Mountain. Smoke-influenced cloud water samples were characterized by enhanced concentrations of potassium, sulfate, ammonium, and total organic carbon, compared to samples lacking identified influence. Five cloud water samples were examined further for the presence of dissolved organic compounds, insoluble particles, and light-absorbing components. The five selected cloud water samples contained the biomass burning tracer levoglucosan at 0.02-0.09 μM. Samples influenced by air masses that remained aloft, above the boundary layer during transport, had lower insoluble particle concentrations, larger insoluble particle diameters, and larger oxalate:sulfate ratios, suggesting cloud processing had occurred. These findings highlight the influence that local and long-range transported smoke have on cloud water composition.
Collapse
Affiliation(s)
- Jamy Y. Lee
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Peter K. Peterson
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Now at Department of ChemistryWhittier CollegeWhittierCAUSA
| | - Logan R. Vear
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Ryan D. Cook
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Amy P. Sullivan
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Ellie Smith
- Department of ChemistryHarvey Mudd CollegeClaremontCAUSA
| | | | | | - Rachel Hems
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | | | - Kerri A. Pratt
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
3
|
Li L, Wang Q, Zhang Y, Liu S, Zhang T, Wang S, Tian J, Chen Y, Hang Ho SS, Han Y, Cao J. Impact of reduced anthropogenic emissions on chemical characteristics of urban aerosol by individual particle analysis. CHEMOSPHERE 2022; 303:135013. [PMID: 35618050 PMCID: PMC9701139 DOI: 10.1016/j.chemosphere.2022.135013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
A single particle aerosol mass spectrometer was deployed in a heavily polluted area of China during a coronavirus lockdown to explore the impact of reduced anthropogenic emissions on the chemical composition, size distributions, mixing state, and secondary formation of urban aerosols. Ten particle groups were identified using an adaptive resonance network algorithm. Increased atmospheric oxidation during the lockdown period (LP) resulted in a 42.2%-54% increase in the major NaK-SN particle fraction relative to the normal period (NP). In contrast, EC-aged particles decreased from 31.5% (NP) to 23.7% (LP), possibly due to lower emissions from motor vehicles and coal combustion. The peak particle size diameter increased from 440 nm during the NP to 500 nm during LP due to secondary particle formation. High proportions of mixed 62NO3- indicate extensive particle aging. Correlations between secondary organic (43C2H3O+, oxalate) and secondary inorganic species (62NO3-, 97HSO4- and 18NH4+) versus oxidants (Ox = O3 + NO2) and relative humidity (RH) indicate that increased atmospheric oxidation promoted the generation of secondary species, while the effects of RH were more complex. Differences between the NP and LP show that reductions in primary emissions had a remarkable impact on the aerosol particles. This study provides new insights into the effects of pollution emissions on atmospheric reactions and the specific aerosol types in urban regions.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China.
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Suixin Liu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Ting Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Shuang Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yang Chen
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, NV, 89512, United States
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
4
|
Zhang F, Peng J, Chen L, Collins D, Li Y, Jiang S, Liu J, Zhang R. The effect of black carbon aging from NO 2 oxidation of SO 2 on its morphology, optical and hygroscopic properties. ENVIRONMENTAL RESEARCH 2022; 212:113238. [PMID: 35395235 DOI: 10.1016/j.envres.2022.113238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric aging of black carbon (BC) leads to changes in its physiochemical properties, exerting complex effects on environment and climate. In this study, we have conducted laboratory chamber experiments to investigate the effects of BC aging on its morphology, hygroscopicity and optical properties by exposing monodisperse fresh BC particles to ambient ubiquitous species of nitrogen dioxide (NO2), sulfur dioxide (SO2) and ammonia (NH3) in absence of UV light. We show a rapid aging from highly fractal to compacted aggregates for the monodisperse BC particles with an initial diameter of 150 nm, with decline in the dynamic shape factor (χ) from about 1.8 to nearly 1. The effective density of the monodisperse BC particles increases from ∼0.54 to 1.50 g cm-3 accordingly. The aging process leads to that the light scattering, absorption, and single scattering albedo of the monodisperse BC particles are strongly enhanced by factors of 7.0, 1.8 and 3.0 respectively. By comparing with the BC aging from other mechanisms, we reveal a critical role of the composition of the coating materials on BC in determining its light absorption enhancement. Moreover, due to strong water uptake capacity of the aged BC particles, the light absorption enhancement (Eabs) could be 40-60% higher at humid atmosphere compared with dry conditions. This BC aging process from NO2 oxidation of SO2 may occur commonly in polluted regions and thus considerably alter its effects on regional air quality and climate.
Collapse
Affiliation(s)
- Fang Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Jianfei Peng
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lu Chen
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Don Collins
- Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yixin Li
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA
| | - Sihui Jiang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Jieyao Liu
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Renyi Zhang
- Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Yuan DF, Trabelsi T, Zhang YR, Francisco JS, Wang LS. Probing the Electronic Structure and Bond Dissociation of SO 3 and SO 3- Using High-Resolution Cryogenic Photoelectron Imaging. J Am Chem Soc 2022; 144:13740-13747. [PMID: 35857818 DOI: 10.1021/jacs.2c04698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The SO3 molecule and its radical anion SO3- are important chemical species atmospherically. However, their thermodynamic properties and electronic structures are not well known experimentally. Using cryogenically cooled anions, we have obtained high-resolution photoelectron images of SO3- and determined accurately the electron affinity (EA) of SO3 and the bond dissociation energy of SO3- → SO2 + O- for the first time. Because of the large geometry changes from the C3v SO3- to the D3h SO3, there is a negligible Franck-Condon factor (FCF) for the 0-0 detachment transition, that defines the EA of SO3. By fitting the high-resolution photoelectron spectra with computed FCFs using structures from high-level ab initio calculations, we have determined the EA of SO3 to be 2.126(6) eV. By monitoring the appearance of the O- signal in the photoelectron images at different photon energies, we are able to measure directly the bond dissociation energy of SO3-(X2A1) → SO2(X1A1) + O-(2P) to be 4.259 ± 0.006 eV, which also allow us to derive the dissociation energy for the spin-forbidden SO3(X1A1') → SO2(X1A1) + O(3P) to be 3.594(6) eV. The excited states of SO3- are calculated using high-level ab initio calculations, which are valuable in aiding the interpretation of autodetachment processes observed at various photon energies. The current study provides valuable information about the fundamental molecular properties of SO3, as well as the radical anion SO3-, which is known in redox reactions involving SO32- and may also play a role in the chemistry of SO2 in the atmosphere.
Collapse
Affiliation(s)
- Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tarek Trabelsi
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Kelesidis GA, Neubauer D, Fan LS, Lohmann U, Pratsinis SE. Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8610-8618. [PMID: 35652563 PMCID: PMC9228049 DOI: 10.1021/acs.est.2c00428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 05/19/2023]
Abstract
The climate models of the Intergovernmental Panel on Climate Change list black carbon (BC) as an important contributor to global warming based on its radiative forcing (RF) impact. Examining closely these models, it becomes apparent that they might underpredict significantly the direct RF for BC, largely due to their assumed spherical BC morphology. Specifically, the light absorption and direct RF of BC agglomerates are enhanced by light scattering between their constituent primary particles as determined by the Rayleigh-Debye-Gans theory interfaced with discrete dipole approximation and recent relations for the refractive index and lensing effect. The light absorption of BC is enhanced by about 20% by the multiple light scattering between BC primary particles regardless of the compactness of their agglomerates. The resulting light absorption agrees very well with the observed absorption aerosol optical depth of BC. ECHAM-HAM simulations accounting for the realistic BC morphology and its coatings reveal high direct RF = 3-5 W/m2 in East, South Asia, sub-Sahara, western Africa, and the Arabian peninsula. These results are in agreement with satellite and AERONET observations of RF and indicate a regional climate warming contribution by 0.75-1.25 °C, solely due to BC emissions.
Collapse
Affiliation(s)
- Georgios A. Kelesidis
- Particle
Technology Laboratory, Institute of Energy and Process Engineering,
Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| | - David Neubauer
- Institute
of Atmospheric and Climate Science, Department of Environmental Systems
Science, ETH Zürich, Universitaetstrasse 16, CH-8092 Zürich, Switzerland
| | - Liang-Shih Fan
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ulrike Lohmann
- Institute
of Atmospheric and Climate Science, Department of Environmental Systems
Science, ETH Zürich, Universitaetstrasse 16, CH-8092 Zürich, Switzerland
| | - Sotiris E. Pratsinis
- Particle
Technology Laboratory, Institute of Energy and Process Engineering,
Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| |
Collapse
|
7
|
Carmona-García J, Trabelsi T, Francés-Monerris A, Cuevas CA, Saiz-Lopez A, Roca-Sanjuán D, Francisco JS. Photochemistry of HOSO 2 and SO 3 and Implications for the Production of Sulfuric Acid. J Am Chem Soc 2021; 143:18794-18802. [PMID: 34726419 DOI: 10.1021/jacs.1c10153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfur trioxide (SO3) and the hydroxysulfonyl radical (HOSO2) are two key intermediates in the production of sulfuric acid (H2SO4) on Earth's atmosphere, one of the major components of acid rain. Here, the photochemical properties of these species are determined by means of high-level quantum chemical methodologies, and the potential impact of their light-induced reactivity is assessed within the context of the conventional acid rain generation mechanism. Results reveal that the photodissociation of HOSO2 occurs primarily in the stratosphere through the ejection of hydroxyl radicals (•OH) and sulfur dioxide (SO2). This may decrease the production rate of H2SO4 in atmospheric regions with low O2 concentration. In contrast, the photostability of SO3 under stratospheric conditions suggests that its removal efficiency, still poorly understood, is key to assess the H2SO4 formation in the upper atmosphere.
Collapse
Affiliation(s)
- Javier Carmona-García
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain.,Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Tarek Trabelsi
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Carmona-García J, Francés-Monerris A, Cuevas CA, Trabelsi T, Saiz-Lopez A, Francisco JS, Roca-Sanjuán D. Photochemistry and Non-adiabatic Photodynamics of the HOSO Radical. J Am Chem Soc 2021; 143:10836-10841. [PMID: 34270223 DOI: 10.1021/jacs.1c05149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxysulfinyl radical (HOSO) is important due to its involvement in climate geoengineering upon SO2 injection and generation of the highly hygroscopic H2SO4. Its photochemical behavior in the upper atmosphere is, however, uncertain. Here we present the ultraviolet-visible photochemistry and photodynamics of this species by simulating the atmospheric conditions with high-level quantum chemistry methods. Photocleavage to HO + SO arises as the major solar-induced channel, with a minor contribution of H + SO2 photoproducts. The efficient generation of SO is relevant due to its reactivity with O3 and the consequent depletion of ozone in the stratosphere.
Collapse
Affiliation(s)
- Javier Carmona-García
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain.,Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Antonio Francés-Monerris
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain.,Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Tarek Trabelsi
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain
| |
Collapse
|
9
|
Enekwizu OY, Hasani A, Khalizov AF. Vapor Condensation and Coating Evaporation Are Both Responsible for Soot Aggregate Restructuring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8622-8630. [PMID: 34128645 DOI: 10.1021/acs.est.1c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fresh soot is made of fractal aggregates, which often appear collapsed in atmospheric samples. A body of work has concluded that the collapse is caused by liquid shells when they form by vapor condensation around soot aggregates. However, some recent studies argue that soot remains fractal even when engulfed by the shells, collapsing only when the shells evaporate. To reconcile this disagreement, we investigated soot restructuring under conditions ranging from capillary condensation to full encapsulation, also including condensate evaporation. In these experiments, airborne fractal aggregates were exposed to vapors of wetting liquids, and particle size was measured before and after coating loss, allowing us to isolate the contribution from condensation toward restructuring. We show the existence of three distinct regions along the path connecting the initial fractal and final collapsed aggregates, where minor restructuring occurs already at zero vapor supersaturation due to capillary condensation. Increasing supersaturation increases the amount of condensate, producing a more notable aggregate shrinkage. At even higher supersaturations, the aggregates become encapsulated, and subsequent condensate evaporation leaves behind fully compacted aggregates. Hence, for wetting liquids, minor restructuring begins already during capillary condensation and significant restructuring occurs as the coating volume increases. However, at this time, we cannot precisely quantify the contribution of condensate evaporation to the full aggregate compaction.
Collapse
Affiliation(s)
- Ogochukwu Y Enekwizu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Ali Hasani
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alexei F Khalizov
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
He G, He H. Water Promotes the Oxidation of SO 2 by O 2 over Carbonaceous Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7070-7077. [PMID: 32338880 DOI: 10.1021/acs.est.0c00021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Severe haze episodes typically occur with concurrent high relative humidity. Here, the vital role of water in promoting the oxidation of SO2 by O2 on carbonaceous soot surfaces was identified at the atomic level by first-principles calculations. Water molecules can dissociate into surface hydroxyl groups through a self-catalyzed process under ambient conditions. The surface hydroxyl groups, acting as facilitators, can significantly accelerate the conversion of SO2 to SO3 (precursor of particulate sulfate) over soot aerosols by reducing the reaction barriers. Specifically, the hydroxyl groups activate the reactants and stabilize the transition states and products through hydrogen-bonding interactions, making the reactions both thermodynamically and kinetically more favorable at room temperature. The findings indicate that atmospheric humidity plays an important role in enhancing the atmospheric oxidation capacity, thus exacerbating SO2 oxidation and severe haze development. Also, this study unravels a mechanism of surface hydroxyl-assisted O2 and H2O dissociation over metal-free carbocatalysts under normal conditions.
Collapse
Affiliation(s)
- Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Mahrt F, Alpert PA, Dou J, Grönquist P, Arroyo PC, Ammann M, Lohmann U, Kanji ZA. Aging induced changes in ice nucleation activity of combustion aerosol as determined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:895-907. [PMID: 32188960 DOI: 10.1039/c9em00525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fresh soot particles are generally hydrophobic, however, particle hydrophilicity can be increased through atmospheric aging processes. At present little is known on how particle chemical composition and hydrophilicity change upon atmospheric aging and associated uncertainties governing the ice cloud formation potential of soot. Here we sampled two propane flame soots referred to as brown and black soot, characterized as organic carbon rich and poor, respectively. We investigated how the ice nucleation activity of these particles changed through aging in water and aqueous acidic solutions, using a continuous flow diffusion chamber operated at cirrus cloud temperatures (T ≤ 233 K). Single aggregates of both unaged and aged soot were chemically characterized by scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (STXM/NEXAFS) measurements. Particle wettability was determined through water sorption measurements. Unaged black and brown soot particles exhibited significantly different ice nucleation activities. Our experiments revealed significantly enhanced ice nucleation activity of the aged soot particles compared to the fresh samples, lowering the required relative humidities at which ice formation can take place at T = 218 K by up to 15% with respect to water (ΔRHi ≈ 25%). We observed an enhanced water uptake capacity for the aged compared to the unaged samples, which was more pronounced for the black soot. From these measurements we concluded that there is a change in ice nucleation mechanism when aging brown soot. Comparison of the NEXAFS spectra of unaged soot samples revealed a unique spectral feature around 287.5 eV in the case of black soot that was absent for the brown soot, indicative of carbon with hydroxyl functionalities. Comparison of the NEXAFS spectra of unaged and aged soot particles indicates changes in organic functional groups, and the aged spectra were found to be largely similar across soot types, with the exception of the water aged brown soot. Overall, we conclude that atmospheric aging is important to representatively assess the ice cloud formation activity of soot particles.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department of Environmental System Science, Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
High concentrations of ultrafine particles (UFPs), approaching 1 million/cm3, are frequently produced from new particle formation under urban environments, but the fundamental mechanisms regulating nucleation and growth for UFPs are poorly understood. From simultaneous ambient and environmental chamber measurements, we demonstrate remarkable formation of UFPs from urban traffic emissions. By replicating ambient conditions using an environmental chamber method, we elucidate the roles of existing particles, photochemistry, and synergy of multipollutant photooxidation in nucleation and growth of UFPs. Our results reveal that synergetic oxidation of vehicular exhaust leads to efficient formation of UFPs under urban conditions. Recognition of this large urban source for UFPs is essential to accurately assessing their impacts and to effectively developing mitigation policies. High levels of ultrafine particles (UFPs; diameter of less than 50 nm) are frequently produced from new particle formation under urban conditions, with profound implications on human health, weather, and climate. However, the fundamental mechanisms of new particle formation remain elusive, and few experimental studies have realistically replicated the relevant atmospheric conditions. Previous experimental studies simulated oxidation of one compound or a mixture of a few compounds, and extrapolation of the laboratory results to chemically complex air was uncertain. Here, we show striking formation of UFPs in urban air from combining ambient and chamber measurements. By capturing the ambient conditions (i.e., temperature, relative humidity, sunlight, and the types and abundances of chemical species), we elucidate the roles of existing particles, photochemistry, and synergy of multipollutants in new particle formation. Aerosol nucleation in urban air is limited by existing particles but negligibly by nitrogen oxides. Photooxidation of vehicular exhaust yields abundant precursors, and organics, rather than sulfuric acid or base species, dominate formation of UFPs under urban conditions. Recognition of this source of UFPs is essential to assessing their impacts and developing mitigation policies. Our results imply that reduction of primary particles or removal of existing particles without simultaneously limiting organics from automobile emissions is ineffective and can even exacerbate this problem.
Collapse
|
13
|
Duporté G, Flaud PM, Kammer J, Geneste E, Augagneur S, Pangui E, Lamkaddam H, Gratien A, Doussin JF, Budzinski H, Villenave E, Perraudin E. Experimental Study of the Formation of Organosulfates from α-Pinene Oxidation. 2. Time Evolution and Effect of Particle Acidity. J Phys Chem A 2019; 124:409-421. [DOI: 10.1021/acs.jpca.9b07156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Duporté
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - P.-M. Flaud
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - J. Kammer
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Geneste
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - S. Augagneur
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Pangui
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - H. Lamkaddam
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - A. Gratien
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - J.-F. Doussin
- Université Paris-Est-Créteil (UPEC) and Université Paris Diderot (UPD), LISA, UMR 7583, F-94010 Créteil, France
| | - H. Budzinski
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Villenave
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| | - E. Perraudin
- Université de Bordeaux, EPOC, UMR 5805, F-33405 Talence Cedex, France
- CNRS, EPOC, UMR 5805, F-33405 Talence Cedex, France
| |
Collapse
|
14
|
Friebel F, Mensah AA. Ozone Concentration versus Temperature: Atmospheric Aging of Soot Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14437-14450. [PMID: 31545616 DOI: 10.1021/acs.langmuir.9b02372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The oxidation of soot particles with ozone (O3) increases the particles' ability to act as cloud condensation nuclei (CCN). To assess if this process is a relevant source for CCN in the atmosphere, the reaction rate at atmospheric conditions must be known. Here we investigate the increase in CCN activity of soot particles rich in organic carbon at O3 concentrations ranging from 0-200 ppb and between 5 and 35 °C. We operated an ∼3 m3 aerosol chamber as a continuous-flow stirred tank reactor which allows for aging times of up to 12 h and beyond and of particle size selection prior to the aging step. We applied the activation time (tact) concept to retrieve kinetic data. It was found that 100 nm soot particles can be CCN-active down to supersaturations of 0.3% after 12 h of exposure to 200 ppb O3 at 35 °C. The reaction rate was found to be not directly proportional to the O3 concentration. Instead, a Langmuir-type reaction kinetic was found to be the best fit to parametrize the reaction rates. The initial reaction step is therefore the adsorption of O3 molecules, which could be detected by an increase in the particle diameter of up to 3.7 nm within several minutes after exposure. The increase in particle diameter agrees well with the calculated change in the O3 surface coverage, which was obtained from CCN activation data under the assumption of a Langmuir-sorption isotherm. Further, we found that a temperature increase from 5 to 35 °C increases the reaction rate by a factor of 5 which corresponds to an activation energy of 38.5 kJ·mol-1. Extrapolation to atmospheric conditions allows for the conclusion that the temperature is as important as the O3 concentration for the CCN activation of soot particles within the atmospheric range.
Collapse
Affiliation(s)
- Franz Friebel
- Institute for Atmospheric and Climate Science , ETH Zurich , Zurich 8092 , Switzerland
| | - Amewu A Mensah
- Institute for Atmospheric and Climate Science , ETH Zurich , Zurich 8092 , Switzerland
| |
Collapse
|
15
|
Chen C, Wei J, Li J, Duan Z, Huang W. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1892-1901. [PMID: 31227348 DOI: 10.1016/j.envpol.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10-100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Collapse
Affiliation(s)
- Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jingyue Wei
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, United States
| | - Jing Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Zhihui Duan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, United States.
| |
Collapse
|
16
|
Li L, Wang Q, Zhang X, She Y, Zhou J, Chen Y, Wang P, Liu S, Zhang T, Dai W, Han Y, Cao J. Characteristics of single atmospheric particles in a heavily polluted urban area of China: size distributions and mixing states. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11730-11742. [PMID: 30815815 DOI: 10.1007/s11356-019-04579-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9-26 October 2015 in Xi'an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)-related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi'an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi'an. Graphical abstract.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Xu Zhang
- Xi'an Environmental Monitor Station, Xi'an, 710061, China
| | - Yuanyuan She
- Xi'an Thermal Power Research Institute Co., Ltd., Xi'an, 710032, China
| | - Jiamao Zhou
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ping Wang
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Suixin Liu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Ting Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Wenting Dai
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Yongming Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
17
|
Ma Y, Chen C, Wang J, Jiang Y, Zheng Z, Chen H, Zheng J. Evolution in physiochemical and cloud condensation nuclei activation properties of crop residue burning particles during photochemical aging. J Environ Sci (China) 2019; 77:43-53. [PMID: 30573105 DOI: 10.1016/j.jes.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 06/09/2023]
Abstract
As a main form of biomass burning in agricultural countries, crop residue burning is a significant source of atmospheric fine particles. In this study, the aging of particles emitted from the burning of four major crop residues in China was investigated in a smog chamber. The particle size distribution, chemical composition and cloud condensation nuclei (CCN) activity were simultaneously measured. The properties of crop residue burning particles varied substantially among different fuel types. During aging, the particle size and mass concentration increased substantially, suggesting condensational growth by formation of secondary aerosols. The particle composition was dominated by organics. Aging resulted in considerable enhancement of organics and inorganics, with enhancement ratios of 1.24-1.44 and 1.33-1.76 respectively, as well as a continuous increase in the oxidation level of organics. Elevated CCN activity was observed during aging, with the hygroscopicity parameter κ varying from 0.16 to 0.34 for fresh particles and 0.19 to 0.40 for aged particles. Based on the volume mixing rule, the hygroscopicity parameter of organic components (κorg) was derived. κorg exhibited an increasing tendency with aging, which was generally consistent with the tendency of the O:C ratio, indicating that the oxidation level was related to the hygroscopicity and CCN activity of organic aerosols from crop residue burning. Our results indicated that photochemical aging could significantly impact the CCN activation of crop burning aerosols, not only by the production of secondary aerosols, but also by enhancing the hygroscopicity of organic components, thereby contributing to the aerosol indirect climate forcing.
Collapse
Affiliation(s)
- Yan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China; Harvard-NUIST Joint Laboratory for Air Quality and Climate (JLAQC), Nanjing University of Information Science and Technology, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chao Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junfeng Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Youling Jiang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zewen Zheng
- NUIST Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hui Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China; Harvard-NUIST Joint Laboratory for Air Quality and Climate (JLAQC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
18
|
Marrero-Ortiz W, Hu M, Du Z, Ji Y, Wang Y, Guo S, Lin Y, Gomez-Hermandez M, Peng J, Li Y, Secrest J, Zamora ML, Wang Y, An T, Zhang R. Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:117-126. [PMID: 30499298 DOI: 10.1021/acs.est.8b03995] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brown Carbon (BrC) aerosols scatter and absorb solar radiation, directly affecting the Earth's radiative budget. However, considerable uncertainty exists concerning the chemical mechanism leading to BrC formation and their optical properties. In this work, BrC particles were prepared from mixtures of small α-dicarbonyls (glyoxal and methylglyoxal) and amines (methylamine, dimethylamine, and trimethylamine). The absorption and scattering of BrC particles were measured using a photoacoustic extinctometer (405 and 532 nm), and the chemical composition of the α-dicarbonyl-amine mixtures was analyzed using orbitrap-mass spectrometry and thermal desorption-ion drift-chemical ionization mass spectrometry. The single scattering albedo for methylglyoxal-amine mixtures is smaller than that of glyoxal-amine mixtures and increases with the methyl substitution of amines. The mass absorption cross-section for methylglyoxal-amine mixtures is two times higher at 405 nm wavelength than that at 532 nm wavelength. The derived refractive indexes at the 405 nm wavelength are 1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. Composition analysis in the α-dicarbonyl-amine mixtures reveals N-heterocycles as the dominant products, which are formed via multiple steps involving nucleophilic attack, steric hindrance, and dipole-dipole interaction between α-dicarbonyls and amines. BrC aerosols, if formed from the particle-phase reaction of methylglyoxal with methylamine, likely contribute to atmospheric warming.
Collapse
Affiliation(s)
- Wilmarie Marrero-Ortiz
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Zhuofei Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yuemeng Ji
- Center for Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering , Nankai University , Tianjin , 300071 , China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yun Lin
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Mario Gomez-Hermandez
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jianfei Peng
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Yixin Li
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Jeremiah Secrest
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Misti L Zamora
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
- Environmental Health & Engineering, Johns Hopkins School of Public Health , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yuan Wang
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Renyi Zhang
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
19
|
Chen C, Enekwizu OY, Fan X, Dobrzanski CD, Ivanova EV, Ma Y, Gor GY, Khalizov AF. Single Parameter for Predicting the Morphology of Atmospheric Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14169-14179. [PMID: 30462499 DOI: 10.1021/acs.est.8b04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Black carbon (BC) from fuel combustion is an effective light absorber that contributes significantly to direct climate forcing. The forcing is altered when BC combines with other substances, which modify its mixing state and morphology, making the evaluation of its atmospheric lifetime and climate impact a challenge. To elucidate the associated mechanisms, we exposed BC aerosol to supersaturated vapors of different chemicals to form thin coatings and measured the coating mass required to induce the restructuring of BC aggregates. We found that studied chemicals fall into two distinct groups based on a single dimensionless parameter, χ, which depends on the diameter of BC monomer spheres and the coating material properties, including vapor supersaturation, molar volume, and surface tension. We show that when χ is small (low-volatility chemicals), the highly supersaturated vapor condenses uniformly over aggregates, including convex monomers and concave junctions in between monomers, but when χ is large (intermediate-volatility chemicals), junctions become preferred. The aggregates undergo prompt restructuring when condensation in the junctions dominates over condensation on monomer spheres. For a given monomer diameter, the coating distribution is mostly controlled by vapor supersaturation. The χ factor can be incorporated straightforwardly into atmospheric models to improve simulations of BC aging.
Collapse
Affiliation(s)
- Chao Chen
- College of Resources and Environment , Chengdu University of Information Technology , Chengdu 610225 , China
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control , Nanjing University of Information Science & Technology , Nanjing 210044 , China
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Ogochukwu Y Enekwizu
- Department of Chemical and Materials Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Xiaolong Fan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control , Nanjing University of Information Science & Technology , Nanjing 210044 , China
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Christopher D Dobrzanski
- Department of Chemical and Materials Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Ella V Ivanova
- Saint-Petersburg State University , 7-9 Universitetskaya nab. , Saint-Petersburg , Russian Federation 199034
| | - Yan Ma
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control , Nanjing University of Information Science & Technology , Nanjing 210044 , China
| | - Gennady Y Gor
- Department of Chemical and Materials Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Alexei F Khalizov
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
- Department of Chemical and Materials Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
20
|
Kroll JA, Frandsen BN, Kjaergaard HG, Vaida V. Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO2 and Water. J Phys Chem A 2018; 122:4465-4469. [DOI: 10.1021/acs.jpca.8b03524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jay A. Kroll
- Department of Chemistry and Biochemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, UCB 216, Boulder, Colorado 80309, United States
| | - Benjamin N. Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Veronica Vaida
- Department of Chemistry and Biochemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, UCB 216, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Affiliation(s)
- Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| |
Collapse
|
22
|
Wang L, Huang D, Chan CK, Li YJ, Xu XG. Nanoscale spectroscopic and mechanical characterization of individual aerosol particles using peak force infrared microscopy. Chem Commun (Camb) 2018; 53:7397-7400. [PMID: 28620668 DOI: 10.1039/c7cc02301d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric aerosol particles of sizes less than 2.5 microns affect public health in cities. Understanding the fine structures of aerosol particles is important to decipher their source. Here, we use a novel spectroscopic and mechanical microscopy technique of 10 nm spatial resolution to reveal the nanoscale structures of individual aerosol particles.
Collapse
Affiliation(s)
- Le Wang
- Department of Chemistry, Lehigh University, 6 E Packer Ave., Bethlehem, PA 18015, USA.
| | | | | | | | | |
Collapse
|
23
|
Fan X, Dawson J, Chen M, Qiu C, Khalizov A. Thermal Stability of Particle-Phase Monoethanolamine Salts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2409-2417. [PMID: 29368508 DOI: 10.1021/acs.est.7b06367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of monoethanolamine (MEA, 2-hydroxyethanamine) for scrubbing of carbon dioxide from combustion flue gases may become the dominant technology for carbon capture in the near future. The widespread implementation of this technology will result in elevated emissions of MEA to the environment that may increase the loading and modify the properties of atmospheric aerosols. We have utilized experimental measurements together with aerosol microphysics calculations to derive thermodynamic properties of several MEA salts, potentially the dominant forms of MEA in atmospheric particles. The stability of the salts was found to depend strongly on the chemical nature of the acid counterpart. The saturation vapor pressures and vaporization enthalpies obtained in this study can be used to evaluate the role of MEA in the aerosol and haze formation, helping to assess impacts of the MEA-based carbon capture technology on air quality and climate change.
Collapse
Affiliation(s)
- Xiaolong Fan
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Joseph Dawson
- Department of Chemistry and Industrial Hygiene, University of North Alabama , Florence, Alabama 35632, United States
| | - Mindong Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing, 210044, China
| | - Chong Qiu
- Department of Chemistry and Chemical Engineering, University of New Haven , New Haven, Connecticut 06516, United States
| | - Alexei Khalizov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
- Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| |
Collapse
|
24
|
Dumka UC, Kaskaoutis DG, Sagar R, Chen J, Singh N, Tiwari S. First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:124-138. [PMID: 28662426 DOI: 10.1016/j.scitotenv.2017.06.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
The present work examines the influence of relative humidity (RH), physical and optical aerosol properties on the light-scattering enhancement factor [f(RH=85%)] over central Indian Himalayas during the Ganges Valley Aerosol Experiment (GVAX). The aerosol hygroscopic properties were measured by means of DoE/ARM (US Department of Energy, Atmospheric Radiation Measurement) mobile facility focusing on periods with the regular instrumental operation (November-December 2011). The measured optical properties include aerosol light-scattering (σsp) and absorption (σap) coefficients and the intensive parameters i.e., single scattering albedo (SSA), scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and light scattering enhancement factor (f(RH)=σsp(RH, λ)/σsp(RHdry, λ)). The measurements were separated for sub-micron (<1μm, D1μm) and particles with diameter<10μm (D10μm) in order to examine the influence of particle size on f(RH) and enhancement rate (γ). The particle size affects the aerosol hygroscopicity since mean f(RH=85%) of 1.27±0.12 and 1.32±0.14 are found for D10μm and D1μm, respectively. These f(RH) values are relatively low suggesting the enhanced presence of soot and carbonaceous particles from biomass burning activities, which is verified via backward air-mass trajectories. Similarly, the light-scattering enhancement rates are ~0.20 and 0.17 for the D1μm and D10μm particles, respectively. However, a general tendency for increasing f(RH) and γ is shown for higher σsp and σap values indicating the presence of rather aged smoke plumes, coated with industrial aerosols over northern India, with mean SSA, SAE and AAE values of 0.92, 1.00 and 1.15 respectively. On the other hand, a moderate-to-small dependence of f(RH) and γ on SAE, AAE, and SSA was observed for both particle sizes. Furthermore, f(RH) exhibits an increasing tendency with the number of cloud condensation nuclei (NCCN) indicating larger particle hygroscopicity but without significant dependence on the activation ratio.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India.
| | - D G Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece
| | - Ram Sagar
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India; NASI-Senior Scientist Platinum Jubilee Fellow, Indian Institute of Astrophysics, Bangalore 560 034, India
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200 433, China; Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210 023, China
| | - Narendra Singh
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology, Pune, New Delhi Branch, New Delhi 110 060, India
| |
Collapse
|
25
|
Eriksson AC, Wittbom C, Roldin P, Sporre M, Öström E, Nilsson P, Martinsson J, Rissler J, Nordin EZ, Svenningsson B, Pagels J, Swietlicki E. Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Sci Rep 2017; 7:12364. [PMID: 28959023 PMCID: PMC5620063 DOI: 10.1038/s41598-017-12433-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022] Open
Abstract
Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.
Collapse
Affiliation(s)
- A C Eriksson
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden. .,Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden.
| | - C Wittbom
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden
| | - P Roldin
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden.,Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - M Sporre
- Department of Geosciences, University of Oslo, Postboks 1022, Blindern, 0315, Oslo, Norway
| | - E Öström
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden.,Centre for Environmental and Climate Research, Lund University, Box 118, SE-22100, Lund, Sweden
| | - P Nilsson
- Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden
| | - J Martinsson
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden.,Centre for Environmental and Climate Research, Lund University, Box 118, SE-22100, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden
| | - E Z Nordin
- Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden
| | - B Svenningsson
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden
| | - J Pagels
- Ergonomics and Aerosol Technology, Lund University, Box 118, SE-22100, Lund, Sweden
| | - E Swietlicki
- Division of Nuclear Physics, Lund University, Box 118, SE-22100, Lund, Sweden
| |
Collapse
|
26
|
Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx117] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Air quality is concerned with pollutants in both the gas phase and solid or liquid phases. The latter are referred to as aerosols, which are multifaceted agents affecting air quality, weather and climate through many mechanisms. Unlike gas pollutants, aerosols interact strongly with meteorological variables with the strongest interactions taking place in the planetary boundary layer (PBL). The PBL hosting the bulk of aerosols in the lower atmosphere is affected by aerosol radiative effects. Both aerosol scattering and absorption reduce the amount of solar radiation reaching the ground and thus reduce the sensible heat fluxes that drive the diurnal evolution of the PBL. Moreover, aerosols can increase atmospheric stability by inducing a temperature inversion as a result of both scattering and absorption of solar radiation, which suppresses dispersion of pollutants and leads to further increases in aerosol concentration in the lower PBL. Such positive feedback is especially strong during severe pollution events. Knowledge of the PBL is thus crucial for understanding the interactions between air pollution and meteorology. A key question is how the diurnal evolution of the PBL interacts with aerosols, especially in vertical directions, and affects air quality. We review the major advances in aerosol measurements, PBL processes and their interactions with each other through complex feedback mechanisms, and highlight the priorities for future studies.
Collapse
Affiliation(s)
- Zhanqing Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing Normal University, Beijing 1000875, China
- Department of Atmospheric and Oceanic Sciences, University of Maryland, MD 21029, USA
| | - Jianping Guo
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Aijun Ding
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hong Liao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianjun Liu
- Department of Atmospheric and Oceanic Sciences, University of Maryland, MD 21029, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Huiwen Xue
- Department of Atmospheric and Oceanic Sciences, Peking University, Beijing 100871, China
| | - Hongsheng Zhang
- Department of Atmospheric and Oceanic Sciences, Peking University, Beijing 100871, China
| | - Bin Zhu
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
27
|
|
28
|
Chen C, Huang W. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2077-2086. [PMID: 28090765 DOI: 10.1021/acs.est.6b04575] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Soot produced during incomplete combustion consists mainly of carbonaceous nanoparticles (NPs) with severe adverse environmental and health effects, and its environmental fate and transport are largely controlled by aggregation. In this study, we examined the aggregation behavior for diesel soot NPs under aqueous condition in an effort to elucidate the fundamental processes that govern soot particle-particle interactions in wet environments such as rain droplets or surface aquatic systems. The influence of electrolytes and aqueous pH on colloidal stability of these NPs was investigated by measuring their aggregation kinetics in different aqueous solution chemistries. The results showed that the NPs had negatively charged surfaces and exhibited both reaction- and diffusion-limited aggregation regimes with rates depended upon solution chemistry. The aggregation kinetics data were in good agreement with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentrations (CCC) were quantified and the Hamaker constant was derived for the soot (1.4 × 10-20 J) using the colloidal chemistry approach. The study indicated that, depending upon local aqueous chemistry, single soot NPs could remain stable against self-aggregation in typical freshwater environments and in neutral cloud droplets but are likely to aggregate under salty (e.g., estuaries) or acidic (e.g., acid rain droplets) aquatic conditions or both.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Environmental Sciences, Rutgers, The State University of New Jersey , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
29
|
Vu D, Short D, Karavalakis G, Durbin TD, Asa-Awuku A. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1580-1586. [PMID: 28045504 DOI: 10.1021/acs.est.6b03908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.
Collapse
Affiliation(s)
- Diep Vu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California , Riverside, California 92521, United States
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT) , Riverside, California 92507, United States
| | - Daniel Short
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California , Riverside, California 92521, United States
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT) , Riverside, California 92507, United States
| | - Georgios Karavalakis
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California , Riverside, California 92521, United States
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT) , Riverside, California 92507, United States
| | - Thomas D Durbin
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California , Riverside, California 92521, United States
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT) , Riverside, California 92507, United States
| | - Akua Asa-Awuku
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California , Riverside, California 92521, United States
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT) , Riverside, California 92507, United States
| |
Collapse
|
30
|
Maskey S, Chae H, Lee K, Dan NP, Khoi TT, Park K. Morphological and elemental properties of urban aerosols among PM events and different traffic systems. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:108-118. [PMID: 27262278 DOI: 10.1016/j.jhazmat.2016.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
Morphology and elemental composition of individual fine ambient particles varied among types of PM events and between two different urban environments having different major transportation systems (gasoline/diesel vehicles versus motorcycles). Carbonaceous particles were the most dominant in PM events, whereas S-rich particles were the highest in non-events at urban Gwangju in Korea. The aged soot, semi-volatile organic (SVO), and non-volatile organic (NVO) particles were more abundant in the polluted-long range transport (LTP) event than those in the dust-LTP event and non-event. In the dust-LTP event, the aged mineral dust particles outnumbered the fresh ones, suggesting the mineral dust particles were aged during their long-range transport. At HoChiMinh (HCM) in Vietnam, the fraction of carbonaceous particles was much higher than Gwangju (66% versus 30%) possibly due to more abundant two-stroke motor vehicles at HCM. Of the carbonaceous particles, combustion soot (19%) was the highest, followed by NVO (18%), SVO (17%), and biological particles (11%) at HCM, whereas SVO (11%) and NVO (10%) particles were the highest, followed by combustion soot particles (8%) at Gwangju. The higher fraction of mineral dust particles was also observed at HCM, indicating the sampling site was influenced by dust from unpaved roads and construction sites.
Collapse
Affiliation(s)
- Shila Maskey
- National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-Gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Hoseung Chae
- National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-Gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Kwangyul Lee
- National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-Gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Nguyen Phuoc Dan
- Faculty of Environment and Natural Resources, Ho Chi Minh (HCM) City University of Technology, HCM, Vietnam
| | - Tran Tien Khoi
- Faculty of Environment and Natural Resources, Ho Chi Minh (HCM) City University of Technology, HCM, Vietnam
| | - Kihong Park
- National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-Gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
31
|
Reply to Boucher et al.: Rate and timescale of black carbon aging regulate direct radiative forcing. Proc Natl Acad Sci U S A 2016; 113:E5094-5. [PMID: 27555593 DOI: 10.1073/pnas.1610241113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Guo S, Hu M, Lin Y, Gomez-Hernandez M, Zamora ML, Peng J, Collins DR, Zhang R. OH-Initiated Oxidation of m-Xylene on Black Carbon Aging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8605-8612. [PMID: 27384756 DOI: 10.1021/acs.est.6b01272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Laboratory experiments are conducted to investigate aging of size-classified black carbon (BC) particles from OH-initiated oxidation of m-xylene. The variations in the particle size, mass, effective density, morphology, optical properties, hygroscopicity, and activation as cloud condensation nuclei (CCN) are simultaneously measured by a suite of aerosol instruments, when BC particles are exposed to the oxidation products of the OH-m-xylene reactions. The BC aging is governed by the coating thickness (Δrve), which is correlated to the reaction time and initial concentrations of m-xylene and NOx. For an initial diameter of 100 nm and Δrve = 44 nm, the particle size and mass increase by a factor of 1.5 and 10.4, respectively, and the effective density increases from 0.43 to 1.45 g cm(-3) due to organic coating and collapsing of the BC core. The BC particles are fully converted from a highly fractal to nearly spherical morphology for Δrve = 30 nm. The scattering, absorption, and single scattering albedo of BC particles are enhanced accordingly with organic coating. The critical supersaturation for CCN activation is reduced to 0.1% with Δrve = 44 nm. The results imply that the oxidation of m-xylene exhibits larger impacts in modifying the BC particle properties than those for the OH-initiated oxidation of isoprene and toluene.
Collapse
Affiliation(s)
- Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing, 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing, 100871, China
| | - Yun Lin
- Department of Atmospheric Sciences, Texas A&M University , College Station, Texas 77843, United States
| | - Mario Gomez-Hernandez
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Misti L Zamora
- Department of Atmospheric Sciences, Texas A&M University , College Station, Texas 77843, United States
| | - Jianfei Peng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing, 100871, China
| | - Donald R Collins
- Department of Atmospheric Sciences, Texas A&M University , College Station, Texas 77843, United States
| | - Renyi Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing, 100871, China
- Department of Atmospheric Sciences, Texas A&M University , College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
33
|
Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci U S A 2016; 113:4266-71. [PMID: 27035993 DOI: 10.1073/pnas.1602310113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.
Collapse
|
34
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
35
|
Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev 2015; 115:3803-55. [PMID: 25942499 DOI: 10.1021/acs.chemrev.5b00067] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renyi Zhang
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | - Song Guo
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | - Min Hu
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- #Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
36
|
Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat Commun 2015; 5:3098. [PMID: 24448316 DOI: 10.1038/ncomms4098] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/12/2013] [Indexed: 11/08/2022] Open
Abstract
Increasing levels of anthropogenic aerosols in Asia have raised considerable concern regarding its potential impact on the global atmosphere, but the magnitude of the associated climate forcing remains to be quantified. Here, using a novel hierarchical modelling approach and observational analysis, we demonstrate modulated mid-latitude cyclones by Asian pollution over the past three decades. Regional and seasonal simulations using a cloud-resolving model show that Asian pollution invigorates winter cyclones over the northwest Pacific, increasing precipitation by 7% and net cloud radiative forcing by 1.0 W m(-2) at the top of the atmosphere and by 1.7 W m(-2) at the Earth's surface. A global climate model incorporating the diabatic heating anomalies from Asian pollution produces a 9% enhanced transient eddy meridional heat flux and reconciles a decadal variation of mid-latitude cyclones derived from the Reanalysis data. Our results unambiguously reveal a large impact of the Asian pollutant outflows on the global general circulation and climate.
Collapse
|
37
|
Lavi A, Segre E, Gomez-Hernandez M, Zhang R, Rudich Y. Volatility of Atmospherically Relevant Alkylaminium Carboxylate Salts. J Phys Chem A 2015; 119:4336-46. [DOI: 10.1021/jp507320v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Avi Lavi
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Enrico Segre
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mario Gomez-Hernandez
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Renyi Zhang
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yinon Rudich
- Department of Earth and Planetary Science and ‡Physical Services, Weizmann Institute of Science, Rehovot, 76100 Israel
- Department of Atmospheric Sciences and ∥Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
38
|
Abstract
As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.
Collapse
|
39
|
Cheng T, Wu Y, Chen H. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status. OPTICS EXPRESS 2014; 22:15904-15917. [PMID: 24977845 DOI: 10.1364/oe.22.015904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology of internally mixed light absorbing carbon aerosols must be explicitly considered in climate radiation balance.
Collapse
|
40
|
Qiu C, Khalizov AF, Hogan B, Petersen EL, Zhang R. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6444-6452. [PMID: 24803287 DOI: 10.1021/es405589d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.
Collapse
Affiliation(s)
- Chong Qiu
- Department of Chemistry & Industrial Hygiene, University of North Alabama , Florence, Alabama 35632-5049, United States
| | | | | | | | | |
Collapse
|
41
|
Loukhovitskaya EE, Talukdar RK, Ravishankara AR. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4. J Phys Chem A 2013; 117:4928-36. [PMID: 23682559 DOI: 10.1021/jp401723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uptake of HNO3 on aviation kerosene soot (TC-1 soot) was studied in the absence and presence of water vapor at 295 and 243 K. The influence of H2SO4 coating of the TC-1 soot surface on HNO3 uptake was also investigated. Only reversible uptake of HNO3 was observed. HONO and NO2, potential products of reactive uptake of HNO3, were not observed under any conditions studied here. The uptake of nitric acid increased slightly with relative humidity (RH). Coating of the TC-1 soot surface with sulfuric acid decreased the uptake of HNO3 and did not lead to displacement of H2SO4 from the soot surface. A limited set of measurements was carried out on soot generated by aircraft engine combustor (E-soot) with results similar to those on TC-1 soot. The influence of water on HNO3 uptake on E-soot appeared to be more pronounced than on TC-1 soot. Our results suggest that HNO3 loss in the upper troposphere due to soot is not significant except perhaps in aircraft exhaust plumes. Our results also suggest that HNO3 is not converted to either NO2 or HONO upon its uptake on soot in the atmosphere.
Collapse
Affiliation(s)
- Ekaterina E Loukhovitskaya
- National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder, Colorado 80305, United States
| | | | | |
Collapse
|
42
|
Khalizov AF, Lin Y, Qiu C, Guo S, Collins D, Zhang R. Role of OH-initiated oxidation of isoprene in aging of combustion soot. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2254-2263. [PMID: 23379649 DOI: 10.1021/es3045339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have investigated the contribution of OH-initiated oxidation of isoprene to the atmospheric aging of combustion soot. The experiments were conducted in a fluoropolymer chamber on size-classified soot aerosols in the presence of isoprene, photolytically generated OH, and nitrogen oxides. The evolution in the mixing state of soot was monitored from simultaneous measurements of the particle size and mass, which were used to calculate the particle effective density, dynamic shape factor, mass fractal dimension, and coating thickness. When soot particles age, the increase in mass is accompanied by a decrease in particle mobility diameter and an increase in effective density. Coating material not only fills in void spaces, but also causes partial restructuring of fractal soot aggregates. For thinly coated aggregates, the single scattering albedo increases weakly because of the decreased light absorption and practically unchanged scattering. Upon humidification, coated particles absorb water, leading to an additional compaction. Aging transforms initially hydrophobic soot particles into efficient cloud condensation nuclei at a rate that increases in the presence of nitrogen oxides. Our results suggest that ubiquitous biogenic isoprene plays an important role in aging of anthropogenic soot, shortening its atmospheric lifetime and considerably altering its impacts on air quality and climate.
Collapse
Affiliation(s)
- Alexei F Khalizov
- Department of Atmospheric Sciences, Texas A&M University , College Station, Texas, 77843, United States
| | | | | | | | | | | |
Collapse
|
43
|
Qiu C, Khalizov AF, Zhang R. Soot aging from OH-initiated oxidation of toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9464-9472. [PMID: 22853850 DOI: 10.1021/es301883y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have conducted laboratory experiments to investigate the impacts of secondary organic aerosol formation on soot properties from OH-initiated oxidation of toluene. Monodisperse soot particles are exposed to the oxidation products of the OH-toluene reaction in an environmental chamber, and variations in particle size, mass, organic mass faction, morphology, effective density, hygroscopicity, and optical properties are simultaneously determined by an integrated aerosol analytical system. The thickness of the organic coating, correlated to reaction time and initial reactant concentrations, is shown to largely govern the particle properties. With the development of organic coating, the soot core is changed from a highly fractal to compact form, evident from the measured effective density and dynamic shape factor. The organic coating increases the particle hygroscopicity, and further exposure of coated soot to elevated relative humidity results in a more spherical particle. The single scattering albedo and scattering and absorption cross sections are also enhanced with the organic coating. Our results suggest that the oxidation products of anthropogenic pollutants alter the composition and properties of soot particles and lead to increased particle density, hygroscopicity, and optical properties, considerably enhancing their impacts on air quality, climate forcing, and human health.
Collapse
Affiliation(s)
- Chong Qiu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
44
|
Grishin I, Thomson K, Migliorini F, Sloan JJ. Application of the Hough transform for the automatic determination of soot aggregate morphology. APPLIED OPTICS 2012; 51:610-620. [PMID: 22330294 DOI: 10.1364/ao.51.000610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
We report a new method for automated identification and measurement of primary particles within soot aggregates as well as the sizes of the aggregates and discuss its application to high-resolution transmission electron microscope (TEM) images of the aggregates. The image processing algorithm is based on an optimized Hough transform, applied to the external border of the aggregate. This achieves a significant data reduction by decomposing the particle border into fragments, which are assumed to be spheres in the present application, consistent with the known morphology of soot aggregates. Unlike traditional techniques, which are ultimately reliant on manual (human) measurement of a small sample of primary particles from a subset of aggregates, this method gives a direct measurement of the sizes of the aggregates and the size distributions of the primary particles of which they are composed. The current version of the algorithm allows processing of high-resolution TEM images by a conventional laptop computer at a rate of 1-2 ms per aggregate. The results were validated by comparison with manual image processing, and excellent agreement was found.
Collapse
Affiliation(s)
- Igor Grishin
- University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Ueda S, Osada K, Takami A. Morphological features of soot-containing particles internally mixed with water-soluble materials in continental outflow observed at Cape Hedo, Okinawa, Japan. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Friedman B, Kulkarni G, Beránek J, Zelenyuk A, Thornton JA, Cziczo DJ. Ice nucleation and droplet formation by bare and coated soot particles. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015999] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Zhang J, Wang L, Chen J, Feng S, Shen J, Jiao L. Hygroscopicity of ambient submicron particles in urban Hangzhou, China. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11783-011-0358-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Liu J, Fan S, Horowitz LW, Levy H. Evaluation of factors controlling long-range transport of black carbon to the Arctic. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015145] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Popovicheva OB, Persiantseva NM, Kireeva ED, Khokhlova TD, Shonija NK. Quantification of the Hygroscopic Effect of Soot Aging in the Atmosphere: Laboratory Simulations. J Phys Chem A 2010; 115:298-306. [DOI: 10.1021/jp109238x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Snider JR, Wex H, Rose D, Kristensson A, Stratmann F, Hennig T, Henning S, Kiselev A, Bilde M, Burkhart M, Dusek U, Frank GP, Kiendler-Scharr A, Mentel TF, Petters MD, Pöschl U. Intercomparison of cloud condensation nuclei and hygroscopic fraction measurements: Coated soot particles investigated during the LACIS Experiment in November (LExNo). ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012618] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|